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Veterans General Hospital-Taipei, Taiwan, R.O.C. The treatment of urinary stone diseases has been revolutionized

and Institute of Biomedical Engineering, since the introduction of ESWL in the early 1940s2]. However,
National Yang-Ming University, No. 201 Section II, because of the differences in chemical compositions and structural
Shih-Pai Road, Taipei 11217, Taiwan, R.O.C. features of renal calculB], the shock wave-stone interaction dur-

ing ESWL[4], and thus the efficacy of stone fragmentation, may
vary significantly.

To determine the mechanical properties of renal calculi for bet-
ter understanding the efficacy of stone fragmentation during

e-mail: wangsj@vghtpe.gov.tw

Ming-Chuen Yip ESWL, Zhang et al[5] used Knoop and Vickers hardness mea-
Department of Power Mechanical Engineering, surements to study the resisting capacity of a stone against a pen-
National Tsing Hua University, Taiwan, R.O.C. etrating load. They noted no particularly higher hardness value for

cystine stone among the types of stone tested. However, clinical
studies often reported that cystine stones were much more difficult
to fragment than other urinary stones during ESY8BL Further-

Yen-Shen Hsu more, Zhang et a[.7] demonstrated the fracture toughness, based
Division of Urology, Department of Surgery, on the experimental relation between Young’s modulus, Vickers
Veterans General Hospital-Taipei, Taiwan, R.O.C. hardness, indentation load and the size of indentor impression, of

renal calculi correlated with the observations from clinical expe-
rience. However, the Young’s modulus calculated by Zhang et al.
[7] was inconsistent with the data reporf&dl The fracture tough-

Kun-Guo Lai ' _ ' ness used to determine the mechanical properties of renal calculi
Department of Power Mechanical Engineering, seems to be limited in the research interesting.
National Tsing Hua University, Taiwan, R.O.C. The modulus of toughness of renal calculi is essentially the

concept of energy, which was also noticed previoysly]. This

work measured the compressive strength as well as the modulus
of toughness of renal calculi. The objectives of this study are to
Sh_yh'Y_au Wang show that the energy absorbed by a stone before fracture could
University of Houston, Houston, TX relate to the stone fragility during ESWL.

2 Materials and Methods

To improve the efficacy of extracorporeal shock wave lithotripsy The stones removed from patients are either in curved or po-
(ESWL) treatment, it is desirable to identify the physical propetygonal shapes. Only 30 out of thousands of renal calculi, which
ties of urinary calculi could offer direct correlation with their were in bigger sizes and able to fit the test machine, were included
fragilities during ESWL and thus could be used to guide treatmeint this study. To maximize the usage of those calculi, we decided
procedures for more effective stone fragmentation. Thirty stot@ run the basic mechanical propertgompressive test, as
specimens removed surgically were compressed by an axial tdéaneko et al.[9] did, instead of fatigue test in that the fatigue
ing system to measure the compressive strength and trace phieperties could be related to the basic mechanical properties
stress-strain curve. Image analysis software SigmaScan (JanfdE),11. Not only the tensile strength would need much longer
Co.) was used to calculate the area under the stress-strain curgpecimens but also the compressive strengths were reported much
the modulus of toughness, for each stone. The values of compiegher than those of tensile strengfl®§. To run the compressive
sive strength measured were similar to those reported by othist instead of the tensile test would be the cost-effective choice.
researchers. The modulus of toughness of urinary calculi corre- The calculi crystal compositions were determined by crystallo-
lates with clinical representation of the stone fragility duringgraphic analysis (Urolithiasis Laboratory, Veterans General
Hospital-Taipei, Taiwan, ROC Stones were cut into maximal
Contributed by the Bioengineering Division for publication in tl@URNAL OF reCtangwar solids usmg a Iow-speed diamond Sﬁmmet’
BIOMECI—IiALrj\JICALyENGINEIERINg(I; Ma{ngscrl?gtlreceive’ziub)l thtla Biloengineering Divi- BueChler’ IL, USA as specimens. An axial torsion servo-

sion Mar. 13, 2001; revised manuscript received Aug. 31, 2001. Associate Editor: fydraulic testing systertinstron Co. USA compresses the speci-
H. Turner. mens to evaluate the strength of stones. It should be noted that the
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Table 1 Toughness modulus and material properties of renal In summary, the modulus of toughness would be an index to

calculi evaluate the physical property of urinary calculi, which confirms
Toudhness _ Compressive Elasticit the observations from clinical experience: viz. COM is much
Stone Mogulus Strzngth Modulug more resistant to shock-wave fragm.entat.ion t.han MAPH and QA
Composition (Kpa) (Mpa) (Mpa) stones. Therefore, the ESWL operation with higher energy density
o o531 17013 137854328 might have the greater potential to improve the efficacy of stone
MAPH 159+20 3.79:0.31 47.845.46 fragmentation during ESWL.
UA 180+23 4.81-0.28 94.98-6.28
CA 164+13 3.20+0.53 28.22:2.59
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trace out the loading and displacement curves. With the loading
and displacement curve, we could get the stress and strain cua/e
by dividing the area and length, respectively. eferences
From the stress-strain curve, the total area under the curve ig] Chaussy, C., Schmiedt, E., and Jocham, D., 1980, “Extracorporeally Induced
called the modulus of toughness, the energy absorbed per ury, Pestucion of Ganey Sones by Shock e Lancston Taos Lice,
volume of material when loaded to fracture. The description of the

. . ' Destruction of Kidney Stones by Shock Waves,” J. U149, pp. 417—-420.
modulus of toughness in terms of mathematical is [3] Sutor, D. J., 1972, “Physical Aspects/Jrolithiasis, edited by B. L. Finlayson,

L. L. Hench, and L. H. Smith, National Academy of Science, Washington,

e DC., pp. 43-63.
T = J ods [4] Zhong, P., 1992, “Shock Wave Propagation in Renal Calculi in Extracorpeal
m o ! Shock Wave Lithotripsy,” Ph.D. dissertation, University of Texas at Arlington,
Arlington, TX.
[5] Zhong, P., Choung, C. J., and Goolsby, R. D., 1992, “Microhardness Measure-
where va o, &, and e; are the modulus of toughness, stress, ments of Renal Calculi: Regional Differences and Effects of Microstructure,”
H H H H J. Biomed. Mater. Res26, pp. 1117-1130.
strain, alndlthe ;tl’aln at th?j fracture point, r%Spe?twely' . 6{6 Pittomvils, G., Vandeursen, H., and Wevers, M. et al., 1994, “The Influence of
To calculate the area un gr curve, we gse SO ' are SlgmaSC Internal Stone Structure Upon the Fracture Behaviour of Urinary Calculi,”
(Jandel Co.to process the image analysis. Each image was first  ultrasound Med. Biol. 20, pp. 803—810.
scanned, and then calibrated the scale according to the curve c64 Zhong, P., Choung, C. J., and Preminger, G. M., 1993, “Characterization of
ordinate settings. With the help of the analysis software. we could Fracture Toughness of Renal Calculi Using a Microindentation Technique,” J.
! . . ' Mater. Sci. Lett. 12, pp. 1460—1462.
find _the _maXImum loading and_ calculate the area under thEf8] Kaneko, H., Watanabe, H., and Takahashi, T. et al., 1979, “Studies on the
loading-displacement curve, precisely. Application of Microexplosion to Medicine and Biology, IV. Strength of Wet
and Dry Urinary Calculi,” Nippon Hinyokika Gakkai Zasship, pp. 61-66.
[9] Kaneko, H., Watanabe, H., and Takahashi, T. et al., 1977, “Studies on the
3 Results Application of Microexplosion to Medicine and Biology, Il. Strength and

. . . . Composition of Urinary Calculi,” Nippon Hinyokika Gakkai Zassl&8, pp.
Crystallographic analysis of the 30 renal calculi revealed their 249_p257. Y PP Y % pp

chemical compositions as: calcium oxalate monohyd(@®M)  [10] wang, Shyh-Jen, and Dixon, Marvin W., 1997, “A New Criterion for Positive
9, magnesium ammonium phosphate hydts&PH) 8, uric acid Mean Stress Fatigue Design,” ASME J. Mech. Dd49 pp. 135-137.

(UA) 6, and calcium apatitéCA) 7. Table | summarizes results 11 Wang, Shyh-Jen, D'X"?' M. W-:l and Huey, C. H. et al., 2000, “The Clemson
f t hness modulus. compressive strength. and elasticit lelt‘Stress Diagram for Ductile Parts Subjected to Positive Mean Fatigue
or toug ) p gin, Y Loading,” ASME J. Mech. Des.122, pp. 143—146.

modulus.

4 Discussion

Our results show that the compressive strengths of calcui 48N the Determination of the Angular
similar to data developed by oth€i8,9]. However, the elasticity Orientation of a Vertebra
modulus(Young’s modulug of stones differs greatly between this
study and other reports’—9] due to renal calculi known to be
E:o]mplex in their chemical compositions and structural featurgs ¢ E. Goris
6]. . . . .
The modulus of toughness varied from 159 to 325 KPa in ag)_epgrtmenj[ of Blome(_jlcal .Englneerln_g, Faculty O,f
cending order from MAPH to CA, UA, and COM. The trend isMedical Sciences, University of Groningen, Groningen,
consistent with the observation of stone fragility from clinicallhe Netherlands
experience as stated by Pittomvils et g8] that “. .. calcium
oxalate monohydraglCOM] . . . characterized by a low stone fra-\/. Kuipers

gility, whereas . . . uric acid[UA] ... very fragile[6].” Zhong . . :
[7] also noted that'‘ . . phosphatestruvite and calcium apatite Department of Mathematics and Computing Science,

[CA]) stones are found to be easy to fragment, whereas uric aiiversity of Groningen, Groningen, The Netherlands
[UA] and brushite stones are in the middle range, and calcium ]

oxalate monohydratBCOM] and cystine stones are the most red. De Vries

sistant types to ESWL therapy.” The Kruskal-Wallis test showegngineering Department, Hanzehogeschool of Groningen,
that the dlﬁerencg betw_eer_1_the modulus of toughness of thc@?oningen, The Netherlands

calculi was statistically significant. Furthermore, the Pearson cor-

relation between clinical experience and the modulus of toughness

was 0.866 p<0.0001). Using the modulus of toughness to ex= J. Wev.er ) ) ) )

plain the clinical experience, thé is equal to 0.75§<0.0001) Orthopaedic Department, University Hospital Groningen,
with linear regression. Groningen, The Netherlands
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In this paper we consider the spatial orientation of vertebrae. We Y

take the view that, in determining their rotation angles from

X-rays, the procedure applied by Drerup yields the most reliable P Uj

empirical results, viz. the three angles through which a vertebra

rotates about its own symmetry axes in a specific sequence. With a X

view to the further use of this information to analyze deformations

or the motion of a spine we recommend that the Drerup angles be

converted into the well-known Eulerian angles. How this can bgg. 1 The rotation of a vertebra as prescribed by the Eulerian

done is the subject of this repor{.DOI: 10.1115/1.1431265 angles ¢, ¢, and 6, in which ¢ and ¢ determine the orientation
of the line / and @ the rotation about /

1 Introduction

In dealing with calculations concerning the strength and stiff-
ness of the spine, we have made use of the well-known Eulerian
anglese, i, and 6 (Fig. 1). They serve to define the spatial ori-
entation of a vertebra, as is done in mechanical engineering in
calculating, for example, the motion of long slender beams. Re-
ferring to Whittaker[1] and to Goldsteinf2] we note that the
rotation of a rigid body about some fixed point is governed by an
orthogonal mappingi. With respect to some Cartesian coordinate
systemX, Y, andZ (Fig. 1), this mapping takes the form of &3
matrix R with component®;; , i,j=1,2,3, which in our approach
are functions ofp, ¢, and 6.

However, in medical circles, e.g., in orthopaedic surgery, usu-
ally one prefers the use of the rotation anglesg, and vy, as
proposed by Drerup3] to the Euler angles. This because of théig. 2 The Cartesian components of the local coordinate sys-
relative ease of measuring the former from radiographs. kere tem of Fh_e vert,epra as ch0§en along its principal axes of inertia.
B, and v refer to rotation angles about the principal Symmetrgt‘;I ggg;r_‘ 0" is chosen in the geometrical center of the verte-
axesX’, Y', andZ’ of a vertebra, moving with the latté€Fig. 2).

It is understood that these rotations take place successively in the /
set ordera, B, and theny. Obviously, usinga, B, and y the
components:;; will be functions of these quantities.

The reasons why we prefer Euler angles in our analysis is that
¢, i, and # may assume finite values and that they can be applied
commutatively. On the contrary, the quantitiess, andy have to
be used successively in the above set order, unless they are infini-
tesimally small.

Our aim is to analyze the time-dependent deformation of a
spine, starting from a given set of initial values of the underlying
parameters. Usually, the latter are Drerup’s angless, and y
which in our approach have to be converted into the Eulerian
anglese, ¢, and 6.

How we have done this is outlined briefly in the following
section. In this we shall use a fixed Cartesian coordinate syXfem
Y, andZ, the origin of which is chosen somewhere in the sagittal
planeO, X, Z (Fig. 3.

1To whom correspondence should be addressed.

Contributed by the Bioengineering Division for publication in tl@URNAL OF . . .
BIOMECHANICAL ENGINEERING. Manuscript received by the Bioengineering Divi- Fig- 3 The Cartesian coordinates X, Y, and Z are used as a
sion Mar. 13, 2001; revised manuscript received Aug. 31, 2001. Associate Editor: @obal reference system; there is a field of uniform and con-

H. Turner. stant triads of orthonormal base vectors e, i=1,2,and 3
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2 Conversion of Generalized Coordinates
Using ¢, ¢, and 6 as generalized coordinates, we find

€0Sf coSy coSp—sinfsing —sinf cosy cosSe—CcosfsSing  Sinyg coSe
R, ,0]=| cosfcosysing+singcose —singcosysing+cosdcose singsing || 1)
—cosésiny sinésiny cosyr

while in the case ofy, 8, andy we arrive at

cosy cospB —sinycosp sinB
R[a,B,y]=| cosysin@sina+sinycosa —sinysingBsina+cosycosa —cospBsina | . )

—cosysinBcosa+sinysinae  sinysinB cosa+cosy sina COSpB cosa

We note that(2) is determined empirically. Sincgd) and(2) are A final verification follows by substituting the calculated values of
identical, we have ninédependentequations for the three un- ¢, #, and#é into the remaining components 6f).
knownse, ¢, andé. Noting R;; for the components o), we find

y=arccosRsy), e (0,m), )

yielding a unique value foy.. Subsequently we see that 3 Numerical Results

R We have applied the conversion numerically to combinations of
@Z&I‘CCO%.—B), (4) rotationsa, B, andy, borrowed from Skalli et al4]. The results
sinyg are shown in Table 1.

from which we determine two possible solutions

e1€[0,m] and ¢,=27— ¢ e(m,2m).
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Which one applies, follows from

-R
0= arcco% sin ;) , (6)

yielding two possible solutions

61[0m] —and ;=27 =0, (m2m). Fitting Manifold Surfaces to Three-
Then the choice is made through the use of Dimensional Point Clouds
siny sin =R,,. (7

Cindy M. Grimm !
Computer Science Department, Washington University,

Table 1 Numerical results obtained from conversion of rota- St. Louis, MO 63130
tions about co-rotating axis to Eulerian angles e-mail: cmg@cs.wustl.edu
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We present a technique for fitting a smooth, locally parameterizeijues must also fit both to the interior control points and main-
surface model (called the manifold surface model) to uneverbin constraints across boundaries between patches, a notoriously
scattered data describing an anatomical structure. These data at#ficult problem with unevenly distributed data.
acquired from medical imaging modalities such as CT scans orlIn [14] the techniques of radial basis functions are extended to
MRI. The manifold surface is useful for problems which requireandle arbitrary topology. This approach provides smoothing and
analyzable or parametric surfaces fitted to data acquired froran handle unevenly scattered data; however, the topology of the
surfaces of arbitrary topology (e.g., entire bones). This surfadaal surface is not guaranteed to be the same as the input data.
modeling work is part of a larger project to model and analyze Several approaches specific to modeling joint surfaces exist,
skeletal joints, in particular the complex of small bones within theuch as Boyd’s thin-plate spling45] and Ateshian’s B-splines
wrist and hand. To demonstrate the suitability of this model we f{it6], further developed i117]. These techniques focus on mod-
to several different bones in the hand, and to the same bone frefing just a single contact region of the boftepologically a
multiple people. [DOI: 10.1115/1.1431266 plane. The dynamics of multiple joint surfaces on a single bone
make a model of the entire borfeopologically a sphepemore
useful than a model of just the contact region for one neighboring
. bone. Sherrer i118] produces a collection of patches with en-
Introduction forcedC* continuity across boundaries. They provide a complete
Digital anatomical structures extracted from medical images ameodel but onlyC* continuity and also have some difficulties en-
finding a wide range of scientific and clinical applications ranginfprcing boundary constraints.
from finite element modeling to visualization to computer assisted
surgery. An important aspect of this is the extraction of surface
models of anatomical structures. Our work was stimulated in pjﬂpUt Data and Surface Type
by the need to studin vivo skeletal joint mechanics. We use these The data sets are outer cortical bone surfaces extracted from
extracted surfaces to quantify joint kinematics, ligament strainsequential slices of a CT image volume. The segmentation proce-
and distances between joint surfaces in normal, pathological, afgres involved thresholding, image algebra, and user interaction
surgically reconstructed joinfd—3]. Quantifying these effects re- to define each bone conto[i]. This produces denge=.01 mm)
quires a surface model which is smooth, locally parameterizeshmples along widely spacéii mm) cross sections.
and capable of modeling surfaces of arbitrary topology. The manifold surface is described fully[id]. The topology and
The manifold surface mod@#] meets these requirements. Firstrough geometry are specified byganerator polyhedronwhich
manifolds are locally parameterized, with the parameterizatiogpecifies the topology and an initial approximate geometry for the
and corresponding degrees-of-freedom, under the control of thigher resolutiormanifold polyhedropwhich in turn specifies the
user. Therefore, it is a simple matter to provide more degrees-@bnnectivity and an initial geometry for a set of overlapping,
freedom in areas of higher curvature. Second, the fitting procesgjiaed-together spline patchésee Fig. 1. The generator polyhe-
hierarchically layered, i.e., there is a natural method for doingdron is constructed by the user and can be any general polyhe-
coarser to finer fit; the finest fit level is local and is only perdron. Each level provides more degrees-of-freedom than its
formed where there is sufficient data to do so. These two propgredecessor.
ties help with interpolating sparse data since the coarser fit can b&Ve use a different embedding equation than the one described
used in areas with few sample points and the finer fit applied orily the paper. Our embedding is simpler and also pulls the division
where needed. Manifolds are capable of modeling surfaces of By- the sum out of the individual patch equations. Each chart is
bitrary topology, so we can model entire bones, including thoggnbedded using a single NUBQ9] spline patchE, and the
with topological holes and boundaries caused by incomplete datesult blended together using the original blend functigts
Finally, the surface isCk for any desiredk, which results in
smooth distance-to-surface calculations. E(p)=2>, Bo(P)Ec(M(ac(p)))
C

. whereM is either the identity functioivertex and face chantsr

Previous Work the linear transform that takes the domain of the edge chart to the

There are many techniques for scattered data interpolation; fgtit square(see Appendix A of4]). The patch domains for the
a recent survey sg&]. We focus here on those which can handiéace charts extend beyond the chart's domain. The control points
arbitrary topological surfaces & (or highe continuity: Spline are placed on the subdivision surfaces as originally described.
surfaceg6-9|, algebraic surfacegld 0], subdivision surfacel1—
13], and radial basis functions or thin-plate splifi&4]. Of these, -
all but [8], [9], [13], and[14] require a polyhedron to fit to and The Fitting Process
produce a single patch per face. It is not clear how well theseThe manifold is fit to the data in three stefsee Fig. 1 We
techniques will work for unevenly scattered points since they prassume that the user has already constructed a generator polyhe-
vide no mechanism for smoothing or filling holes in the datalron that has the same topology shape as the data and approxi-
They also produce a large number of patches. mately the same geometry. This takes about an hour and the re-

The techniques of Ecf8], Hoppe[13], and Krishnamurthy9] sulting generator polyhedron can be used for all bones of the same
produce approximating surfaces, the first two by simplifying theype (e.g., all hamate bones have the same generator polyhedron
mesh to produce a coarse network, the last one by having the ukee fitting process brings the approximate geometry into align-
draw patch boundaries. These approaches are closest to ourgémt with the data points; it does not change the topology of the
spirit; the major difference lies in the structure of the output sumanifold surface.
face. We produce the same local parameterization, in a topologicalVe first find the best fit for the generator polyhedron with de-
sense, for a single bone across multiple people. Spline patch tefgut positions for the manifold polyhedron vertices and spline

patches. The second step adjusts the vertices of the manifold poly-

'Supported by NSF grant CCR-992009. hedron While using the _default spline patch Iocati_ons. Finally, the
2supported in part by NIH grant AR44005. control points of the spline patches are adjusted if there are suffi-
*Supported by NSF grant CCR-0093238. cient data points that project to that patch’s region of influence.

Contributed by the Bioengineering Division for publication in tl@URNAL OF ; ; g
BIOMECHANICAL ENGINEERING. Manuscript received by the Bioengineering Divi- Because the surface is apprOXImately correct after fl'[tlng the

sion Mar. 13, 2001; revised manuscript received August 31, 2001. Associate Editﬁ?anifplq polyhedron, we do not need to fit patches in regions
C. H. Turner. containing few or no samples. Also, we do not have to apply
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After fitting manifold fitting
generator polyhedrou palches
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Fig. 1 From left to right top: the original data, shown triangulated. The generator polyhedron, the manifold polyhedron, and the
prototype manifold surface, showing the local parameterization. Bottom: after fitting the generator polyhedron. After fitting the
manifold polyhedron. After fitting the individual patches.

additional constraints to make the boundaries of the patches beetor of variable and each rowof A corresponds to a linear
have because the patches are overlapped, so boundaries ofcgifstraint orx imposed by the data poidt . We solve forx using

patches do not affect the final geometry. a standard least-squares solver for a linear sy$&ih
Note that the linear approximation, E@), differs from Eq.(1)

The Fitting Mechanism.  In general, fitting can be expressedn that we minimize the distance to a specific parameter pgaint
as the solution to the following minimization problem, wh&®  the surface, not to any point on the surface. We therefore may not
the surface and thd, are the data points we fit to. find the globally optimal solution.
It remains to show how to calculate thefor a specific param-
min[ ( E
r

eter pointt. We begin at the patch level and work up to the gen-
A point on the surface is described I3(t) for some parameter

erator polyhedron level. The degrees-of-freedone x;s) will be

different at each level, and hence so will the ma&iAt the patch
valuet. This equation minimizes the distance between every da{%’el thex_i are the con_trol points of all of the patchesk. An indi-
point and its closest point on the surface. Additional constrainyédual spline patchP, is of the form P, (p)=Z2bi(p)g;. The
(the E.) can be added to enforce “smooth” surfaces, i.e., one&ntire collection of the control points is therefdjgl}. Our sur-
which do not undulate unduly between the given points. The cof@ice is constructed by “gluing” these individual patches together,
stanta, expresses the importance of fitting the data versus prie.,
ducing a smooth surface. The curvature t&ghas two purposes.
First, it filters noisy data. Second, if the data is very nonuniformly
sampled, it serves as a guide for the behavior of the surface in
very sparse areas.

min(dr_s(t))z +acEe 1
t

S=2 AOPUD=2 B(D 2 bivef) @)
|
where thep, are the blend functions, one for each patch. The

Equation(1) requires a nonlinear solver. However, if the SUrpenq fynctions have the property thatB,(t) =1, with at most
face is reasonably well aligned with the data we can form a siMkree functions nonzero

lar, linear expression by projecting the data points onto the surfacqqtaad of solving for all of the degrees-of-freedom at once,

and minimizing the resulting equations. By reasonably Wegroducing a large but sparse matrix, we take advantage of the

aligned we mean that the closest point on the surface define Vrlappi - P
LD . ; pping structure and fit patches individually. One way to
bijection between the surface and the data points with no folds, g re thas(t,) =d, is to ensure that, for every overlapping patch

The linear expression is as follows: Py, Pu(t,)=d,. The resulting error will be at worst the maxi-

min(E (dr—s<tr>>2>
O o
O O O

whereS(t,) is the point on the surface closestdo. A given point
Selected data points

)

of Scan be expressed &p)=2,x;a;(t) where thex; are either
the polyhedra vertices or the spline control points andét{e)

are the blend functions, which, for a givénevaluate to a con- .
stant. After some manipulation, minimizirgreduces to a set of

linear equations with the; as variables. Specifically, each data
pointd, produces an equation of the forfx;a](t,)=d,, which
constrains the surface gtto pass through the point, for each an additional patch constraint. Left: the surface point, the tan-

data point. o i __gent plane, and the nearby data points. Middle: the projected
The linear optimization problem can be written as a solution @ta points. Right: the selected points, shown in the tangent

the matrix equatiorAx=d, where A={aj(t,)}, x={x;} is the plane.

\

© o
@
4

Tangent plane

and data points Projected data points

Fig. 2 Finding the four data points to interpolate between for
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Fig. 3 The carpal bones from one person and three hamates from different people. Top: meshes produced from the data points
using Nuages [22]. Bottom: manifold surfaces. Note the striation in the Nuages meshes where the slicing planes become parallel
to the surface.

mum of the individual patch area, since the final surface is a linesuring distance in the plapesuch that the four points are
combination of the given points. For each patch we find those dd&round” the constraint point, i.e., the normalized dot products of
points that project onto the domain of that patch and fit to juste projected points are bigger than 0.5. We then take the
those points. weighted average of those point’s locations.

For the manifold polyhedron, our degrees-of-freedom are the
vertices of the polyhedron. Each control pogit in its default Results

location is expressed as a linear combination of the vertices of theror Fig. 3 we used one person’s scan in the neutral position and
manifold polyhedronyV;, i.e., g!‘:EjB}‘Vj . Each point on the the hamate bone from three subjects. We compare our models to
surface is therefore of the form meshes created using Nuagj2g] software. The sample points we
used are the vertices of the Nuages’ meshes; we did not use the
S(P):E ﬁk(p)pk(p)ZE ﬂk(p)E bi(p)z B}(Vj . (4) Nuages’surface connectivity information. The models ranged in
K K i ] size from 921 to 4754 points. The data points were spaced ap-
Similarly, we can express each vertex of the manifold polyhg;roxmately 0.01 mm apart along the contours, W|th.1 mm spacing
etween the contours. On average, the average distance from the
ata points to the manifold surface is 0.053 mm wittt@.02 95
percent confidence interval. The average maximum distance
Curvature Constraints. An advantage of the least-squaresvas 0.42.
formulation is that it does a good job of approximating noisy data. The parametew, produces similar results over a wide range of
Also, as demonstrated, the spline fitting problem can easily bglues(from 0.5 to 1.5 except for a few bones with spurious data
approximated as a linear probldi@a1]. The least-squares formu- points on the inside of the bones. For these bones, the larger value
lation does, however, behave badly when the weights on a vasf-a. was required.
able are close to zer@visually, this produces “spiking” in the .
surfac@. We address this problem by adding additional constrainkiscussion

(the E¢), which ensure that every variable has sufficient weight. one drawback of the least-squares fitting technique is that it
When paramete, from Eqg. (1) is set to one, then the constraintyses the closest point to choose the parameter point; if the initial
has equal weight to moving a data point an equivalent distanggrface and the data points are misaligned this can cause folding
from the surface. or pinching of the surface. This problem is most obvious when the
Polyhedral Constraints. When fitting the generator polyhe- data set has two parallel surfaces close together. One solution is to

dron and manifold polyhedron we add in additional constrainfiust the generator polyhedron, but this is not very satisfactory.

that require vertices to lie at the centroid of their neighbors. E lusi

vi}C{v} are then manifold polyhedron vertices forming the onclusion

star of v (i.e., all the adjacent verticesve add the constraint We have demonstrated a hierarchical technique for fitting a
B(v—(1n)Z,;v;)=0. smooth surface to an entire bone. Manifold surfaces have several

. . . desirable properties, such as smoothness and arbitrary topology,
Additional Patch Constraints. When fitting the patches we | hich make them useful fan vivo, multiple joint analysis. The

add in additional constraints at regularly spaced intervals in thgcnnique requires a minor amount of user interaction for each
parameter space, resulting in a more even support.

t t th i f th i letel
We take a uniformly distributed set of points in the dom@irb new bone type, but the remainder of the process is completely

. . . . t tic. The fitti i bust in th f noi
by 5 grid of pointg and determine where the embedded po'”%ﬁdom?el\fenlyialrnlpnlgdpzjc;ﬁgsp:;“oliitrso ust in the presence of noise
0 .

should go based on nearby sample points. Each new constrain

finds four data points which surround the embedded point, if a:}g ferences

exist, and interpolates between those four data points to prod g

the desired location for the new constraint. [1] Cirsco, J. J., McGovern, R., an_d Wolf_e, S., 1999, “A Non—ipvasivg Technique
To find the four surrounding data points we first project all of Iﬁgr’)"";a:g’iggr\'lg Vl'VC; Jhégi-%genswnal Carpal Bone Kinematics,” J. Or-

the nearby data points onto the tangent plane at the constraif$) cirsco, J. 3., and Neu, C., 2000, “In Vivo Scaphoid, Lunate and Capitate

point (see Fig. 2 Second, we find the four closest poiriteea- Kinematics in Flexion-Extension,” J. Hand Sur@5A, No. 5, pp. 860—869.

dron, in its default location, as the sum of the vertices of th
generator polyhedron.
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