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Abstract
Several applications - for example, study of biological tissue movement and organ growth - require shape corre-
spondence with a physical basis, especially for shapes or regions lacking distinctive features. For this purpose, we
propose the adaptation of mechanical strain, a well-established physical measure for deformation, to the prob-
lem of constructing shape correspondence and measuring similarity between non-rigid shapes. In this paper, we
demonstrate how to calculate strain for a 2D surface embedded in 3D. We then adjust the correspondence between
two surfaces so that the strain varies smoothly across the deformed surface (by minimizing the change in strain).
The final strain on the deformed surface can be used as a measure of shape similarity.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling —Physically based modeling

1. Introduction

With the advances in imaging techniques, such as mi-
croscopy, MRI, CT, and PET scanning, the amount of 3D
data available has grown significantly. Considerable research
effort has been concentrated on the problem of viewing or
reconstructing 3D shapes from raw 3D data. However, re-
cently the research focus has shifted to understanding, char-
acterizing, and retrieving such 3D shapes from a database.
To achieve these goals, an important task is to match shapes,
construct a correspondence between shapes and quantify the
change in shape based on that correspondence.

Both the parameterization and correspondence literature
look at the problem of mapping one surface to another, with
or without features. Given a set of corresponding features,
either user-provided or automatically identified, there have
been many approaches to establishing correspondence be-
tween surfaces. Some common approaches are maps that
preserves angle, area, or distance [KS04][SPR06]. However,
propagating the correspondence over flat regions between
features, or regions without distinctive features, is open to
interpretation.

To provide a physical basis to shape correspondence, we
propose the use of strain as a deformation metric. Strain re-
lates the forces on a material to measurable changes in its
physical shape. Strain is well defined for n-D to n-D defor-

mations. In this paper, we show how to define strain between
two 2D surfaces embedded in 3D, for both analytical and
discrete (e.g., mesh) surfaces of similar objects.

For correspondence extension, we use strain in a similar
manner to the harmonic relaxation typically applied in this
problem, except that we focus on minimizing the change in
strain, not the strain itself. As a simple example, consider a
rubber band stretched between two pins. One would expect
the strain to be evenly distributed along the rubber band, not
just accumulated in certain areas. Our proposed relaxation
achieves that. We also show how mechanical strain can be
applied to the problems of quantifying shape similarity and
analysing shape deformation.

Establishing shape correspondence is the key to quantify
and analyze shape change. This has many important real-life
applications such as using imagery to track the development
of biological tissue and internal organs. We test our approach
by applying it to image data that tracks the motion of car-
diac tissue in the outflow tract (OFT) of an embryonic chick
heart.

Contributions

1. Computation of strain when source and destination
shapes do not have the same mesh topology

2. Phrasing the problem of minimizing the variation in
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strain as a sparse matrix least-squares solve (Implicit in-
tegration)

3. Computing correspondence for cardiac tissue in motion
for the study of cardiac morphology and function

2. Previous work

There are several approaches to establishing correspondence
between surfaces, with parameterization [HPS08] being a
special case of matching a surface to a domain. Previous
energy-minimization approaches usually define energy func-
tions consisting of components that, while allowing the ver-
tices to slide on the first surface, pull them to the closest
point on the second surface [HPS08]. In order to guide the
matching process, the user must identify a sufficient number
of corresponding feature points on both surfaces. Such en-
ergy functions only work for shapes that are close enough,
otherwise the solver will converge to a poor local minimum
[ACP03].

In cases where corresponding features are provided, or
can be detected automatically, most of the existing meth-
ods have some form of relaxation for areas which are not
directly constrained by feature lines. The elegant work of
Miller et al. [BMTY05] defines a flow field in parameter
space which takes feature lines to feature lines, and defines
the flow in the remaining part of the parameter space so as
to prevent fold-overs. Shi et al. [STD∗07] use PDEs defined
on level-sets to evolve one surface to the next. They use har-
monic energy minimization to propagate the direction field
at the feature lines across the rest of the surface. Van Es-
sen et al. [EDD∗01] use ad-hoc planar warps to align an ini-
tial conformal parameterization with desired feature lines.
Gu et al. [WGC∗08] also use conformal mapping, but pro-
vide landmark matching by explicitly cutting the mesh and
using the features as boundaries; this prevents fold-overs.
[GHDS03] on the other hand use stretch and bending en-
ergies to calculate the deformation of a mesh given the force
acting upon it, which is a totally different problem.

Curvature is one of the geometric properties that can be
used to establish surface correspondence for areas without
distinctive features. However, curvature provides no input in
areas with no strong features. Even in the presence of ridges,
curvature provides matching across the ridge but not along
it. Moreover, curvature is non-linearly affected by scale - this
is particularly problematic in cases where the shape is under-
going an overall size change. Finally, curvature calculations
tend to be noisy, which may affect any gradient-descent type
algorithm.

Previous approaches in the literature discussed above use
some deformation metric which works well for their task,
but is not directly related to the underlying physics of the
deforming material. To illustrate this, consider two common
deformation metrics: the conformal metric and the area met-
ric. Minimizing deformation using the conformal metric en-

forces uniform stretch in all directions. The shape of the lo-
cal neighbourhood is preserved regardless of the change in
size (a circle on one surface should be mapped to a circle
on the other). Applying the area metric, on the other hand,
disregards the direction of stretch and preserves the area al-
lowing changes in shape (a circle can be mapped to an ellipse
with arbitrary orientation but having the same area). Neither
of these metrics (used independently) can capture the physi-
cal deformation, making it necessary to use heuristics (such
as a suitably weighted sum) for combining them.

In this work, we use mechanical strain as a measure that
truly captures the physical deformation. Although closely
related to stretch, strain differs in that it captures both the
direction and magnitude of deformation. We start with the
mechanical strain calculated from an initial correspondence
to measure the deformation of one shape to another. Then,
by minimizing the change in strain across the deformed sur-
face, we arrive at a final correspondence that yields the most
meaningful deformation given the physical change from
one shape to another. In particular, we reduce strain that
arises primarily due to parameterization, and not fundamen-
tal changes in the shape.

Filas et al. [FKBT08] have shown how to calculate strain
on a 2D surface using surface fitting. They break the prob-
lem into one polynomial for the height field and one (2D
to 2D) for the parameterization, then extract the vectors and
calculate a 3D matrix, from which they derive the strain val-
ues. This method is similar to (and is the inspiration for) our
analytical calculation; we differ in that we use a far simpler
polynomial fitting approach and derive the 2D tensor as well
as the principal strain values.

In their recent work [KCG∗10], Knutsen et al. construct
the correspondence between two surfaces by minimizing an
energy function that consists of two energy terms: the total
strain due to distortion and an "error energy" due to mis-
match between corresponding features. The strain relaxation
is computed using the COMSOL software, which is based
on a finite element method. The approach works for spheri-
cal surfaces only, does not prevent folding, is very slow, and
requires many parameters to be specified. Instead of using
a gradient descent approach, we relax the strain using an
implicit forward solver. Our method is not only faster, but
also allows extension to arbitrary topology, since it is imple-
mented using a hierarchical grid-based approach [GSS99].

In this paper, we use strain to refine an initial correspon-
dence between two similar objects. Such a correspondence
can be constructed using standard approaches [SPR06]. The
strain induced by actual deformation of the surface is spread
out evenly across the surface as explained using the rubber
band analogy (Section 1). However, the initial correspon-
dence often induces an additional strain which leads to an
uneven distribution of strain. Our goal is to modify the cor-
respondence to relax the strain across the surface, effectively
eliminating this unwanted variation in strain.
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Figure 1: (a) Strain induced when a sphere is deformed
into a star-shape. Positive strain implies expansion, nega-
tive strain implies compression. (b) shows the first principal
strain and (c) second principal strain.

We will present in Section 3 a background of mechanical
strain. In Section 4, we show how to calculate strain for a
2D surface embedded in 3D using the initial correspondence.
In Section 5 we will explain how we relax the strain using
a grid-based implicit solver (see Fig. 5 for an overview of
the algorithm flow). Finally, in Section 6 we will discuss the
results of our experiments with this method.

3. Background on Strain

Strain is typically applied to a material, and as such, is de-
fined for an n-dimensional (n-D) material embedded in n -
D [Tab04]. In our setting, we only consider the strain in-
duced on the infinitely thin 2D surface embedded in 3D, not
the interior volume of the object. The surface can deform in
three directions, although what we really want to capture is
the change in the geodesics of the surface – this best captures
the notion of measuring the change in the relative displace-
ment of two points on the surface.

Figure 1 shows an example of strain on a sphere that has
been deformed by alternately compressing and expanding it
in a radial pattern. In the direction of compression, such as
across the crease, the strain is negative. In the direction of ex-
pansion, such as across the ridge, the strain is positive. The
two principal strains describe stretching in two orthogonal
directions; for this example, the maximum strain largely cap-
tures the radial compression, the minimum the top-bottom
stretch.

In the following paragraphs, we will give a geometric ex-
planation of strain to provide insight into how we develop
our calculation.

We define the 2D strain tensor, F2D ∈ <2×<2, and from
that the two principal strain measures (E1,E2 ∈ <) †, by
looking at the transformation of a circle to an ellipse. We

† E1 and E2 are the strains at the same point but in different direc-
tions. The first principal strain, E1, is always larger than the second
principal strain E2.
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Figure 2: Function f defines the undeformed surface M,
while function f̃ defines the deformed surface M̃. Given a
mapping φ between the two planar parameterizations, we
can construct a bijective mapping between M and M̃.
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Figure 3: (a) Magnitude of deformation is the stretch ratio
between the radii ri of the ellipse and the radius r of the
circle, as shown in Eq. 2. (b) Direction of deformation is the
rotation angle θ that aligns the circle’s axes (x,y) with the
ellipse’s axes (x′,y′).

start with an infinitesimal circle around a point p in a 2D
material. Now apply forces to that material causing the cir-
cle around p to deform to an ellipse (see Figure 3a). F2D is
therefore given by:

F2D = RT
θ SRθ (1)

where Rθ is a rotation matrix (where θ is the angle of rota-
tion) that aligns the circle’s x, y axes with the ellipse’s major
and minor axes (x′,y′), and S is a scaling matrix that scales
the circle to match the ellipse. Let r be the radius of the cir-
cle, and r1 and r2 be the length of the major and minor axes
of the ellipse, respectively. Then, for i = 1,2, Ei is related to
the change in the length of the axes [Tab04]:

Ei =
1
2

[( ri

r

)2
−1
]

(2)

This implies that Ei will be zero if there is no strain. We
can also extract Ei directly from F2D using Singular Value
Decomposition (SVD):

F2D =UΣV∗ = R−θ

[
E1 0
0 E2

]
Rθ (3)

Given F2D, we define the strain energy as:

E =
2

∑
i, j=1

F2
i, j (4)

The two principal strains E1, E2 and the strain energy E
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Figure 4: (a) Bijective mapping between the reference surface M and the deformed surface M̃ (Fig. 2). (b) Rotation matrix Ra
aligns the tangent frame at point p with that at point p̃. (c) The matrix Rxyz aligns the tangent frame at p̃ with the axes (x,y,z)
such that the circle and the ellipse lie in the x-y plane as best as possible. (d) After dropping the z-dimension, the strain tensor
F2D deforms the circle into the ellipse.

can be computed from F2D as shown in equations 3 and 4.
These measures of strain can be used to visualize the strain
on the deformed surface. The next section explains in detail
the calculation of the strain tensor F2D on a mesh.

4. Strain calculation

In this section, we will describe how we calculate the strain
tensor F2D. Our discrete approach directly implements the
geometric interpretation of strain (Section 3). Let M and M̃
be two surfaces defined by an embedding of the same param-
eterization given by f (s, t), which defines the undeformed
surface M, and f̃ (s, t), which defines the deformed surface
M̃ (Figure 2). Such parameterization can be constructed us-
ing standard approaches [SPR06]. f and f̃ may be defined
on any type of domain D, e.g., a plane or a sphere, but there
must exist a bijection between the surface parameterizations
and there must exist a locally planar parameterization. More
specifically, let (s, t) be a local parameterization α : D→<2

around p∈D, with α(p) = (s, t). Then f (s, t) corresponds to
f̃ (φ(s, t)), where φ : <2→<2 is a planar bijection over the
area of interest. We have the initial correspondence from the
undeformed surface M to the deformed surface M̃ (Figure 2):

M̃ = f̃ (φ( f−1(M))) (5)

This means, for every point p on M we know the correspond-
ing point p̃ on M̃. ‡

Using the geometric description of strain (Section 3), we
directly measure the strain on the surface by mapping a cir-
cle of points on M to their corresponding (elliptic) shape on
M̃. We take advantage of the fact that strain is zero for a
rigid body transformation to map the problem from 3D to
2D. Given a point p on f and a corresponding point p̃ on
f̃ , we will align the tangent frames § at both p and p̃ with

‡ In Section 5, we will modify φ to effectively modify the corre-
spondence between the two surfaces M and M̃.
§ We define the tangent frame at the point p as the partial deriva-
tives of f (s, t) with regard to s and to t, and the normal at p.

the x,y,z axes in order to reduce the problem to a 2D one
(Fig. 4). To achieve this, we first align the tangent frame at p
with that at p̃. Then, translate both points to the origin. Next,
find the rotation that best aligns both surface normals with
the z axis and the s tangent direction with the x axis. We then
map the surface to the x,y plane by preserving geodesics as
best as possible. At this point, we can drop the z dimension
and treat this as a 2D problem (Figure 4).

Let qi be a set of sample points on M found by projecting
a circle around p onto the surface. Map the qi and p to M̃ to
create q̃i and p̃ (Fig 4a). Define Ra as a rotation that aligns
the tangent frame at point p to that at point p̃ (Fig 4b). We
solve for Ra by finding the rotation that best aligns qi with q̃i
[Ume91].

A = [qi]
T [q̃i] =UDV T (6)

Ra =UV T (7)

where A is a 3×3 matrix.

The matrix A that maps qi to q̃i can be expressed as
A = F2DRa. To solve for the actual strain tensor F2D we first
rotate both sets of points so they lie in the x,y plane as best
as possible. Define Rxyz to be this rotation for the points q̃i
(Fig 4c). We can take the point qi to the x,y plane by first
applying Ra, and then Rxyz. Now we need to "lift" the points
qi and q̃i onto the plane to reduce the problem to 2D. Since
we want to measure the change in the geodesics, we approxi-
mate the geodesics by placing the points on the plane so that
they have both the same proportional angle and the same
length as their 3D counterparts. We now solve for the sym-
metric 2D matrix F2D that best takes the 2D points qi to the
2D points q̃i in a least-squares sense:[

(q̃i)x (q̃i)y 0
0 (q̃i)x (q̃i)y

] F1,1
F1,2
F2,2

=

[
(qi)x
(qi)y

]
(8)

Because F2D is symmetric, the SVD yields F2D = RT
θ SRθ.

This approach solves for the 3D alignment (Ra) indepen-
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(Fig. 2)

Place a grid 
on each unit square

(Fig. 6a)

Calculate strain at
each grid point
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by moving grid points
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StopChange in strain
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Figure 5: Procedure for relaxing strain by adjusting the correspondence between between two open regions.

dently from the deformation (F2D). However, the bias caused
by anisotropic scaling of qi prevents this procedure from
reaching an accurate alignment in one single step. Hence,
we iterate, scaling qi by the latest F2D before solving for Ra.
In other words, we use:

RT
a RT

xyzF
∗
2DRxyzRaqi (9)

(making F2D a 3x3 matrix F∗2D) instead of qi in Eq. 6. Exper-
imentally, we have found this stabilizes with three iterations,
increasing the accuracy by an order of magnitude.

Discussion: We have also experimented with solving for
a deformation tensor in three dimensions (F3D), then using
the Eigen vectors to determine which two Eigen values cor-
respond to the planar stretch. This is unsatisfactory for two
reasons. First, while one of the Eigen vectors usually aligns
with the z axis, in the case where one of the planar stretch
directions is close to one it becomes unstable and two of the
vectors rotate so that they are diagonal. Second, this actually
ignores any stretch out of the plane in the z direction.

Our current geodesic approximation is not ideal because
it will always be shorter than the real geodesic between p
and qi. A better (but more expensive) solution would be to
approximate the true geodesic by, for example, fitting a curve
to the two points.

5. Strain relaxation

The previous section explained how we calculate the strain
induced by an initial mapping between two surfaces. The
resulting strain is, however, not only caused by the defor-
mation itself, but also due to the mapping. As explained by
the rubber band analogy, for the region between features, we
would like the strain to be spread out evenly instead off accu-
mulated at certain hotspots. In this section, we describe how
we modify the correspondence so that the strain is spread
more evenly across the deformed surface. This is equiva-
lent to filtering out the noise in the strain across the surface,
which means the deformation at a point on the surface should
be the averaged deformation of its neighbourhood.

We consider the problem of relaxing the strain between
two regions of the surfaces with open boundaries. We first
map each region to a unit square in the planar domain (Fig 2)
using standard approaches [SPR06]. We then lay identical

grids on top of both parameterizations. At this time, the map-
ping φ between one unit square and the other is the identity
mapping. As stated previously, the mapping between these
two regions (Eq. 5) can be adjusted by modifying the sec-
ond grid, which essentially modifies φ (Fig 6). To allow us to
overcome local minima, we use a hierarchical grid-based ap-
proach: start with a coarse grid over the entire planar region,
then repeat it on a finer grid. At each stage we check that the
grid has not folded, taking a smaller step if necessary.

The relaxation procedure constitutes the following steps
(see Fig. 5). First, we lay a uniform grid on the planar pa-
rameterization of the undeformed surface. We then map it to
both the deformed and undeformed surfaces using the ini-
tial correspondence. Next, we compute the strain induced by
this mapping at each grid point (Section 4). The target de-
formation at each grid point is computed by averaging the
strain tensor at this point with those at its neighbors (Sec-
tion 5.1). We then construct a linear system to solve for the
displacement of the grid points such that the target deforma-
tion is achieved (Section 5.2). Finally, we move these grid
points to their new locations. We then adjust the parameteri-
zation f̃ by moving the projected vertices with the grid. This
effectively modifies the correspondence. This procedure is
repeated until the change in the total strain energy E falls
under a predefined threshold.

I=0φ
s

t

s

t

kφ
s

t

s

t

(a)

(b)

Figure 6: (a) At the beginning, the initial mapping φ0 is
the identity mapping. (b) The mapping φk as modified after k
iterations, effectively changing the mapping between the two
surface regions.
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(a) Heat diffusion (b) Filtered vector field

Figure 7: (a) Magnitude of the deformation can be thought
of as heat. The heat at the center point should be the average
of that at the surrounding points. (b) We can think of the
direction of deformation across the surface as a vector field,
with a direction defined at each point on the surface. Then,
to average the direction of deformation, the resulted vector
field should be a filtered, version of the initial vector field.

5.1. Filtering the strain tensor

Since the strain tensor captures both the magnitude and the
direction of deformation, to filter the strain tensor we av-
erage the direction and magnitude of the deformation sepa-
rately (Fig. 7).

Let u be the current grid point, and vk its eight neighbor
grid points on the first surface, and ũ, ṽk be those on the
second surface. If F2D is the strain tensor at a grid point, we
can decompose this tensor matrix into 3 component matrices
as shown in Eq. 1. The average magnitude of deformation
〈Ei〉 at ũ is given by:

〈Ei〉=
1
8

8

∑
k=1

Eik (10)

where Eik is the magnitude of deformation at the kth neigh-
bor ṽk. The average direction of deformation, 〈θ〉, is the prin-
cipal direction computed from Principal Component Analy-
sis (PCA) of all deformation directions at the eight neigh-
bors. Finally, the average deformation, 〈F2D〉, is the defor-
mation constructed from 〈Ei〉 and 〈θ〉, as shown in Eq. 3 for
i = 1,2. The resulting strain tensor 〈F2D〉 is the target strain
tensor for the point ũ.

5.2. Constructing the linear system

We would now like to move ũ, ṽi by dũ, dṽi respectively,
such that the deformation of the first surface into the second
one can be captured by the strain tensor 〈F2D〉 calculated
above. This means that, after both sets of points u∪ vi and
ũ∪ ṽi are translated then rotated such that u and ũ lie at the
origin, and vi and ṽi lie in the (x,y) plane (by applying the
rigid transformation matrices R1 = RxyzRa and R2 = Rxyz to
u∪ vi and ũ∪ ṽi respectively), 〈F2D〉 should deform the first
set vi into the second set ṽi. This transformation is captured
in the following equation:

R1(vi−u)−〈F2D〉R2[(ṽi +dṽi)− (ũ+dũ)] = 0 (11)

By algebraic transformation, we have:

〈F2D〉R2(dṽi−dũ) = R1(vi−u)− [〈F2D〉R2(ṽi− ũ)] (12)

This is a linear system in the form of Ax = B, in which
the displacement vectors dũ ∪ dṽi are the unknowns. Set
LHS = 〈F2D〉R2 and RHS = R1(vi−u)− [〈F2D〉R2(ṽi− ũ)].
Now we can construct a sparse linear system to solve for the
displacement of the grid points.

[
0 −LHS ... 0 0
0 0 ... LHS 0

]
...
dũ
...
dṽi
...

=

[
RHS
RHS

]

(13)
For each grid point there are n+ 1 rows of equations (the
grid point itself and its n neighbors).

5.3. Constraints

In case we want to restrict movement of certain grid points
(due to boundary conditions) or to attract them to particular
locations (due to feature correspondence), we can add con-
straints to the system such as dũk = ~w (in which ~w = 0 for
movement restriction). In our experiment, we restrict ver-
tices from moving off of the boundary of the surface.

The constraint for a feature point is constructed as:

R1uk−R2(ũk +dũk) = ~w (14)

Hence:

R2(dũk) = R1uk−R2ũk−~w (15)

which adds one row to the system of equations.

Future work: So far we have explained the strain relax-
ation procedure for two open regions. To account for arbi-
trary closed topologies, we can divide the entire surfaces into
smaller open regions and perform strain relaxation locally
within each region following the same procedure. To pre-
vent discontinuity across the region boundaries, we would
redivide the surfaces into different regions overlapping the
previous boundaries before relaxing the strain in an iterative
process.

Discussion: Using a grid is useful for two reasons. First,
it is trivial to implement a coarse to fine hierarchical algo-
rithm. Second, it gets around any issues with poor quality, or
greatly differing resolution, meshes. Note that re-meshing in
this scenario is not really practical because the target mesh
would have to be re-meshed at every time step as the corre-
spondence changes.

6. Experiments

In this section we show the results of applying our approach
for surface correspondence using strain relaxation. We start
with two sets of synthesized data for a simple cylindrical
surface to illustrate the effectiveness of our approach. These
are followed by an experiment on real biological data corre-
sponding to cardiac motion in a chick embryo. Our first ex-
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Figure 8: (a) Strain induced on a cylinder due to incorrect
mapping. (b) The final strain after relaxation.

periment (Fig. 8) is the trivial case of an undeformed cylin-
der mapped to itself. In this case, we know that the map-
ping between the two surfaces should be the identity, ie, the
two grids should be indistinguishable. We artificially skew
the grid on the second planar parameterization to mimic an
undesirable (incorrect) mapping between the surfaces (see
lower half of Fig. 8a). Fig. 8 shows the strain induced on the
second surface as a result of the mapping (a) before and (b)
after strain relaxation. With the initial mapping, there is con-
siderable non-uniformity in the strain on the second surface.
This is entirely a result of the skewed mapping, since there
is no deformation of the surface. As expected, after strain
relaxation the mapping between the two grids is the identity
(within numerical error). Fig. 8b shows the resulting uniform
(and near-zero) strain energy on the second surface.

Our second experiment is on a bent and twisted cylinder.
Unlike the previous case, the deformed cylinder is expected
to show some strain induced as a result of the deformation.
Fig. 9a shows the initial strain on the surface. To perform
strain relaxation in this case, the points on the circumfer-
ence at the two ends of the cylinder are constrained so that
they can only slide along the boundaries at the respective
ends. After strain relaxation it is observed that the variation
of strain energy on the deformed surface is spread out more
evenly (Fig. 9b). The strain is now concentrated where the
cylinder is bent, with higher strain on the outer section of the
bend and lower strain on the inner section. The lower half of
Fig. 9b shows the modified mapping between the two sur-
faces as a result of the strain relaxation procedure. Finally,
we show the effect of features on the surface by adding a
synthetic constraint to the deformed cylinder. In this case, we
pin down the points that lie on the circle at the midpoint of
the cylinder. Hence, these points cannot move during strain
relaxation (~w = 0). Fig. 10 shows the resulting strain on the
deformed surface, as well as the final modified mapping be-
tween the two surfaces, as a result of strain relaxation.

Performance: The strain relaxation procedure on this
cylinder surface with 480 vertices took about 3 minutes on
an Intel Core 6600 (2.4 GHz) processor with 2 GB RAM
(MATLAB implementation).
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Figure 9: (a) Strain induced on a cylinder after it has been
bent then twisted. (b) The final strain after relaxation.
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Figure 10: The final strain after relaxation with constraints:
the ring (blue curve) near the middle of the deformed cylin-
der restricts the middle from moving.

Our last experiment is related to the study of cardiac
morphology and function during development, which re-
quires correspondence between data captured at different
time points. Our experiments are conducted on image data
of the cardiac outflow tract (OFT) of a chick embryo (car-
diac development in the chicken is similar to that in humans
[LWTR09]) captured in vivo using optical coherence tomog-
raphy (OCT) technique. The OFT is the distal region of the
embryonic heart connecting the ventricle with the arterial
system. It functions as a primitive valve by contracting to
limit blood flow regurgitation. A large portion of congen-
ital heart defects originate in the OFT. The data set recon-
structed from the original OCT data comprises three surfaces
- the external myocardium surface, internal myocardium sur-
face and the lumen-wall interface. Each surface was captured
at three different time points during the cardiac cycle - when
the OFT is fully closed, opening, and fully opened (Fig. 11).
A quadrilateral mesh of the same topology was constructed
from contours for each surface, which gives us the initial
correspondence between these data sets. We calculate, and
then relax, the strain induced by this mapping on different
sets of temporal data for the OFT surfaces.

Figure 12 shows the effect of strain relaxation on the map-
ping between the lumen-wall interfaces when the OFT is
closed (left column) and when it is opening (right column).
The strain induced by the initial mapping between these sur-
faces is shown in Figure 12a. The variation in color shows
that the strain is not distributed evenly on the surfaces. In
Figure 12b, we show the strain after the mapping has been

c© The Eurographics Association 2011.
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Figure 11: Surfaces reconstructed from OCT data: Original
OCT data with contours (a). Surfaces of the OFT when it is
fully closed (b), opening (c), and fully opened (d).
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Figure 12: Strain relaxation on the lumen-wall interface of
the outflow tract. The color denotes the magnitude of strain.
(a) Artificial strain (hot spots) induced by the initial map-
ping. (b) The hot spots seen in Fig. 12a have been relaxed.
The higher strain (blue region) is expected due to actual de-
formation of the surface captured.

adjusted according to the procedure described in Section 5.
All the artificial strain hot spots evident in the initial map-
ping have been evened out. The higher strain that appears
on the side is expected due to the actual expansion of the
surface captured.

Performance: The strain relaxation procedure on the
heart surface with 1000 vertices took about 14 minutes on
an Intel Core 6600 (2.4 GHz) processor with 2 GB RAM.

7. Conclusions

In this paper we have shown how to adapt mechanical strain
for the purposes of constructing a shape correspondence that
has physical meaning, ie, a correspondence that minimizes
the change in strain. We present a straightforward technique
for calculating strain for a 2D surface embedded in 3D when
the source and destination shapes do not have the same
mesh topology. This technique makes it possible to phrase
the strain minimization algorithm as a sparse matrix least-
squares solve. The sparse matrix approach is easily adapted
to include feature constraints. Our results show that this ap-
proach results in a physically meaningful correspondence
between surfaces even in areas lacking identifiable features.
We demonstrate the utility of this approach in tracking the
motion of biological tissue and internal organs.
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