
EUROGRAPHICS ’98 / N. Ferreira and M. G¨obel
(Guest Editors)

Volume 17, (1998), Number 3

A Framework for Synchronized Editing of Multiple Curve
Represenstations

Cindy Grimm† and Matthew Ayers‡

Department of Computer Science, Brown University

Abstract

Editing curves and surfaces is difficult in part because their mathematical representations rarely correspond to
most people’s idea of a curve or surface. The implementation (and hence, behavior) of most manipulation tools
is intertwined with a particular curve or surface representation; this can make reimplementing the tool with a
different representation problematic. A system using a single representation must therefore either limit the types
of tools available or convert existing tools to work on the system’s representation.
In this paper we present a framework for editing curves or surfaces which supports multiple representations
and ensures that they stay synchronized. As a proof of concept, we have created a curve editor which contains
several tools each of which manipulate one of three different curve representations: polylines, NURBs, and multi-
resolution B-splines.

CR Categories: 13.5[Computer Graphics]:Curve, surface,
solid, and object representations, Splines, Wavelets. Addi-
tional keywords: Direct manipulation, interface issues, curve
manipulation.

1. Introduction

Computer representations of curves and surfaces are often
complex, mathematical objects with non-intuitive controls.
Significant research efforts have focused on how to make
manipulation both more efficient and conceptually easier. To
date, research has concentrated on taking a specific represen-
tation, such as a NURBs surface, and creating new interac-
tion methods and tools expressly for manipulating that repre-
sentation. Often the tools and techniques for one representa-
tion do not easily cross over to another. Thus, to create a sys-
tem which provides an array of tools, an author would have
to either support a variety of underlying representations or
rework several interaction techniques to manipulate a single
representation. Translating techniques can be difficult, and
continuously synchronizing all representations when one of

† Currently at Microsoft Corporation
‡ Currently at Numinous Technologies, Inc.

them changes can be a time-consuming process which may
prevent such a system from running at interactive speeds.

We propose a framework that supports a variety of tools
and multiple representations. Each tool works on a repre-
sentation that is appropriate for that tool. The framework
automatically keeps the different representations synchro-
nized, updating when necessary. Since translating between
complex representations can be slow, we use lazy evalua-
tion to synchronize the various representations only when
and where necessary. This framework allows us to build sys-
tems which are fast, extensible, and support a wide variety of
tools. To demonstrate this, we have built a simple curve edit-
ing system which operates on polylines, NURBs, and multi-
resolution B-splines.

In this paper we begin by discussing existing representa-
tions and some tools used to manipulate them. In Section 3,
we examine some general problems found in curve editing
systems. In section 4 we outline a framework which allows
multiple curve representations to co-exist and stay up to date.
We then describe how we have used this framework to create
a curve editing system which addresses some of the short-
comings of existing systems. Section 5 discusses new tools
that the framework allows us to use in our system and Sec-
tion 6 details the implementation of the individual curve rep-

c The Eurographics Association and Blackwell Publishers 1998. Published by Blackwell
Publishers, 108 Cowley Road, Oxford OX4 1JF, UK and 350 Main Street, Malden, MA
02148, USA.



Grimm and Ayers / A Framework for Synchronized Editing of Multiple Curve Representations

resentations. We conclude by discussing our results and fu-
ture plans.

2. Previous work

We briefly describe three common curve representations and
several tools to manipulate those representations.

2.1. Common curve representations

2.1.1. Polylines

A polyline consists of an ordered list of vertices connected
together by line segments.

One advantage of polylines is that they are conceptually
simple since there is no level of abstraction between their
mathematical and visual representations. Other advantages
include the ease of adding and deleting vertices and flexibil-
ity (they can approximate any curve within a given degree of
error). Additionally, polylines are amenable to filtering.

Polylines have several disadvantages. Altering a polyline
by moving individual vertices can be a slow and tedious pro-
cess for the user. Maintaining visual smoothness is difficult,
especially while moving vertices1. They areC0 and hence
do not have derivatives. They can also be expensive to store.

2.1.2. Splines

A spline is defined by an ordered list of control points and a
set of basis functions. Depending upon the type of spline the
control points are either approximated or interpolated by a
smooth, piecewise polynomial curve. Examples of approx-
imating splines are NURBS and Uniform splines. B´ezier
curves interpolate their end-points and use the remaining
control points to specify additional curvature information.
Hermite and Beta curves both interpolate their control points
and user-supplied tangents. Beta splines2 provide additional
bias and tension controls to control the shape of the curve
between control points. There are several excellent books3

4 on splines so we will not discuss the mechanics in further
detail.

Splines are useful curve representations for several rea-
sons: locality, arbitrary smoothness, scalability, the convex
hull property (NURBS), and compactness of representation.
Because they are differentiable they are also amenable to
mathematical operations such as minimizing tension.

The difficulties in manipulating splines stem from two
properties of the underlying mathematics. First, each con-
trol point influences a fixed region of the curve. This region
may be bigger or smaller than desired. In Figure 1, the user
would like to change a segment of the curve corresponding
to about a quarter of its total length. On the left of the figure
the region of influence is too small; in order to effect the de-
sired change, several control points must be moved. On the
right of Figure 1 the region is too large and would require

Many control points Few control points

Figure 1: Direct manipulation with splines. The amount of
curve affected depends on the number of control points.

refinement to introduce enough control points to provide the
desired degrees of freedom.

Introducing additional degrees of freedom into a curve is
easily accomplished using refinement. Unfortunately, the re-
verse operation, removing unnecessary degrees of freedom,
is more difficult. Excess control points in a spline often pro-
duce unwanted “wiggles” while editing.

2.1.3. Multiresolution wavelet B-splines

A B-spline wavelet5 6 is a B-spline stored as a base curve
and a series of wavelet detail coefficients. This representa-
tion allows for the reconstruction of the curve with an arbi-
trary number of control points, detail changes, and broader,
global edits.

B-spline wavelets can generate representations with vary-
ing amounts of detail, allowing the user to interactively se-
lect the amount of the curve to edit. The more detail present
in a curve, the smaller the area that a single control point af-
fects. Another desirable property of wavelet B-splines is that
they allow users to change the overall sweep of the curve
without losing the fine details. A final benefit of B-spline
wavelets is that they permit the transfer of detail from one
curve to another, allowing users to add detail, such as jagged
lines or bumps, to a curve without affecting its overall sweep.

The drawbacks to B-spline wavelets lie mostly in their
global nature; fine detail in one part of the curve, even if
it is not used elsewhere, requires an even and dense param-
eterization of the entire curve. Also, B-spline wavelets are
a relatively new type of curve and do not have the range of
tools available to other types of curves.

2.2. Common curve manipulation tools

2.2.1. Directly changing the controls of a representation

In this approach, the user manipulates the controlling func-
tions of the representation directly; a very general (and pow-
erful) tool but also a difficult one to use. It is also simple to

c The Eurographics Association and Blackwell Publishers 1998.



Grimm and Ayers / A Framework for Synchronized Editing of Multiple Curve Representations

Before After

Figure 2: Direct manipulation with wavelets. The amount
of curve affected depends on the chosen level of detail co-
efficients. The dark area denotes the region affected by the
edit.

implement; the user picks a control point (spline representa-
tion) or vertex (polyline representation) and moves it.

2.2.2. Direct manipulation

The direct manipulation method allows the user to grab a
point on the curve and move it to a new location7 8. For
splines and wavelets this tool is usually implemented using
the least-squares technique9 which moves the control points
the smallest amount possible while ensuring that the curve
passes through the desired point. In splines, the amount of
curve affected is fixed and determined by the parameteriza-
tion. With wavelets, however, the amount of curve affected
can vary. Because of the way wavelet coefficients are orga-
nized we can choose to move the coefficients of a given level
and propagate the effects to the other levels, changing the
width of the effect (see Figure 2).

2.2.3. Sketching

Sketching is tool that mimics the way people draw curves on
paper by allowing the user to sketch, or sketch over, a curve
with a mouse or tablet pen. A curve is then fit to the result-
ing data points. Some additional processing may be required
to remove noise in the input device and to recognize discon-
tinuities (i.e., corners). Converting this set of data points to
a spline is relatively straightforward10 11 and is a variation
of the technique used in direct manipulation. Wavelet curves
are easily fit to data points6 and smoothing can be accom-
plished automatically by removing the lowest level of detail
coefficients.

Prior research has extended the basic sketching technique
in two ways. First, instead of taking a single set of data
points, the user sketches the desired curve several times and
the curve is then fit to an average of the sketches. This lets
the user “home in” on a desired curve. Second, the user can
sketch over a piece of the curve12, replacing part of the
curve with the new sketch. The implementation for this is
somewhat more difficult because the new piece must blend

in nicely with the old curve. Baudel12 implemented this
technique on piecewise B´eziers; extending this technique to
splines or wavelets is difficult both because of the blending
problem and because the new segment may be substantially
“shorter” or “longer” than the original.

2.2.4. Wavelet detail copying

Since wavelet B-spline curves are stored as a base curve with
additional detail information, the detail information can be
copied from one curve to another. This operation transfers
the high-frequency detail without changing the overall shape
of the curve5 6.

3. Problems with existing representations and tools

While several curve editing tools have been developed
in the past, there are still several problems with existing
techniques. Most of these problems stem from approach-
ing curve manipulation by asking howcan we manipulate
curves, rather than how would welike to manipulate curves.
An example of this is direct manipulation, which allows the
user to pick a new location for a point but does not allow
the user to say how the rest of the curve should accom-
plish this change. The method by which the curve changes is
determined entirely by the underlying representation. This
problem is very apparent in the spline case but also shows
up to a lesser degree in wavelets. As an illustration, refer
to Figure 1 where the same movement has been applied to
two splines with differing numbers and locations of control
points. One manipulation results in a sharp change, the other
a more gradual one. This points out the need to be able to
indicate how much of a curve to change as well as how to
change it.

Another problem with existing editing techniques is that
repeated editing of a single curve usually results in a curve
with unnecessary wiggling. This happens because most edit-
ing techniques introduce more degrees of freedom to accom-
plish their task. Over time, these extra degrees of freedom
manifest themselves as wiggles, i.e., the curve loses its ini-
tial, coherent look. There are two possible approaches to this
problem; one is to design tools that do not add unnecessary
degrees of freedom, the other is to provide a mechanism for
removing the wiggles while keeping the desired detail. This
is a user-interface problem because desired detail is often
mathematically indistinguishable from noise.

Related to this problem is the one of making global adjust-
ments to detail – for example, changing the general sweep of
the curve without losing small detail on that sweep. Wavelets
support this but the definition of the detail versus the sweep
is still left to the representation, not the user.

We now describe an example editing session, using our
system, in order to both illustrate the problems presented
above and to illustrate the need for a variety of tools and rep-
resentations. In this example we will use the common tools

c The Eurographics Association and Blackwell Publishers 1998.



Grimm and Ayers / A Framework for Synchronized Editing of Multiple Curve Representations

Figure 3: Sketch tool and polyline representation.

described above (Section 2.2) and some new tools described
below in Section 5. The system automatically switches be-
tween representations as needed. We describe how this hap-
pens in detail in Section 4.

3.1. An example editing session

Problems with curve manipulation techniques generally
arise when the user is trying to create a specific curve (or
curves), not when they are just “trying out” a tool. To illus-
trate the aforementioned problems and to demonstrate our
tools, we will now describe an editing session in which we
try drawing a cat. This editing session uses four tools and
three representations.

Refer to the sequence of Figures 3 through 7 for the fol-
lowing discussion. First, we sketch the basic outline of the
cat using the sketching tool, sketching over the back to make
the first outline. Next we use the wavelet direct manipula-
tion tool with different widths to alter the contour. To add
a tail we use the spatula tool which works on the polyline
representation and easily adds more length to the curve. We
use the corner tool with the spline representation to make
explicit points on the ears. Finally, we draw all three repre-
sentations simultaneously.

Note that we do not necessarily need to draw only the
representation the tool modifies, but doing so makes the sys-
tem faster. To draw a representation that is not being directly
manipulated by a tool requires the framework to synchro-
nize representations with every change to correctly render
the curve.

4. An introduction to the multi-representation

No single curve representation is ideal for every situation.
For example, sketching over is simple to implement with
polylines but more difficult with splines. The reverse is true
for the spline-based technique of least-squares manipulation
– getting the same look and feel with polylines would be
difficult. Since no single representation is perfect, our solu-
tion is to define a mechanism that lets the user use different

Figure 4: Wavelet direct manipulation tool and wavelet rep-
resentation

Figure 5: Spatula tool and polyline representation.

Figure 6: Corner tool and spline representation

Figure 7: All representations.

c The Eurographics Association and Blackwell Publishers 1998.



Grimm and Ayers / A Framework for Synchronized Editing of Multiple Curve Representations

representations and switch easily between them. Once this
mechanism is in place the tool designer can easily add both
new representations and new tools to the existing tool set
and, more importantly, pick the representation that is appro-
priate for the tool they are designing. This mechanism must
address the following concerns:

� Accuracy. How do we insure fidelity between the different
representations to some given degree of accuracy?

� Speed. Interactive curve manipulation requires interactive
speed; to maintain this speed we need to keep the number
of conversions to a minimum.

� Ease of implementation. Adding a new tool should con-
sist of just that; it should not require changing the other
tools. Adding a new representation should be as straight-
forward as possible and require no knowledge of the cur-
rent, existing representations.

� Change propagation and update order. When a tool
changes a representation, these changes must be propa-
gated to the other representations. This is complicated by
the existence of constraints; for example, maintaining a
point constraint while moving the curve. The tool moving
the curve may operate on a different representation than
the tool maintaining the point constraint.

There are two parts to our solution; the overall applica-
tion framework for tools and representations and the exact
mechanism for converting between representations. We will
begin with some basic definitions and then describe the var-
ious parts of our system in more detail.

Each specific curve type (wavelet, polyline, NURBs,
etc.) is called arepresentation. A collection of representa-
tions, or the conceptual curve, is referred to as themulti-
representation. For the moment, we will treat the multi-
representation as a black box which handles the synchro-
nization and updating of the representaions, and that we can
withdraw exactly one representation, edit it, and then re-
turn it. The multi-representation is contained inside of the
application framework which also houses tools and con-
straints. The application framework is responsible for man-
aging communication between these three system compo-
nents. For simplicities sake we will assume there is a single
curve, or multi-representation, in the following discussion.

Although we will go into more detail later, it is impor-
tant to know that it is the multi-representation’s responsibil-
ity to synchronize the representations present within it. At
least one representation in the multi-representation is kept
up-to-date at all times. Representations need not know about
each other but must be parameterized on the same interval,
T �ℜ.

Communication between representations is done by mark-
ing the portions of the intervalT which are invalid for each
representation. Each connected, invalid region is called a
splice. We can accumulate a set of these splices together to
form a splice list. Each representation keeps its own splice
list to indicate its currently invalid sections. An up-to-date

Contains one or more

Operates on

Representation

Multi-representation

Application Framework

Tool Constraint

Figure 8: A block diagram of the overall application frame-
work. Note that the various curve representations do not
communicate directly with one another.

curve, therefore, has an empty splice list. We formally de-
fine splices and sampling of splices in Section 4.3.

Updating invalid representations is accomplished bysam-
pling. When a representation needs to update itself, it re-
quests a set of sample points for its splice list from the
multi-representation. The multi-representation passes this
splice list to the currently valid representation, which then
fills in sample points for the given intervals. The multi-
representation then hands these sample points back to the
updating representation.

4.1. Tools and constraints in the application framework

Unlike both the application framework and the multi-
representation, which treat the different representations as
black boxes, tools have full knowledge of at least one rep-
resentation. When a tool is selected it first asks the multi-
representation for a valid copy of the appropriate represen-
tation. The tool makes a change to the representation and
then passes this change back to the multi-representation via
a splice list. The multi-representation then broadcasts this
splice list to the other representations.

Constraints complicate this feedback loop slightly. Con-
straints are implemented as tools which are always active.
After a tool changes a portion of a representation it passes
the changed splice to the multi-representation, which then
applies any relevant constraint tools. Each constraint tool
examines the affected area and, if necessary, requests sam-
ples from the current representation. The constraint can then
make changes to the sample list and re-apply them to the
representation. After all constraints have had a chance to re-
establish themselves, and all constraint conditions are met,
the tool regains control of the representation. Note that while
re-establishing a constraint, a constraint tool may request an
updated copy of adifferentrepresentation than the currently

c The Eurographics Association and Blackwell Publishers 1998.



Grimm and Ayers / A Framework for Synchronized Editing of Multiple Curve Representations

active one. For example, the corner constraint uses the B-
spline representation to check that a given change is not vi-
olating an existing point and derivative constraint, and to re-
establish the constraints if necessary.

One potential danger of this approach is the problem of
conflicting constraints which would result in endless cycling
between two (or more) constraint tools. One solution to this
is to require each constraint tool to define a region over
which it wants control in order to re-establish itself. For ex-
ample, a point constraint att = t0 might need control over
the portion of the curve[t0�0:05;t0+0:05]. The framework
would therefore only allow multiple point constraints that
were separated by 0:1 units in parameter space. Another so-
lution is to define constraints of a given type in one tool, e.g.,
putting all of the point constraints into a single tool so they
can be re-established en-masse.

Although this works for explicit constraints such as freez-
ing parts of a curve and introducing corner discontinuities,
we may need to add a constraint priority hierarchy for sys-
tems using implicit constraints such as a series of relative
positional constraints.

4.2. Synchronizing representations in the framework

Our two main concerns here are speed and accuracy. One
obvious approach is to maintain a base representation and
switch back and forth between it and the currently desired
representation. A major drawback to this approach is ac-
curacy; even if every conversion is required to be accurate
within a fixed error, over time this error accumulates. Also,
rarely does a tool change the entire curve – usually only a
small portion of the curve is affected. Rather than constantly
update the entire representation, we would prefer to buffer
the changes and then splice them in when the representation
is needed. This splicing has two benefits; first, the portion
of the representation outside of the changed area remains
the same, and second, we can increase application efficiency
by accumulating changes and delaying their application un-
til needed. In our system representations are updated when
they are rendered or just before they are modified by a tool.

As discussed before, changed intervals are represented by
a splice list and the geometric changes propagated by using
samples. These samples approximate the changed portion of
the curve to a given error and are each associated with a pa-
rameterized t-value along the curve. To add a new curve rep-
resentation to our framework, we only need to add routines
for creating samples for splice lists and for splicing sampled
intervals in. To maintain fidelity between the representations
we require the following:

� All representations are defined on a given parameter space
T � ℜ, for example,T = [0;1].

� Representations will be withinε of each other, i.e., ifS1
andS2 are two representations defined onT thenjjS1(t)�
S2(t)jj< ε for all t 2 T.

pi = L(ti) pi+1 = L(ti+1)

p(t) = t�ti
ti+1�ti

pi+1+

1� t�ti
ti+1�ti

pi

Figure 9: Evaluating the splice sample at a given t value.

We can maintain the above by requiring that the repre-
sentation produce samples for a splice which together are
within ε=2 of the changed area of the curve. When splicing
in a change, the updated representation must be withinε=2
of the sampled splice. Thus, the total error for the generation
and application of a splice list isε=2 + ε=2 and remains less
thanε We now formally define splices.

4.3. Splice implementation

We call a single, connected interval (with or without sample
points) a splice. Splices are used to mark invalid intervals
on the curve. A splice list is a collection of splices, each of
which is disjoint from the other splices in the list. We main-
tain one splice list for each curve representation. Note that
we delay filling in sample points for a splice until necessary.

The sampled splice is a parameterized polyline approx-
imation that is always within an epsilon distance from the
sampled curve. More formally, a sampled splice consists
of an interval[a;b] � T and a list of samples of the form
< t � [a;b]; p� ℜn >, sorted byt. There must be at least
two sample points, one witht = a and one witht = b. Let
L : [a;b]! ℜn be defined as the linear combination of ad-
jacent samples in the splice (see Figure 9). When a tool is
applied to a representationS, producing a new representa-
tion S0, the difference betweenS andS0 is represented by a
splice list made up of one or more splices. The splice list
must satisfy the following:

� If S(t) 6= S0(t) thent must be contained in some splice in
the splice list.

� For each connected interval[a;b] whereS(t) 6= S0(t) con-
struct a splice. Construct the samples< t � [a;b]; p �
ℜn > by samplingS0. The sampling must satisfyjjS(t)�
S0(t)jj< ε=2 for all t 2 [a;b].

When updating a representation from a splice list we re-
quire that the resulting updated representation remain the
same outside of the splice list intervals and be withinε=2
in the intervals. LetR be the representation before updating
and letR0 be the representation after updating:

� For all t 2 [a;b] for some splice in the splice list,
jjR0(t)�L(t)jj< ε=2.

� For all t not in some splice,jjR(t)�R0(t)jj= 0.

c The Eurographics Association and Blackwell Publishers 1998.



Grimm and Ayers / A Framework for Synchronized Editing of Multiple Curve Representations

Figure 10: Pushing the polyline around with a spatula. Path
of the spatula is shown by the grey line.

5. New tools

Here we define the three new tools mentioned in the Sec-
tion 3.1, the corner tool, the spatula tool, and the freezing
tool.

5.1. Pushing particles with a spatula

This is a technique for directly shaping a curve. Imagine a
curve consisting of sand that can be pushed around with a
round spatula. As the spatula pushes through the sand, more
sand is added and as the spatula pushes sand back on itself,
excess sand is removed (see Figure 10).

To implement this technique we use the polyline represen-
tation and a circle of radiusr for the spatula (other shapes
are possible). The length of the polyline segments where the
tool contacts should be less thanr=4 (we split the polyline
segments if need be).

As the circle is moved, all points that lie in the circle are
moved to lie on the closest point on the boundary of the cir-
cle (see Figure 11). If necessary, we prevent the circle from
“jumping” across the polyline by sub-sampling the motion
vector. If any moved segments are now longer thanr=4 we
split them in the middle. Finally, we merge any two segments
whose summed length is less thanr=8. These last two oper-
ations correspond to adding sand and removing sand.

5.1.1. Explicit corners

The corner tool is an interface for introducing a discontinu-
ity into a spline. The user can create, change, and remove
corners. The corner tool consists of a base point and two
tangents that are manipulated by grabbing and pulling. To
create a corner, the user clicks on a point on the curve. To
remove a corner, the user double clicks on the base point
of an existing corner. Single clicking selects the corner. The
curve is required to pass through the base point, entering and
leaving at the given tangents.

Before After

Figure 11: Pushing the vertices of the polyline out of the
circle.

More formally, the base point constraint consists of a pa-
rameter valuet 2 T and a pointp. The splineS is required to
satisfyS(t) = p. The derivative constraints consist of a pa-
rameter valuet, a left derivative~dl , and a right derivative~dr .

The spline is required to satisfy lims! t� S(s)�S(t)
s�t = ~dl and

lim s! t+ S(s)�S(t)
s�t = ~dr .

We use approximate derivatives (within a givenε) for
those representations that do not support true mathematical
discontinuities.

5.2. Marking and freezing

Marking selects a region of the curve to which subsequent
operations are then applied. We currently use marking to
select sections of the curve to be smoothed or frozen. The
marking tool consists of two marks, a left and a right one
(see Figure 12). The user creates or moves marks by click-
ing down and moving in the direction of the desired selected
area. Double clicking removes marks. All or parts of a curve
can be frozen. Selection is performed by using the mark tool
or by “painting” over the desired region. Frozen regions of
the curve cannot be changed. The freezing tool is imple-
mented as a constraint tool. After the current editing tool has
introduced a change, the freezing tool looks at the affected
region and if any of the points in the sample list are in the
frozen region, it reverts them to their previous values before
returning them to the multi-representation. The implementa-
tion of the marking tool is the reverse of the freezing tool;
everything but the marked region is frozen.

6. Representation implementation

In this section we describe our implementation for three
curve representation types; polylines, splines and wavelets.
For each type we define the representation, its controls and
how much of the curve they affect, how to construct a splice
list for a given change, and how to incorporate the changes
in a splice list.

6.1. Polylines

A polyline is an ordered list of points from 0 ton�1 con-
nected together by line segments. We augment this structure

c The Eurographics Association and Blackwell Publishers 1998.



Grimm and Ayers / A Framework for Synchronized Editing of Multiple Curve Representations

Figure 12: Marking of a segment of a curve.

by assigning a parameter valuet � T = [A;B] to each point.
The ts must be in ascending order, starting atA and ending
at B.

There are three ways to change a polyline: moving a point,
adding a point, and deleting a point. When adding a point
the user specifies a uniquet value to indicate the position
of the new point in the list. To construct a splice list, we
need to know the parametric interval that is affected for
each of these operations. Leti be either the index of the
moved point, the index of the newly added point, or the in-
dex of the point to be deleted. Then the affected interval is
[tmax(i�1;0);tmin(i+1;n�1)].

To generate the point list for a given splice interval we reg-
ularly sample the line segments. To guarantee that the sam-
ples are withinε=2 of the line segments, we sample the line
segmenti with any spacing∆s< ε=2 ti+1�ti

jjpi+1�pi jj
.

To incorporate a splice on the interval[a;b], we introduce
two new points ata andb and then replace all of the points
between those two points with the points in the splice list.
We can optionally replace any adjacent, nearly linear splice
segments with a single segment, provided that the removed
point is withinε=2 of the new, single segment.

6.2. Splines

A non-uniform spline is defined by a degree,o, a mono-
tonically non-decreasing knot vectorki ; i 2 [0;n� 1] and
n� o� 2 control points. We used a degree one spline for
the figures and video but the implementation supports any
degree spline. LetT = [A;B] be the interval the spline is de-
fined on, i.e.,ko+1 = A andkn�o�1 = B.

There are four ways to change a spline; change the knot
vector, move a point, add a control point to an end, or re-
move a control point from an end. Adding control points in
the middle of the spline can be accomplished byrefining the
curve13; this changes the spline’s representation but not its
image. When a point is added at an end, the knot vector must
be adjusted by moving the lasto+3 knots so that the spline
is still defined on[A;B]. Similarly, when a point is removed
from an end the lasto+2 knots must be adjusted.

Moving the control pointi affects the interval delimited

by the support of the corresponding basis function, i.e.,
[ki ;k[i +o+2]. Adding or removing a control point affects
the resulting first (or last) segment, i.e., the interval[a;ko+3]
or [kn�o�2;b]. Changing the knoti changes the interval
[ki�1;ki+1].

Creating a point list for a splice involves sampling the
spline at fine enough intervals. We use an approximation of
the arc length to guarantee that the arc length distance be-
tween two samples is less thanε=2.

To add in a splice we essentially add (or remove) control
points in the interval and then data fit in that interval. The
difficulties are guaranteeing that the spline is not affected
outside of the interval and that the approximation is close
enough. The data fitting routine we use is a variation of the
least-squares method that includes absolute constraints – pin
the curve in the adjacent, unchanged regions and fit the data
points in the changed region as best as possible. This is a
description of the altered least-squares method:

� Qx= y whereQ is ann�m matrix withn< m represent-
ing the absolute constraints (the “pins”).

� Ax= b whereA is anl�mmatrix representing the desired
constraints (fit the splice points).

The method returnsx such that the absolute constraints are
satisfied and the desired constraints are minimized in the
least-squared sense9.

We first refine the curve at the start and stop parameter
points of the splice. To ensure that the spline remains un-
changed outside of the interval, we must guarantee that the
polynomials of the segments outside of the interval remain
unchanged. This can be accomplished by requiring, for each
segment, that the spline pass througho+ 1 of the original
points of that segment at their original parameter values.
These constraints make up theQ matrix. For each point in
the splice list we add a desired constraint into theA ma-
trix. We now add (or remove) control points into the interval
based on the number of data points in the splice (roughly
one control point for every twenty samples). Note that we
can remove control points from the interval provided that
their support is entirely contained in that interval. We next
alter the knot vector within the interval so that it reflects the
spacing in the splice list. We now perform the following it-
eration:

� Data fit
� If the data fitting routine was unable to find a solution (i.e.,

it could not satisfy the absolute constraints) refine at the
end segments of the interval and continue.

� Check that the distance to the curve for each sample point
is less thanε=2.

� Refine segments for which the above did not hold and con-
tinue.

� If all distances were within the bounds, we are finished.

c The Eurographics Association and Blackwell Publishers 1998.



Grimm and Ayers / A Framework for Synchronized Editing of Multiple Curve Representations

6.3. Wavelets

We use the B-spline wavelet representation described in6.
This representation uses a four control-point B-spline as its
base curve and a set of wavelet detail coefficients to de-
scribe additional levels of detail. The detail coefficients are
arranged into levels, each level having twice as many coef-
ficients as the level below it. For each levell of detail we
can construct a B-spline which has 2l +3 control points. As
the number of control points in the B-spline increases (i.e.,
as we add more levels of detail) the amount of the curve af-
fected by a single control point decreases. Since the number
of control points doubles at each level the affect of a detail
coefficient at levell is 1=2l of the total parameter space. For
a more precise definition and information on editing frac-
tional levels, see6 5.

There are two ways to change a B-spline wavelet; one,
add another layer of detail coefficients, and two, change a
detail coefficient. Changing a detail coefficient at levell and
position i affects the interval[i 1

2l ;(i +1) 1
2l ] (assumingT =

[0;1]). Adding more detail coefficients does not change the
image of the curve as long as the new detail coefficients are
zero.

In general, B-spline wavelets behave best if they are
evenly parameterized, i.e., equal steps in parameter space
result in equal steps along the image of the curve. When the
B-spline is initially fit to some data, and whenever we splice
in a change, we try to maintain this even parameterization.
In addition to keeping the behavior of the curve consistent,
this also simplifies sampling.

To create a sample list we sample the B-spline evenly in
parameter space. We must chose a sampling rate,∆t, so that
the samples are spaced less thanε=2 apart. Letpi and pi+1
be the closest-spaced control points on the interval in ques-
tion (using the B-spline created using all of the detail coef-
ficients) and let the wavelet havel levels of detail. Then a
conservative estimate for∆t is 10�2jjpi+1�pi jj

ε � 1
2l (assuming

again thatT = [0;1]).

To splice in a change, we first reparameterize the inter-
val in question. If we cannot fit the curve to withinε=2 in
the given interval we add another layer of detail coefficients
to the entire curve and try again until successful. Since we
only move the new detail coefficients in the splice interval
we will not affect the curve outside of the interval. Note that
adding another layer of detail coefficients results in double
the number of coefficients, most of which will be zero. This
is where a sparse representation would be useful.

7. Results and future work

We have demonstrated the synchronized, lazy evaluation
editing of several curve representations. The interface runs
in real-time on an Intel Pentium Pro 200. In general, inter-
action times are not affected if the display representation is

Contains one or more

Operates on

Particle
Curve

NURBS Multiresolution
B-Spline

Multi-representation

Application Framework

Least
Squares Tool

Point
Constraint

Sketch
Tool

Contains one

Figure 13: A block diagram of our implementation.

the same as the representation being edited. Updating while
editing is slightly slower. Curve sizes range from 5 to 50
control points, or on the order of 100 vertices.

Currently, the acceptable approximation error (ε) is fixed;
this sometimes results in lost detail or an excessive number
of points. It should be possible for the user to set this value.

We would like to use the system to explore more user in-
terface techniques, especially ones which focus on supplying
better selection and editing control to the user. Other tools,
especially controllable smoothing techniques, are needed.
We would like to experiment with gestural selection and ap-
plication of tools.

The framework as described extends directly to surfaces
with one major difficulty; unlike curves, there is no sin-
gle parameter space (or any parameter space in some cases)
shared by all surface representations. One possible solution
to the parameterization problem is to use an abstract mani-
fold; representations would then need to provide their own
mapping to the manifoldand be able to change the man-
ifold to reflect topological changes. Fortunately, almost all
surface representations are capable of producing a polygo-
nal approximation; this polygonization could be altered to
produce a manifold.

References

1. C. Grimm, D. Pugmire, M. Bloomenthal, J. Hughes,
and E. Cohen, “Visual interfaces for solids modeling”,
UIST ’95, pp. 51–61 (1995).

2. B. Barsky, “The beta-spline: A curve and surface repre-
senation for computer graphics and computer aided ge-
ometric designs”,In a book by the International Sum-
mer Institute Springer-Verlag, NY, (1896).

3. R. Bartels, J. Beatty, and B. Barsky,An Introduction to

c The Eurographics Association and Blackwell Publishers 1998.



Grimm and Ayers / A Framework for Synchronized Editing of Multiple Curve Representations

Splines for Use in Computer Graphics and Geometric
Modeling. Morgan Kaufmann, (1987).

4. G. Farin,Curves and Surfaces for Computer Aided Ge-
ometric Design. Academic Press, (1988).

5. E. Stollnitz, T. DeRose, and D. Salesin,Wavelets for
Computer Graphics: theory and applications. Morgan
Kaufmann, (1996).

6. A. Finkelstein and D. Salesin, “Multiresolution
curves”, Computer Graphics, 28(2), pp. 261–268
(1994).

7. B. Fowler and R. H. Bartels, “Constraint based curve
manipulation”,Siggraph course notes 25, (1991).

8. B. Fowler, “Geometric manipulation of tensor prod-
uct surfaces”,Symposium on interactive 3D graphics,
25(2), pp. 101–108 (1992).

9. Strang,Linear Algebra and its Application. HBJ,
(1988).

10. M. J. Banks and E. Cohen, “realtime spline curves
from interactively sketched data”,Computer Graphics,
24(2), pp. 99–107 (1990).

11. P. H. Schneider, “an algorithm for automatically fitting
digitized curves”,Graphics Gems, (1990).

12. T. Baudel, “A mark-based interaction paradigm for
freehand drawing”,UIST ’94 proceedings, pp. 185–192
(1994).

13. E. Cohen, T. Lyche, and R. Riesenfeld, “Discrete b-
splines and subdivision techniques in computer-aided
geometric design and computer graphics”,Computer
Gr. Image Process., 14, pp. 87–111 (1989).

14. D. Forsey and R. Bartels, “Hierarchical b-spline refine-
ment”,Computer Graphics, 22(2), pp. 205–212 (1988).
Proceedings of SIGGRAPH ’88.

c The Eurographics Association and Blackwell Publishers 1998.


