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Abstract
Local shape descriptors can be used for a variety of tasks, from registration to comparison to shape analysis
and retrieval. There have been a variety of local shape descriptors developed for these tasks, which have been
evaluated in isolation or in pairs, but not against each other. We provide a survey of existing descriptors and a
framework for comparing them. We perform a detailed evaluation of the descriptors using real data sets from a
variety of sources. We first evaluate how stable these metrics are under changes in mesh resolution, noise, and
smoothing. We then analyze the discriminatory ability of the descriptors for the task of shape matching. Our
conclusion is that sampling the normal distribution and the mean curvature, using 25 samples, and reducing
this data to 5-10 samples via Principal Components Analysis provides robustness to noise and the best shape
discrimination results.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling —Curve, surface, solid, and object representations

1. Introduction

Local shape descriptors are used in 3D shape matching to
both find unique points on the surface and then to match up
these points on different models. They can also be used to
speed up searches by reducing the model to a small number
of features which are easily compared. Given the plethora
of descriptors out there, what is a good choice? We evaluate
that question in the shape feature matching context — given
sets of “similar” points, how well does the descriptor do at
clustering similar points while distinguishing between points
in different sets?

We first survey existing local shape descriptors, group-
ing them by type (Section 2). Next, we provide a frame-
work for comparing these descriptors to each other. In the
process of doing this, we develop several new variations
of existing descriptors (Section 3). In specific, we create a
rotation-independed version of Point descriptors [CJ97] and
their variants.

To evaluate the descriptors we perform two studies. The
first study (Section 4) is a straightforward analysis of behav-
ior under changing mesh quality, noise, and smoothing. The
second study (Section 5) uses hand-picked similar feature
points to determine which descriptors are both sensitive (can
determine if features are the same) and specific (can distin-

guish one feature from another). We also provide a correla-
tion analysis on the descriptors (Section 6).

Our conclusion is that sampling mean curvature or the
normal distribution at roughly 25 samples per local neigh-
borhood, followed by Principal Components Analysis to re-
duce the data to 7-10 numbers, are the two best descriptors
in terms of robustness and discrimination power.

Contributions: 1) A survey of existing local descriptors.
2) A systematic evaluation of a variety of shape descrip-
tors on different data sets. 3) Rotationally-invariant modifi-
cation of Point signatures. 4) Normalized comparison func-
tions that allow for direct comparison of all descriptors.

2. Local descriptors

A good local descriptor is one that is invariant to “unimpor-
tant” geometric changes, typically rotation and translation,
sometimes scaling, and sometimes bending (such as posing
an articulated character). It should take into account the lo-
cal shape of the surface surrounding a given point. It should
also be robust to noise and sampling errors: Geometric noise
(vertices moving), Mesh topology noise (the mesh connec-
tivity changes), and Global topology noise (the creation of
handles and tunnels). Local descriptors should also have a
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meaningful comparison function, one that scales roughly lin-
early with perceived shape change and is robust to noise.

To handle invariance, most descriptors measure geomet-
ric properties that are invariant to translation and rotation,
such as curvature, length, volume, and angle. Scale invari-
ance requires a relative measure — for example, the length
of a curve over a radius — or scaling the object to a default
size.

There are, broadly, two ways to determine a local neigh-
borhood around a point. The first is to measure Euclidean
distance, for instance, all of the surface contained within a
sphere. The second is to measure Geodesic distance by walk-
ing out a set distance on the surface. Empirically, we have
determined that for small-scale features the two are qual-
itatively similar. The difference only really matters when
considering large-scale features such as entire limbs. At this
scale pose-invariance (a bent limb should be the “same” as a
straight one) can only be achieved by considering geodesic
distances. We divide existing local descriptors into three
classes. The first two only look at local data, the third at
global data. The two local data classes split on whether they
sample a metric locally or fit a model to the local neighbor-
hood.

2.1. Ring-based descriptors (sample metric locally)

Blowing bubbles [MPS∗03] intersects the surface with a set
of concentric spheres and extracts information about the sur-
face in two steps. First, they simply count the number of
closed contours, ignoring curves that are far away (1, 2, or
more than 2). They further classify the contours using the
length of the contours and a local concavity measure that
determines if the curve centroid is above or below the point.
Altogether, these measures can be used to classify the sur-
face into eleven different groups. These descriptors (length
of curve, centroid) are generalized to an integrative frame-
work in [PWHY09].

Geodesic fans [GGGZ05] sample a metric (such as curva-
ture) on the mesh using concentric geodesic rings instead
of spheres. Geodesic fans re-sample the metric into evenly-
spaced samples in the radial and angular direction. To com-
pare two fans, every possible rotation is tried, and the one
with the minimal error is kept. They also introduce a 1D
“curve”, where the values around a ring are collapsed into
a single number (average, minimum, and maximum values).
This eliminates the need to try all possible rotations but
does result in a loss of information. A modified version of
this, which combined curvature along geodesics with normal
variation, was recently used to do polyp detection [OS10].

Splash descriptor Stein and Medioni [SM92] sample
the normal at regularly-spaced intervals. The normals are
mapped to a spherical coordinate system using the nor-
mal n0 at the point and a tangent vector t, with t chosen
by finding the point Pi which has the maximum value of

√
< n0,ni >2 +< t,ni >2. They then map this 3D curve to

2D by computing the curvature and torsion along it. It is
not clear how necessary (or useful) this last step is; it was
primarily motivated by compatibility with the rest of their
system.

Point descriptor Chua and Jarvis [CJ97] used a similar sam-
pling, but recorded the distance from the contour to a plane
fit to the contour and passing through the point. Yamany
and Farag [YF99,YF02] proposed a modified version of this
where they took a line through the point on the ring. They
then stored the line length and angle with respect to the nor-
mal. They convert this to a 2D image by using the first angle
and length as the axes, and the normal angle as the image’s
intensity value. They used all points in the mesh for this de-
scriptor; by weighting the points by their distance to the cen-
ter point [BMP02,KPNK03] this descriptor can be localized.

2.2. Expanding descriptors (fit model to region)

Fitting polynomials: Cipriano et. al [CPJG09] grow their
disks using geodesics. Each disk is then treated as a height
field over the tangent plane. They fit a quadratic polynomial
to the height field, weighting the points by their surface area
and how close to the center they are. Because they project
their points directly to the tangent plane they may get fold-
ing; this is mitigated by a post-processing step which detects
these cases as outliers. Finally, they define two descriptors.
The first is the curvature of the fitted quadratic. The second
descriptor treats the height field as an intensity image, and
measures the anisotropy of the image. This can be computed
directly from the polynomial coefficients, but is somewhat
less specific than the curvature measures.

Mesh saliency: Mesh saliency [LVJ05] uses the concept of
center-surround from perception to measure how the center
of a disk differs from a disk twice as big. Essentially, they
sum up a metric (usually mean curvature) using a Gaussian
weighted sum centered at the point. They then repeat this
sum using a kernel twice the size. The value for the disk is
then the ratio of the two sums, normalized.

Volume and surface area: Instead of measuring derivative
information (eg, curvature) on the surface, an alternative is
to measure integrative information, such as volume [Con86]
or surface area [PWHY09]. These measures, being inte-
grated, are nominally more stable in the presence of noise
than derivative measures. To extract more information about
the local patch it is possible to apply Principal Components
Analysis [CGR∗04, CRT04]. Pottman et al [PWHY09] pro-
vide a nice summary and comparison of these integrative,
invariant geometric measures.

2.3. Iterative operator descriptors (global)

Smoothing: As a mesh is smoothed, vertices change their
positions. Vertices in high-curvature regions tend to move
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more than in low-curvature ones. Essentially, record the dis-
tance moved by each vertex for each smoothing iteration,
for some number of iterations. This descriptor is used by
Li and Guskov [LG05] to find interesting points and by the
brain mapping community [FSD99] to identify sulcal folds
on cortical surfaces.

Geodesics and diffusion: The techniques in this class do
not directly measure the geodesics, but instead measure a
diffusion process flowing along the geodesics. The Laplace-
Beltrami operator [Rus07] is used to compute the diffusion
because it essentially records the mesh connectivity.

Bronstein et. al [BBK∗10] use diffusion geometry (how
long does it take, on average, to walk from one point to
another on the surface using a random walk?) to compare
two surfaces. To turn this into a local descriptor, measure
the average probability of walking from the point P to all
the neighboring points at time t, for increasing values of
t [dGGV08]. An alternative is to measure the average dis-
tance to all of the points in the neighborhood [GSCO07].
Sun et. all [SOG09] perform a heat diffusion operation on
the surface, and track the accumulated heat at the point over
time.

Comparing two diffusion signatures requires some care
because the values change rapidly for small time values, then
smooth out. For this reason, Sun et. all [SOG09] sample time
using a logarithmic scale and normalize by dividing by the
area under the curve.

3. Shape descriptors

There are a variety of methods for calculating shape de-
scriptors; we have attempted to unify them into a consis-
tent framework so that they can be usefully evaluated against
each other. We consider both the definition of the descriptor
and the comparison function. To normalize the latter we in-
corporate a step that converts the raw descriptor to the range
[0,1], accounting for non-linearities as best as possible. Sev-
eral descriptors have inherent in them either picking a canon-
ical tangent direction [CJ97,YF02] or comparing all possible
rotations [ZG04]. We get around this by sampling the ring
data into a histogram.

We define a local shape descriptor as a mapping from a
small subset of the surface centered at a point P to a vector
d of numbers. These vectors can then be compared to deter-
mine how similar two points are, or used in a classifier. By
varying the amount of surface used, the descriptors can pick
out smaller or larger features. Metric here refers to a value,
such as curvature, calculated at every point on the surface.
The general algorithm for computing a descriptor is as fol-
lows:

1a, Ring and expanding descriptors: For each point P,
sample the metric at R concentric rings or patches spaced
a distance r apart. This produces a vector of dimension RS,
where S is the number of samples per ring.
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Figure 1: Top row: Sorted curvature values (raw, index,
mapped). Red - Mandible, Blue - Tibia, Green = Ferret.
Bottom row,: Applying mapping (Section 3.2). Blue curve
is original data, linearly scaled to the range [0,1]. Bottom
right: Eigen values of all descriptors.

1b, Iterative operator descriptors: Apply the iterative op-
erator. Record the values at R iterations, where each itera-
tion corresponds (approximately) to the operator expanding
a distance r. This produces a vector of dimension RS for each
point P, where S is the dimension of the output of the opera-
tor at point P (usually S = 1).

2, Reduction: Apply Principle Component Analysis (PCA)
or Multi-dimensional Scaling (MDS) as appropriate to all of
the vectors, and re-project the vectors onto this coordinate
system.

3, Normalize: Normalize the distribution of values in each
dimension, using a non-linear mapping as necessary, so they
lie between zero and one and are (relatively) evenly dis-
tributed.

Section 3.1 defines the specific descriptors used in our
study. Section 3.2 discusses the coordinate system change
and normalization step.

Sampling the surface: We experimented with three dif-
ferent methods for sampling the surface: 1) Intersecting
spheres [MPS∗03] (Euclidean), 2) Growing disks, and 3)
Exponential maps [SGW06] (Geodesic). Empirically, they
all produce qualitatively similar results. For this paper, we
use 1) with r = 0.0375B/R, where B is the diagonal of the
bounding box of the surface and R = 5. In general, for sur-
faces with small, thin structures or substantial noise we rec-
ommend using the intersecting spheres approach. For sur-
faces without these features we recommend the Exponential
map approach because it is faster and does not require a sec-
ond parameterization step. We resample metric data evenly
along the rings, at a spacing of 2πr/20.

3.1. Specific descriptors

Note: An implementation of these descriptors is available at
https://sourceforge.net/projects/meshprocessing/.

Ring-based descriptors:

[DP] Distance to plane: Fit a plane to the ring then calculate
the signed distance of each point to the plane.
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[ND] Normal distribution (2 values): 1 - Fit a plane to the
vertex, a point on the ring, and the vertex’s normal. Project
the ring point’s normal onto that plane, and find the angle
with the normal. 2 - Fit a plane to two consecutive points
on the ring and the first point’s normal. Project the second
point’s normal onto this plane. This sampling is rotation-
independent.

Curvatures: We use four curvature values, Mean, Gaus-
sian, Shape and Curvature index (SI, CI) [KvD92]. SI and
CI map curvature values to a reasonable range using arctan
and log. We apply an ad-hoc curvature normalization step
to the curvatures (see Section 3.2) because otherwise large
values swamp the other ones.

[SDF] Shape Diameter function: [SSCO08, GSCO07].

For the above descriptors we experiment with eight different
approaches to sampling the data on the rings:

[VERT] R = 1,S = 1. Store just the data at the vertex.

[SAL] S = 1. Saliency sampling [LVJ05]. We used the radii
as the center sampling size.

[MIN/MAX/AVG] S = 1. Minimum/Maximum/Average of
the values on the ring.

[MMA] S = 3. Minimum, maximum, and averaged values.

[DIST] S = 5. Sort the values. Take the values that lie at the
0%, 10%, 50%, 90%, and 100% places in the sorted list.

[HIST] S = 7. Values at 0%, 10%, 30%, 50%, 70%, 90%,
and 100%.

[AS] S = 2. Take the average and the standard deviation of
the values on the ring.

Expanding descriptors:

[LEN:] Length of the ring over the radius.

[AREA:] Area of the volume in the sphere.

[ANCE:] Uses the ANCE [GI04] method to calculate the
Mean and Gaussian curvature, using the vertex location and
the re-sampled points of the ring as input.

[FIT:] Fit a degree two polynomial to all of the sur-
face points inside the ring, plus the resampled ring points,
weighted by distance. Calculate the Mean and Gaussian cur-
vature from the polynomial. We use Desbrun’s‘ [DMA02]
approach to parameterize the surface.

Iterative operator descriptors:

[MOV] Movement. The distance of the vertex from its orig-
inal position after applying Laplacian smoothing [DMSB99]
three times for each ring.

[HEAT] Heat diffusion [SOG09].

Taking into account the different ways of sampling the
rings, we have 8+ 2× 5+ 5× 9+ 1 = 67 descriptors (we
throw in a descriptor which is all of the curvature metrics
plus SDF sampled at the vertex).

3.2. Coordinate systems, normalization, and reduction

Naively comparing the resulting d vectors using an Ln norm
has problems. First, the distribution of values may not be lin-
ear, or even purely exponential (see Figure 1c,d). This means
that a delta difference of, eg, 0.5 may mean nearly identical
for vectors with values at the extremes, but not at all the same
for vectors with values at the center. Scaling by the length of
d can help some, but does not really address the problem.

After computing the raw values we perform a coordinate
system transformation by applying Principal Components
Analysis (PCA) or Multi-dimentional Scaling (MDS) as ap-
propriate to all descriptor values. This has an added advan-
tage that the first eigenvector carries the bulk of the infor-
mation (see Figure 1, bottom right). In this new coordinate
system we apply an ad-hoc normalization to map the val-
ues in each dimension to the range [0,1]. For the comparison
studies we keep all of the dimensions. In practice, we have
empirically determined that we can drop the remaining co-
efficients when the Eigenvalues drop below 10% of the first
one without much loss. This happens around the 3rd - 10th
coordinate, depending on the original dimensionality of the
data (MMS - 5, DIST - 7, HIST - 10, all others 3).

We use PCA for all but the Average and Standard De-
viation sample method. For this one, the correct compari-
son method is the Kullback-Leibler Divergence (KLD). We
compute a distance matrix using KLD, then apply multi-
dimensional scaling (MDS) to that matrix. Because the KLD
is expensive to compute, in practice we apply MDS to a
5R× 5R matrix. We select the 5R vectors by adding in the
vector that is furthest from any of the vectors currently se-
lected.

Directionality: The eigenvectors can point in one of two
ways. For visualization purposes, it is nice if the positive
direction of the first eigenvector corresponds to positively
curved regions, as best as possible. We determine if the first
eigenvector should be flipped by comparing the coordinate
directionality to either the Gaussian (Gaussian-based met-
rics) or the Mean (all other) curvature direction.

Normalization: This is a purely ad-hoc solution to the com-
parison. Our only justification is that the descriptor values
“look” evenly distributed after the mapping (see Figure 1).
Sort the coordinate values. Divide the sorted values into 5
bins, at percentages (0.0,0.1,0.3,0.7,0.9,1.0). Within each
bin, map the values to the range of the bin, optionally ap-
plying Eq. 1) one to three times. We determine how many
times by choosing the mapping that is closest to a line (ie,
minimizes the sum |x− y|.

y(x) = ex2
or y(x) = 1− e(1−x)2

(1)

Mean curvature: bin boundaries at 0 (-500), 0.05 (-20), 0.35
(-8), 0.5 (0), 0.65 (10), 0.95 (60) and 1 (700), with 2, 1, 0, 0,
0, 2 applications of Eq. 1. Gaussian curvature: 0 (-40,000),
0.05 (-2000), 0.15 (-500), 0.5 (0), 0.85 (400), 0.95 (3000)
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and 1 (40,000) with 2, 1, 0, 0, 2, 3 applications of Eq. 1. For
both, the positive bins are reversed. These values were found
by experimentation on the curvature values produced by the
data sets.

4. Stability study

For this study we evaluate the effects of mesh resolution,
noise, and smoothing on the descriptors. We started with
three meshes (fandisk, Isidore rocking horse, horse), from
which we generated a total of 28 meshes with different res-
olutions and noise or smoothing.

Reduction: For each mesh we generated three meshes at dif-
ferent resolutions by applying QSlim [GH97] with a 30%,
60%, and 80% reduction in the percentage of faces. Even the
80% reduction did not result in a noticeable visual change.
To establish the correspondence, we project the original
mesh vertices onto the reduced meshes, interpolating the val-
ues in the faces. We then averaged the difference between the
original and reduced descriptors across all vertices. We plot
the increase in error as the mesh is reduced. For the summary
plot, we used the 80% reduction values.

Noise: We generated clamped Gaussian noise δ = e[−2,2]/2

and shifted each point along its normal n̂. Let B be the diag-
onal of the bounding box containing the surface. We created
three meshes with three noise levels, ±δB (0.001, 0.0005,
0.00025) for each of the four mesh reduction levels. To gen-
erate the noise plots, we compared the noisy mesh to the
unaltered mesh of the same resolution, producing four plots
per descriptor.

Smoothing: We applied area-normalized Laplacian smooth-
ing [DMSB99]. At each iteration we moved each point 1/3
of the way to its Laplacian average, then area-normalized.
We generate meshes and plots as for the Noise case.

Figure 2 summarizes the results across all descriptors and
all studies, and shows example individual plots for the mesh
reduction and noise and smoothness. Complete plots are
available in the supplementary materials. For all measures,
we used the L2 norm.

We saw the same general trends in all three studies, in
terms of the behavior of the descriptors. Distance to plane
and Normal distribution were the most stable descriptors,
with Mean, CI, SI, and Gauss roughly similar. SDF was the
next most stable, followed by Movement and Point (combin-
ing Mean, Gauss, SI, CI, SDF, and Movement at the point).
Length of Curve, followed by the four fitting descriptors
(ANCE and FIT), were not that stable.

For the sampled descriptors, the best sampling strategy
was the histogram one (seven samples) followed closely by
the distribution descriptor (five samples) then MMA (three
samples). AVG, Saliency, and MIN/MAX were, on average,
the same, with AVG slightly out-performing the others. Av-
erage and Standard deviation (AS) and Vertex were not very
stable, with Vertex being very unstable.

We analyzed the effects of mesh resolution, noise, and
sampling independently by looking at the individual plots.
In summary, we saw the following: 1) Adding noise affects
the higher resolution meshes more than it does the lower res-
olution ones. 2) Smoothing tends to affect the lower resolu-
tion meshes more than the higher resolution ones. 3) The
smoother or “nicer” the mesh is to start with the less adding
noise or smoothing makes a difference. 4) Using multiple
rings produced an order of magnitude improvement over
simply using the descriptor calculated at the vertex. 7) Ad-
ditional averaging (saliency sampling, fitting) was, surpris-
ingly, more prone to error than sampling using rings. 8) SI
and CI are slightly more stable than our (normalized) Mean
and Gauss curvature, with Gauss being the most unstable.

5. Sensitivity study

The previous study looked at the stability of the descriptors
— how much they were influenced by noise, mesh sampling,
and smoothing. In these studies, we evaluate the descriptors
by how well they can distinguish features. For each data set
(mandible (10), ferret (8), bat ears (35), mechanical parts
(4)) we hand-picked sets of points which should be similar
(the “same” point on different instances of similar meshes).
Each set was chosen to be sufficiently different from the
other ones. This is, admittedly, a human-perception biased
method of creating an evaluation set. However, given that
we want to work with real data sets, not artificially gener-
ated ones, we believe it is justified.

Data analysis: Ideally, points in one set should have de-
scriptors that are similar, while points in other sets should
have descriptors that are dissimilar. We picked two measures
to evaluate this. The first measure is simply the spread of a
given shape descriptor’s feature value over all the points in
the set. These values are summed up over all of the sets to
yield a score for each shape descriptor. A zero average and
narrow standard deviation are good.

The second measure evaluates how distinctive the shape
descriptors are, i.e., how likely a point from one set is to
match to points in another set. To calculate this, we compare
each point to all of the other points, and sort the results. We
then count how far down the list we have to go to find a point
in the same set. Ideally, the count should be zero.

We summarize the results in Figure 3. We combine both
scores into a single plot by plotting the first measure, and the
second measure normalized to the first measure. The mean
and normal descriptors are clearly the best, followed by dis-
tance to the plane and Gauss. Not too surprising, sampling
each ring with 3-7 samples (MMS, DIST, HIST) performed
better than taking a single sample on the ring. For the me-
chanical models alone, MMS was the better choice (see sup-
plemental).
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Figure 2: Left: All of the descriptors. For each data set we averaged across all 28 meshes. The total score for a descriptor
was a blended combination of the average and the max (3/4 and 1/4, respectively). The descriptor values range from zero to
one, so a y axis value of 0.01 means the average difference is less than 1% of the maximum descriptor value. Middle: Top:
Mesh reduction. x-axis is the mesh reduction amount, y-axis is the difference in the descriptors, averaged across the surface (||
reduced - original ||). Bottom: Noise and smoothness. x-axis goes from noisy to smooth. The meshes were compared to their
original mesh of the same resolution.
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Figure 3: Local feature selectivity. a) Examples of selected points. Note: Ball size is the actual size of the largest ring. b) Yellow
bars: Average spread of the shape descriptor values from the mean. A smaller spread is better. Blue bars: How likely a point
was to match to another point in the same set. Zero is better. Both measures were divided by their mean in order to combine
them in one plot.

6. Correlation study

An obvious question to ask is, if one descriptor is good,
would two be better? We did not explicitly compare comb-
ing descriptors, but we did perform a correlation study (see
Figure 4). The strongest correlations are, of course, between
different samplings of the same descriptor. SDF correlates
the most strongly with itself, followed by Mean curvature,
Normal Distribution, and Distance to Plane. Gaussian cur-
vature did not show much correlation. Of the remaining de-
scriptors, Movement and Length of Curve did not correlate
strongly with much else. Of the two, Movement is better
for both noise and sensitivity, making it a good candidate

to combine with either the Normal Distribution or the Mean
curvature. )

7. Results and discussion

The studies clearly show that sampling data just at a vertex
is bad; this is not surprising. The general trend, for all of the
descriptors, is that more samples is better, both for stabil-
ity and discrimination, regardless of the descriptor used. We
did see evidence of over-fitting for the highest level of sam-
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Figure 4: Correlations of descriptors over all data sets.

pling in the sensitivity tests, which indicates that the ideal
sampling is somewhere around 3-5 samples per ring, which
can be reduced to 7-10 samples total via PCA. The Normal
distribution descriptor is consistently the best, followed by
Mean curvature or the Curvature index.

The non-sampled descriptors (Movement, Length of
curve) did about as well as the one sample per ring version of
the other descriptors, which indicates that it is primarily the
increased sampling that is of benefit. Not too surprisingly,
the Shape Diameter Function is less discriminating locally
than other descriptors since, in a sense, it is measuring mid-
scale features in the form of the local medial axis.

One surprising result is that the ranking for stability is
similar for the ranking for discrimination power. This hints
that the ability to filter out small geometry changes is related
to the ability to cluster similar local shapes.

Limitations of the study: Obviously, there are many ways
that local shape descriptors can be constructed, and there
may be unintended biases in the particular implementations
we use (for example our ad-hoc normalization). We also only
evaluated the feature matching task at small scales; for seg-
mentation a different descriptor may be more appropriate.

Timings: For smaller meshes (< 30,000 vertices) the de-
scriptors are roughly equivalent, at 2-10 seconds per de-
scriptor (Movement being much faster, ANCE and Fit be-
ing slowest). For bigger meshes, finding the rings dominates
the calculations (up to an hour for 70,000 vertices). Area and
SDF also do not scale well. Saliency and avg/sd are the slow-
est ring sampling methods, with the others about equal. The
PCA and normalization calculations are dominated by the
length of the vector; a few seconds for most of the descrip-

tors, up to a couple of minutes for the histogram sampling
on large (> 70,000) meshes.

Acknowledgements: Funded in part by NSF grants CCF
0702662 and DBI 1053171.

8. Conclusion

We have presented a systematic evaluation of local shape
descriptors for the task of local feature matching on real
data sets, both biological and man-made. This was accom-
plished by creating a unifying framework for the disparate
local shape descriptors.
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