
Implicit Generalized Cylinders using Profile Curves

Cindy M. Grimm

cmg@cs.wustl.edu

Abstract

We introduce an implicit generalized cylinder which is con-

structed from an axis and one or more profile curves. This

surface is related to thesweepwhich is traditionally formed

by an axis curve and one or more cross sections. Instead

of cross sections, this definition uses profile curves to define

how far the surface is from the axis. This facilitates the con-

struction of surfaces which have continually varying cross

sections.

We extend this definition to a generalized cylinder with

two axis curves. This model is useful for surfaces where one

side of the surface curves sharply away from the axis while

the axis itself is curving.

We also present a user interface for editing these sweeps.

CR Categories: I.3.5 [Computer Graphics]: Computa-

tional Geometry and Object Modeling, Curve, Surface, Solid,

and Object Representations, Splines

Additional Keywords: Isosurface, sweep, user interface

1 Introduction

We introduce an implicit generalized cylinder, which we call

a worm, which is constructed from an axis and one or more

profile curves. The worm is related to thesweep, which is

traditionally formed by an axis curve and one or more cross

sections which are “swept” along the axis curve. If the de-

sired surface has a constantly varying cross section, this def-

inition becomes unwieldy. Instead of specifying cross sec-

tions, the worm uses profile curves. Each profile curve is

defined for the length of the axis and determines how far the

surface is from the axis for a particular angle.

The types of surfaces appropriate for worms are ones

which are fundamentally a cylinder, but have constantly vary-

ing cross sections, or profiles. Specifying profile curves in-

stead of cross sections provides more control over how the

cross sections vary, but less control over the cross sections

themselves.

Both sweeps and worms have difficulty modeling sur-

faces where the axis is curving when the profile curve wants

to expand (see Figure 11). This is because the cross section

is oriented away from the desired area of expansion because

of the curvature of the axis. To address this problem we ex-

tend the worm definition by replacing the axis curve with a

ruled surface formed by two axis curves. This extended def-

inition is given in Section 3.4 and produces surfaces such as

the one in Figure 11.

The implicit function we construct is essentially the dis-

tance from the axis curve, minus the distance defined by the

profile curve at that point and angle. The level zero sur-

face, therefore, is approximately the same as the parametric

worm surface. Notice, however, that the distance function

defined in this way will have discontinuities at points which

are equidistant from two points on the axis curve. For rea-

sonable axis and profile curves these points will not affect

the level zero surface. We examine how such discontinuities

affect the surface in Section 5.

To make this primitive useful, we also show a simple sys-

tem for directly manipulating the profile and axis curves (see

Section 4). The interactive system uses a parametric approx-



imation, defined in Section 3.3, to provide feedback.

2 Previous work

Constructing a parametric surface by sweeping a 2D curve

along an axis is not new [Far88][BR91]. The traditional

definition using cross sections is most suited to CAD/CAM

modeling while the profile curve definition [KPL94] is more

suited to free-form modeling where the cross sections are

constantly changing.

One approach to defining an implicit sweep is to sweep

an implicit solid along an axis [LE93] [EGS93]. This rep-

resentation is difficult to use for free-form objects for the

same reason that the parametric cross section representation

is; figuring out what solid will give the desired silhouette

is not always obvious. Additionally, the choice of solid to

sweep and choice of scaling functions currently available is

limited.

There are several implicit primitives which use the no-

tion of an axis and a distance function. The sweep definition

defined here is closely related to the one defined in [CBS96],

which is a sweep of an anisotropic distance function [BS95].

The main difference between their approach and ours is the

use of profile curves instead of cross sections; this allows us

to have a constantly varying profile at the expense of detail

in the cross section. Computation costs increase depend-

ing upon the number of profile curves because the�profile

curves must be evaluated before evaluating the constructed

cross section.

3 The definition of a worm

We first describe the components of the worm which are

common to both the implicit and parametric definitions. Next,

we define the implicit function. This is followed by a de-

scription of how to generate the parametric surface. Finally,

we describe how to extend this definition to two axis curves.

3.1 The components of a worm

The basic shape of the worm is defined by the axis curve.

At each point of the axis we define a frame consisting of

three orthogonal vectors which are based on the tangent and

normal vectors
�
. This frame is used as a local coordinate�

We rotate the bi-normal and normal vectors of the frame so that the normal al-
ways points in a chosen direction, if possible. This keeps the profiles from “spinning”
around the axis.

Figure 1: The axis curve with two frames marked. The nor-

mal vector is in red, the binormal in blue. Left: The nor-

malized frame. Right: The original frame. Note that the�
vector of the frames on the left points roughly up.

system for each point of the curve and has the property that

the���plane is perpendicular to the tangent of the curve at

the point (see Figure 1). The cross section curve for a given

point on the curve is constructed in this plane using the�
profile curves.

We now define the axis curve, the profile curves, and how

to construct a cross section curve from the profile curves for

a given point on the axis curve.

Let��	
��
������be the axis curve, defined as a

B-spline with�control points, i.e.,

��	
�
����
���
���	
��

where the
��are order�(or higher) B-spline basis functions.

Then the tangent, normal, and bi-normal vectors at	are:

��	
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This frame can “swing” around the curve as the axis changes.

It can be used in this form, but we normalize so that�)
points in roughly the same direction at every point. This is

possible if there exists an up vector*+such that the tangent

never points in the direction of the up vector. To normalize

the frame,

�)�	
 ���	

� ���	
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� �'�	
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Figure 2: Left: The axis curve and the 4 profile curves

around it for the top fin. Right: The resulting parametric

approximation.

Figure 3: Left: The knot vector for the cross section curve.

Each basis function is paired with a control point produced

by evaluating the corresponding profile curve. Right: Draw-

ing the cross section in polar coordinates.

The distance from the axis curve to the level zero surface

is defined using a set of�profile curves, where��
.
Each profile curve is a 1D curve with the same parameter

space as the axis curve, i.e.,

����
�����

and is guaranteed to be always positive and descending to

at both ends (this “closes off” the end of the worm). We

use profile curves of order
�

and varying numbers of control

points. To ensure the above conditions, all control points

must be positive, except for the first and last points, which

are set to the negative of the second and second to last control

points, respectively. Refer to Figure 2 for an example of an

axis curve with�profile curves.

At each point��	
along the axis curve we can define

a cross section curve based on the frame and profile curves

evaluated at	. An illustration of how the cross section curve

is constructed from the profile curves is shown in Figure 3.

The cross section curve is a closed curve which lies entirely

in the plane defined by��	
and
'�	
. Ideally, the cross

section curve should be a periodic curve mapping
�
����into

Figure 4: The axis curve and several different cross section

curves of the fish body.

�
whose control points are the evaluated profile curves. We

simulate this curve using a spline curve whose start and fin-

ish lines up. This is accomplished by duplicating control

points at the beginning and end of the curve

Let�"��
������be the cross section curve, which is

an order
�

curve with���control points and the following

knot vector:

�������
	with
	����

�

We set the control points�
�"to:

�
�"��!���#��
-

�	


This ensures that�"is most influenced by the

��

profile

curve at��
and again at����. Note that�"�

�
�"���
. Examples of cross section curves, drawn in the ap-

propriate frames, are shown in Figure 4.

3.2 Implicit definition

The implicit function�
�����

is positive at the axis and

decreases moving away, reaching



at a distance specified by

the profile curves.�is calculated as follows: Let����be

a point in space. Project�onto the axis, giving�
)���	
.

To determine�, project���)onto the frame at	:

��')�	
,����)

� ��)�	
,����)

� ��������1�.


��

The level zero surface is at�"��
, so

�
�
�

��"��
������)��

Because the profile curves go to zero at the ends of the

axis curve the ends of the worm are well-behaved.



Figure 6: Top: How�and�map to�in the cross section

curve. Bottom: Where�and�lie on a slice of the ruled

surface.

3.3 Parametric definition

To create a parametric approximation to the implicit surface,

evaluate the axis and cross section at evenly spaced points.

��	��
���	
��	����
')�	
���	��
�)�	
��"��


The surface is essentially a tube of varying widths, and

may intersect itself. Note that this surface is only an ap-

proximation because
��	��
projected onto�may not yield

��	
, but will generally be close. Examples of the implicit

and parametric approximation of several surfaces are shown

in Figure 5.

3.4 A worm with two axes

To extend the single axis definition to two axes we replace

the axis curve calculation to a projection to a ruled surface

and change the parameterization of the cross section curve.

Since we are replacing the axis curve with a surface we

will also need to change how the frame is calculated at each

point. The cross section parameterization must change be-

cause the cross section is no longer a circle around a point

but an ovoid around a line (see Figure 6). The cross section

calculation is now a distance from a line instead of a point.

Essentially, we split the circular cross section in half andadd

a linear segment in the middle.

The axis is a ruled surface defined by the two axis curves.

�"����
�����
����
������


We use the tangent in the direction of
�

at�to determine the

plane of the cross section curve.

�����
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Again we normalize the frame, this time using����
�����
(�����
, projected into the plane defined by
�����
as the up

vector,*+. This keeps
')����
pointing away from the plane

of the ruled surface.

For the implicit surface function, projecting to the axis

now means projecting to the ruled surface�". This projec-

tion can be approximated by a polygonal mesh constructed

by evaluating��and��at regularly spaced intervals (see

Figure 11).

The cross section curve is re-parameterized to account

for the center of the axis now being a line. Essentially, we

break the cross section up into four sections, one for each of

the ends (��
��,����), and one for each side of the

ruled surface (

	�	�,���
����
�) (see Figure 6).

�
)"����
�
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���
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After projecting to the ruled surface we either are at the

edges of the surface, in which case��
or���and

we calculate�from the frame as before, or we are in the

middle of the surface and�is either�

�if we are above the

surface or��
�if we are below the surface. The remainder

of the distance calculation is the same, i.e., the construction

of�"for a particular value of	��
���.
To compute the parametric surface step evenly along�

)".

4 User interface

Sweeps began as a method for specifying CAD/CAM mod-

els which had a specific, possibly varying cross section (such

as a chair leg or piston). They are less useful for free-form

surfaces because there the cross section is constantly chang-

ing and it is the profile of the surface that is of interest.

Therefore we use a profile curve representation instead of

the more traditional cross section one. Note, though, that

individual cross sections can still be edited by changing the

appropriate control points of the profile curve at the given

value.



Figure 5: Top: The parametric approximation. Bottom: The implicit surface.

Figure 7: The interactive environment with the three walls

and an example worm.

The environment we use for editing the worms is shown

in Figure 7. The surface is surrounded on three sides by

walls which move as the camera moves to maintain the box

corner (the specific angle of the box walls can be adjusted in-

dependently). This approach is a more flexible variation of

the traditional modeler which uses three orthogonal views

down the�, �, and�axis. All editing takes place on

the walls, in a manner similar to [CMZ
/

99]. The axis and

the two profile curves which are most “up” and “down” are

drawn on each of the three walls (which profile curves are

drawn will vary from wall to wall). Additionally, the user

may click on a wall axis curve and the system will draw

the cross section curve for that point. The axis and profile

curves are also drawn in 3-space where they appear relative

to the surface. The two profile curves which are the upper

and lower curves on the back wall are drawn hi-lighted.

To alter the axis curve, the user draws on one of the walls

with the left mouse button. These changes are applied to

the two appropriate dimensions, with the third dimension

sampled from the current axis curve, as shown in Figure 8.

Note that any 2D curve editing techniques may be applied

here, such as moving the control points directly, sketching

over [Bau94] [BC90] or direct manipulation [FB91].

To edit the profile curves, the user draws on the wall.



Figure 8: An example of editing the axis. Left: The original

axis. Middle: The sketched points. Right: The new axis.

Figure 9: An example of editing a profile curve Left: The

projected axis and original projected profiles. Middle: The

sketched points. Right: The new projected profile curve.

The current axis and two “up” and “down” profile curves are

drawn on the wall to indicate scale. If the user draws above

the axis curve, the upper profile curve is changed, otherwise

the lower profile curve is chosen. Recall that the profile

curve is a 1D curve; we set the value of the profile curve

to be the distance from the axis curve to the new points.

Consider sketching a new curve (refer to Figure 9). Each

of the new points sketched on the wall is projected down to

the projected axis curve for that wall. This gives a parameter

value and distance value for each of the sketched points. To

fit the profile curve to the sketched points we use a variation

of the least squares technique [Str88] which finds the loca-

tion of the control points which best minimizes the squared

error (see Appendix A) and provides some filtering for the

(generally) noisy input.

4.1 Implementation details

A 3D profile curve is drawn relative to the axis curve by

evaluating the parametric equation
��	��
for each control

point at a fixed�. The peak of profile curve
�

occurs at���
���
-��. Since the axis and profile knot vectors are both evenly

spaced, we evenly space along the axis curve to determine	
for each control point (	�� ����). Note that this generally

makes the profile curve slightly shorter than the axis curve.

Figure 10: An example of a discontinuity in�. The dis-

continuities form a horizontal line between the two ends of

the worm. Left: The discontinuities lie inside the surface.

Middle: Outside the surface. Right: Inside and outside the

surface.

To draw the cross section at a point	��
���we evaluate

the parametric equation for the���control points of the

cross section curve�"with������-. (Evaluate the profile

curves at	to set the control points for�".)
To draw the curves on the wall, we project the control

points onto the wall and evaluate the new curve. Recall that

the walls rotate around with the camera; if the wall has nor-

mal *�, is a distance��along that normal, and the eye point

of the camera is at*��then the projected point of*�is

	� �*�,*����	� �*��,*����
�) � "�"��"�*��

���"�"��"�
*��

5 Discontinuities

In this section we describe the discontinuities that occur in

the implicit function�and how this problem manifests it-

self. Any point����which is equidistant from one or

more points on the axis curve will have a discontinuity. This

discontinuity can take three forms; either all values from ev-

ery point are positive, all values are negative, or some are

positive and some are negative. For this example we are in-

terested in the level zero surface.

If all values are negative, then we have the case shown in

the middle of Figure 10 where the point�is outside all sur-

faces. Similarly, if all the values are positive then�is inside

the surface (see left of Figure 10) — this is the case where

the parametric surface is likely to self-intersect. The inter-

esting case is when the discontinuity goes from positive to

negative. In this case, the surface is “clipped” by the profile

curve of the negative surface (see right of Figure 10). In re-

ality, the section clipped should be an open hole because on

one side the function is positive, and on the other it is nega-

tive. It shows as a closed surface because the marching cubes



algorithm only looks for positive to negative crossings.

6 Current and future work

There are a variety of possible interaction techniques yet to

be explored. Some obvious ones are editing the cross sec-

tion curve directly in its plane, similar to [GPB
/

95], fixing

the drawn 3D profile curve locally to a vector and pulling

on it, or editing the axis curve using any of the techniques

discussed in [GA98] or [CMZ
/

99].

There are some open problems in defining the surface

using two axis curve. The most serious is finding a parame-

terization of the two curves which will yield a ruled surface

that does not cross back on itself.

7 Conclusion

We have presented an extension to the traditional axis and

distance function which allows for varied profiles and shapes

at the cost of introducing discontinuities in the implicit func-

tion. We believe there is a set of surfaces which are both

interesting and well-behaved that can be modeled using this

technique. We also introduced some simple editing tech-

niques to simplify building these surfaces.
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A Least squares

A least-squares problem is formulated by

����

where each row of�is a constraint on the solution,������
�����. There must be more constraints than vari-

ables, i.e., more rows in�than columns.

Let

���
������s.t.
��	
�

����
���
�����	


be the order�curve we are fitting, with knot vector�����������/�/�. For curve fitting, each row of the matrix is

of the form:

��	�
�
����
���
�����	�
���

where we want the curve at	�	�to pass through the point

��. The variables in this case are the�control points��and

the row of the matrix�is the basis functions
��evaluated at

	�. To ensure that the end points of the curve are correct, we

also add the following constraints:

��	�����/�
 �	��
��	�����/�/�
 �	�last

for�	s evenly spaced between



and
�
.

If the	�values for the points are evenly spaced and the

knot vector is evenly spaced then it is sufficient to ensure

that there are more constraints than control points. Other-

wise, care must be taken to ensure that there is at least one

constraint given in the support of each basis function.

To find an appropriate fit, we try different numbers of

control points for the curves until the error from the curve to

the sample points is at a particular threshold.
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