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To improve the efficacy of extracorporeal shock wave lithotrip
(ESWL) treatment, it is desirable to identify the physical prop
ties of urinary calculi could offer direct correlation with thei
fragilities during ESWL and thus could be used to guide treatm
procedures for more effective stone fragmentation. Thirty st
specimens removed surgically were compressed by an axial
ing system to measure the compressive strength and trace
stress-strain curve. Image analysis software SigmaScan (Ja
Co.) was used to calculate the area under the stress-strain cu
the modulus of toughness, for each stone. The values of com
sive strength measured were similar to those reported by o
researchers. The modulus of toughness of urinary calculi co
lates with clinical representation of the stone fragility durin
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ESWL. The modulus of toughness could be an index to eval
the physical property of urinary calculi that could be used
guide treatment procedures for more effective stone fragme
tion. @DOI: 10.1115/1.1431264#

1 Introduction
The treatment of urinary stone diseases has been revolution

since the introduction of ESWL in the early 1980s@1,2#. However,
because of the differences in chemical compositions and struc
features of renal calculi@3#, the shock wave-stone interaction du
ing ESWL @4#, and thus the efficacy of stone fragmentation, m
vary significantly.

To determine the mechanical properties of renal calculi for b
ter understanding the efficacy of stone fragmentation dur
ESWL, Zhang et al.@5# used Knoop and Vickers hardness me
surements to study the resisting capacity of a stone against a
etrating load. They noted no particularly higher hardness value
cystine stone among the types of stone tested. However, clin
studies often reported that cystine stones were much more diffi
to fragment than other urinary stones during ESWL@6#. Further-
more, Zhang et al.@7# demonstrated the fracture toughness, ba
on the experimental relation between Young’s modulus, Vick
hardness, indentation load and the size of indentor impression
renal calculi correlated with the observations from clinical exp
rience. However, the Young’s modulus calculated by Zhang et
@7# was inconsistent with the data reported@8#. The fracture tough-
ness used to determine the mechanical properties of renal ca
seems to be limited in the research interesting.

The modulus of toughness of renal calculi is essentially
concept of energy, which was also noticed previously@5,7#. This
work measured the compressive strength as well as the mod
of toughness of renal calculi. The objectives of this study are
show that the energy absorbed by a stone before fracture c
relate to the stone fragility during ESWL.

2 Materials and Methods
The stones removed from patients are either in curved or

lygonal shapes. Only 30 out of thousands of renal calculi, wh
were in bigger sizes and able to fit the test machine, were inclu
in this study. To maximize the usage of those calculi, we deci
to run the basic mechanical property~compressive! test, as
Kaneko et al.@9# did, instead of fatigue test in that the fatigu
properties could be related to the basic mechanical prope
@10,11#. Not only the tensile strength would need much long
specimens but also the compressive strengths were reported
higher than those of tensile strengths@9#. To run the compressive
test instead of the tensile test would be the cost-effective cho

The calculi crystal compositions were determined by crysta
graphic analysis ~Urolithiasis Laboratory, Veterans Gener
Hospital–Taipei, Taiwan, ROC!. Stones were cut into maxima
rectangular solids using a low-speed diamond saw~Isomet,
Buechler, IL, USA! as specimens. An axial torsion servo
hydraulic testing system~Instron Co. USA! compresses the spec
mens to evaluate the strength of stones. It should be noted tha
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loading rate was kept in 0.05 mm/min to avoid dynamic effe
The whole testing procedure was recorded by a microprocess
trace out the loading and displacement curves. With the load
and displacement curve, we could get the stress and strain c
by dividing the area and length, respectively.

From the stress-strain curve, the total area under the curv
called the modulus of toughness, the energy absorbed per
volume of material when loaded to fracture. The description of
modulus of toughness in terms of mathematical is

Tm5E
0

« f

sd«,

where Tm , s, «, and « f are the modulus of toughness, stre
strain, and the strain at the fracture point, respectively.

To calculate the area under curve, we used software Sigma
~Jandel Co.! to process the image analysis. Each image was
scanned, and then calibrated the scale according to the curv
ordinate settings. With the help of the analysis software, we co
find the maximum loading and calculate the area under
loading-displacement curve, precisely.

3 Results
Crystallographic analysis of the 30 renal calculi revealed th

chemical compositions as: calcium oxalate monohydrate~COM!
9, magnesium ammonium phosphate hydrate~MAPH! 8, uric acid
~UA! 6, and calcium apatite~CA! 7. Table I summarizes result
for toughness modulus, compressive strength, and elast
modulus.

4 Discussion
Our results show that the compressive strengths of calcui

similar to data developed by others@8,9#. However, the elasticity
modulus~Young’s modulus! of stones differs greatly between th
study and other reports@7–9# due to renal calculi known to be
complex in their chemical compositions and structural featu
@6#.

The modulus of toughness varied from 159 to 325 KPa in
cending order from MAPH to CA, UA, and COM. The trend
consistent with the observation of stone fragility from clinic
experience as stated by Pittomvils et al.@6# that ‘‘ . . . calcium
oxalate monohydrate@COM# . . . characterized by a low stone fra
gility, whereas . . . uric acid @UA# . . . very fragile @6#.’’ Zhong
@7# also noted that ‘‘ . . . phosphate~struvite and calcium apatite
@CA#! stones are found to be easy to fragment, whereas uric
@UA# and brushite stones are in the middle range, and calc
oxalate monohydrate@COM# and cystine stones are the most r
sistant types to ESWL therapy.’’ The Kruskal-Wallis test show
that the difference between the modulus of toughness of th
calculi was statistically significant. Furthermore, the Pearson
relation between clinical experience and the modulus of toughn
was 0.866 (p,0.0001). Using the modulus of toughness to e
plain the clinical experience, ther 2 is equal to 0.75 (p,0.0001)
with linear regression.

Table 1 Toughness modulus and material properties of renal
calculi

Stone
Composition

Toughness
Modulus

~Kpa!

Compressive
Strength
~Mpa!

Elasticity
Modulus
~Mpa!

COM 325631 6.1760.43 137.8643.28
MAPH 159620 3.7960.31 47.8465.46
UA 180623 4.8160.28 94.9866.28
CA 164613 3.2060.53 28.2262.59

Values expressed in Mean6SD
134 Õ Vol. 124, FEBRUARY 2002 Copyright ©
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In summary, the modulus of toughness would be an index
evaluate the physical property of urinary calculi, which confirm
the observations from clinical experience: viz. COM is mu
more resistant to shock-wave fragmentation than MAPH and
stones. Therefore, the ESWL operation with higher energy den
might have the greater potential to improve the efficacy of sto
fragmentation during ESWL.
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In this paper we consider the spatial orientation of vertebrae.
take the view that, in determining their rotation angles fro
X-rays, the procedure applied by Drerup yields the most relia
empirical results, viz. the three angles through which a verte
rotates about its own symmetry axes in a specific sequence. W
view to the further use of this information to analyze deformatio
or the motion of a spine we recommend that the Drerup angle
converted into the well-known Eulerian angles. How this can
done is the subject of this report.@DOI: 10.1115/1.1431265#

1 Introduction

In dealing with calculations concerning the strength and st
ness of the spine, we have made use of the well-known Eule
anglesw, c, andu ~Fig. 1!. They serve to define the spatial or
entation of a vertebra, as is done in mechanical engineerin
calculating, for example, the motion of long slender beams.
ferring to Whittaker@1# and to Goldstein@2# we note that the
rotation of a rigid body about some fixed point is governed by
orthogonal mappingR. With respect to some Cartesian coordina
systemX, Y, andZ ~Fig. 1!, this mapping takes the form of a 3*3
matrix R with componentsRi j , i , j 51,2,3, which in our approach
are functions ofw, c, andu.

However, in medical circles, e.g., in orthopaedic surgery, u
ally one prefers the use of the rotation anglesa, b, and g, as
proposed by Drerup@3# to the Euler angles. This because of t
relative ease of measuring the former from radiographs. Hera,
b, and g refer to rotation angles about the principal symme
axesX8, Y8, andZ8 of a vertebra, moving with the latter~Fig. 2!.
It is understood that these rotations take place successively in
set ordera, b, and theng. Obviously, usinga, b, and g the
componentsRi j will be functions of these quantities.

The reasons why we prefer Euler angles in our analysis is
w, c, andu may assume finite values and that they can be app
commutatively. On the contrary, the quantitiesa, b, andg have to
be used successively in the above set order, unless they are i
tesimally small.

Our aim is to analyze the time-dependent deformation o
spine, starting from a given set of initial values of the underlyi
parameters. Usually, the latter are Drerup’s anglesa, b, and g
which in our approach have to be converted into the Euler
anglesw, c, andu.

How we have done this is outlined briefly in the followin
section. In this we shall use a fixed Cartesian coordinate systeX,
Y, andZ, the origin of which is chosen somewhere in the sagi
planeO, X, Z ~Fig. 3!.

1To whom correspondence should be addressed.
Contributed by the Bioengineering Division for publication in the JOURNAL OF

BIOMECHANICAL ENGINEERING. Manuscript received by the Bioengineering Div
sion Mar. 13, 2001; revised manuscript received Aug. 31, 2001. Associate Edito
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Fig. 1 The rotation of a vertebra as prescribed by the Eulerian
angles w, c, and u, in which w and c determine the orientation
of the line l and u the rotation about l

Fig. 2 The Cartesian components of the local coordinate sys-
tem of the vertebra as chosen along its principal axes of inertia.
The origin O8 is chosen in the geometrical center of the verte-
bral body.

Fig. 3 The Cartesian coordinates X, Y, and Z are used as a
global reference system; there is a field of uniform and con-
stant triads of orthonormal base vectors ei , iÄ1, 2, and 3
FEBRUARY 2002, Vol. 124 Õ 135



2 Conversion of Generalized Coordinates
Using w, c, andu as generalized coordinates, we find

R@w,c,u#5S cosu cosc cosw2sinu sinw 2sinu cosc cosw2cosu sinw sinc cosw

cosu cosc sinw1sinu cosw 2sinu cosc sinw1cosu cosw sinc sinw

2cosu sinc sinu sinc cosc
D , (1)

while in the case ofa, b, andg we arrive at

R@a,b,g#5S cosg cosb 2sing cosb sinb

cosg sinb sina1sing cosa 2sing sinb sina1cosg cosa 2cosb sina

2cosg sinb cosa1sing sina sing sinb cosa1cosg sina cosb cosa
D . (2)
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We note that~2! is determined empirically. Since~1! and ~2! are
identical, we have nine~dependent! equations for the three un
knownsw, c, andu. NotingRi j for the components of~2!, we find

c5arccos~R33!, cP~0,p!, (3)

yielding a unique value forc. Subsequently we see that

w5arccosS R13

sinc D , (4)

from which we determine two possible solutions

w1P@0,p# and w252p2w1P~p,2p!.

Which one applies, follows from

sinw sinc5R23. (5)

Similarly we arrive at

u5arccosS 2R31

sinc D , (6)

yielding two possible solutions

u1P@0,p# and u252p2u1P~p,2p!.

Then the choice is made through the use of

sinc sinu5R32. (7)

Table 1 Numerical results obtained from conversion of rota-
tions about co-rotating axis to Eulerian angles

Rotation About Co-rotating Axes Eulerian Angles

a b g w c u

30 deg 0 deg 0 deg 270 deg 30 deg 90 d
30 deg 0 deg 30 deg 270 deg 30 deg 120 d
10 deg 210 deg 0 deg 224.6 deg 14.1 deg 134.6 d
10 deg 210 deg 10 deg 224.6 deg 14.1 deg 144.6 d
15 deg 215 deg 0 deg 224 deg 21.1 deg 134 de
15 deg 215 deg 20 deg 224 deg 21.1 deg 154 de
0 deg 230 deg 0 deg 180 deg 30 deg 180 de
0 deg 230 deg 30 deg 180 deg 30 deg 210 de

30 deg 230 deg 0 deg 220.9 deg 41.4 deg 130.9 d
30 deg 230 deg 30 deg 220.9 deg 41.4 deg 160.9 d
30 deg 240 deg 20 deg 210.8 deg 48.8 deg 158.1 d
136 Õ Vol. 124, FEBRUARY 2002 Copyright ©
A final verification follows by substituting the calculated values
w, c, andu into the remaining components of~1!.

3 Numerical Results
We have applied the conversion numerically to combinations

rotationsa, b, andg, borrowed from Skalli et al.@4#. The results
are shown in Table 1.
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We present a technique for fitting a smooth, locally parameteri
surface model (called the manifold surface model) to uneve
scattered data describing an anatomical structure. These data
acquired from medical imaging modalities such as CT scans
MRI. The manifold surface is useful for problems which requ
analyzable or parametric surfaces fitted to data acquired fr
surfaces of arbitrary topology (e.g., entire bones). This surfa
modeling work is part of a larger project to model and analy
skeletal joints, in particular the complex of small bones within t
wrist and hand. To demonstrate the suitability of this model we
to several different bones in the hand, and to the same bone
multiple people. @DOI: 10.1115/1.1431266#

Introduction
Digital anatomical structures extracted from medical images

finding a wide range of scientific and clinical applications rang
from finite element modeling to visualization to computer assis
surgery. An important aspect of this is the extraction of surfa
models of anatomical structures. Our work was stimulated in p
by the need to studyin vivo skeletal joint mechanics. We use the
extracted surfaces to quantify joint kinematics, ligament stra
and distances between joint surfaces in normal, pathological,
surgically reconstructed joints@1–3#. Quantifying these effects re
quires a surface model which is smooth, locally parameteriz
and capable of modeling surfaces of arbitrary topology.

The manifold surface model@4# meets these requirements. Firs
manifolds are locally parameterized, with the parameterizat
and corresponding degrees-of-freedom, under the control of
user. Therefore, it is a simple matter to provide more degrees
freedom in areas of higher curvature. Second, the fitting proce
hierarchically layered, i.e., there is a natural method for doin
coarser to finer fit; the finest fit level is local and is only pe
formed where there is sufficient data to do so. These two pro
ties help with interpolating sparse data since the coarser fit ca
used in areas with few sample points and the finer fit applied o
where needed. Manifolds are capable of modeling surfaces o
bitrary topology, so we can model entire bones, including th
with topological holes and boundaries caused by incomplete d
Finally, the surface isCk for any desiredk, which results in
smooth distance-to-surface calculations.

Previous Work
There are many techniques for scattered data interpolation

a recent survey see@5#. We focus here on those which can hand
arbitrary topological surfaces ofC1 ~or higher! continuity: Spline
surfaces@6–9#, algebraic surfaces@10#, subdivision surfaces@11–
13#, and radial basis functions or thin-plate splines@14#. Of these,
all but @8#, @9#, @13#, and @14# require a polyhedron to fit to and
produce a single patch per face. It is not clear how well th
techniques will work for unevenly scattered points since they p
vide no mechanism for smoothing or filling holes in the da
They also produce a large number of patches.

The techniques of Eck@8#, Hoppe@13#, and Krishnamurthy@9#
produce approximating surfaces, the first two by simplifying t
mesh to produce a coarse network, the last one by having the
draw patch boundaries. These approaches are closest to ou
spirit; the major difference lies in the structure of the output s
face. We produce the same local parameterization, in a topolog
sense, for a single bone across multiple people. Spline patch

1
Supported by NSF grant CCR-992009.

2Supported in part by NIH grant AR44005.
3Supported by NSF grant CCR-0093238.
Contributed by the Bioengineering Division for publication in the JOURNAL OF
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niques must also fit both to the interior control points and ma
tain constraints across boundaries between patches, a notori
difficult problem with unevenly distributed data.

In @14# the techniques of radial basis functions are extended
handle arbitrary topology. This approach provides smoothing
can handle unevenly scattered data; however, the topology o
final surface is not guaranteed to be the same as the input da

Several approaches specific to modeling joint surfaces e
such as Boyd’s thin-plate splines@15# and Ateshian’s B-splines
@16#, further developed in@17#. These techniques focus on mod
eling just a single contact region of the bone~topologically a
plane!. The dynamics of multiple joint surfaces on a single bo
make a model of the entire bone~topologically a sphere! more
useful than a model of just the contact region for one neighbor
bone. Sherrer in@18# produces a collection of patches with e
forcedC1 continuity across boundaries. They provide a compl
model but onlyC1 continuity and also have some difficulties e
forcing boundary constraints.

Input Data and Surface Type
The data sets are outer cortical bone surfaces extracted

sequential slices of a CT image volume. The segmentation pr
dures involved thresholding, image algebra, and user interac
to define each bone contour@1#. This produces dense~'.01 mm!
samples along widely spaced~1 mm! cross sections.

The manifold surface is described fully in@4#. The topology and
rough geometry are specified by agenerator polyhedron, which
specifies the topology and an initial approximate geometry for
higher resolutionmanifold polyhedron, which in turn specifies the
connectivity and an initial geometry for a set of overlappin
glued-together spline patches~see Fig. 1!. The generator polyhe-
dron is constructed by the user and can be any general pol
dron. Each level provides more degrees-of-freedom than
predecessor.

We use a different embedding equation than the one descr
in the paper. Our embedding is simpler and also pulls the divis
by the sum out of the individual patch equations. Each char
embedded using a single NUBS@19# spline patchEc and the
result blended together using the original blend functions@4#.

E~p!5(
c

Bc~p!Ec~M ~ac~p!!!

whereM is either the identity function~vertex and face charts! or
the linear transform that takes the domain of the edge chart to
unit square~see Appendix A of@4#!. The patch domains for the
face charts extend beyond the chart’s domain. The control po
are placed on the subdivision surfaces as originally described

The Fitting Process
The manifold is fit to the data in three steps~see Fig. 1!. We

assume that the user has already constructed a generator po
dron that has the same topology shape as the data and app
mately the same geometry. This takes about an hour and th
sulting generator polyhedron can be used for all bones of the s
type ~e.g., all hamate bones have the same generator polyhed!.
The fitting process brings the approximate geometry into ali
ment with the data points; it does not change the topology of
manifold surface.

We first find the best fit for the generator polyhedron with d
fault positions for the manifold polyhedron vertices and spli
patches. The second step adjusts the vertices of the manifold p
hedron while using the default spline patch locations. Finally,
control points of the spline patches are adjusted if there are s
cient data points that project to that patch’s region of influen
Because the surface is approximately correct after fitting
manifold polyhedron, we do not need to fit patches in regio
containing few or no samples. Also, we do not have to ap

-
itor:
FEBRUARY 2002, Vol. 124 Õ 137



Fig. 1 From left to right top: the original data, shown triangulated. The generator polyhedron, the manifold polyhedron, and the
prototype manifold surface, showing the local parameterization. Bottom: after fitting the generator polyhedron. After fitting the
manifold polyhedron. After fitting the individual patches.
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additional constraints to make the boundaries of the patches
have because the patches are overlapped, so boundaries o
patches do not affect the final geometry.

The Fitting Mechanism. In general, fitting can be expresse
as the solution to the following minimization problem, whereS is
the surface and thedr are the data points we fit to.

minF S (
r

min
t

~dr2S~ t !!2D 1acEcG (1)

A point on the surface is described byS(t) for some paramete
value t. This equation minimizes the distance between every d
point and its closest point on the surface. Additional constra
~the Ec) can be added to enforce ‘‘smooth’’ surfaces, i.e., on
which do not undulate unduly between the given points. The c
stantac expresses the importance of fitting the data versus p
ducing a smooth surface. The curvature termEc has two purposes
First, it filters noisy data. Second, if the data is very nonuniform
sampled, it serves as a guide for the behavior of the surfac
very sparse areas.

Equation~1! requires a nonlinear solver. However, if the su
face is reasonably well aligned with the data we can form a si
lar, linear expression by projecting the data points onto the sur
and minimizing the resulting equations. By reasonably w
aligned we mean that the closest point on the surface defin
bijection between the surface and the data points with no fold

The linear expression is as follows:

minS (
r

~dr2S~ t r !!2D (2)

whereS(t r) is the point on the surface closest todr . A given point
of S can be expressed asS(p)5( ixiai(t) where thexi are either
the polyhedra vertices or the spline control points and theai(t)
are the blend functions, which, for a givent, evaluate to a con-
stant. After some manipulation, minimizingS reduces to a set o
linear equations with thexi as variables. Specifically, each da
point dr produces an equation of the form( ixiai

r(t r)5dr , which
constrains the surface att r to pass through the pointdr for each
data point.

The linear optimization problem can be written as a solution
the matrix equationAx5d, where A5$ai

r(t r)%, x5$xi% is the
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vector of variable and each rowr of A corresponds to a linea
constraint onx imposed by the data pointdr . We solve forx using
a standard least-squares solver for a linear system@20#.

Note that the linear approximation, Eq.~2!, differs from Eq.~1!
in that we minimize the distance to a specific parameter pointt on
the surface, not to any point on the surface. We therefore may
find the globally optimal solution.

It remains to show how to calculate theai for a specific param-
eter pointt. We begin at the patch level and work up to the ge
erator polyhedron level. The degrees-of-freedom~the xis) will be
different at each level, and hence so will the matrixA. At the patch
level thexi are the control points of all of the patches. An ind
vidual spline patchPk is of the form Pk(p)5( ibi(p)gi

k . The
entire collection of the control points is therefore$gi

k%. Our sur-
face is constructed by ‘‘gluing’’ these individual patches togeth
i.e.,

S~ t !5(
k

bk~ t !Pk~ t !5(
k

bk~ t !(
i

bi~ t !gi
k~ t ! (3)

where thebk are the blend functions, one for each patch. T
blend functions have the property that(kbk(t)51, with at most
three functions nonzero.

Instead of solving for all of the degrees-of-freedom at on
producing a large but sparse matrix, we take advantage of
overlapping structure and fit patches individually. One way
ensure thatS(t r)5dr is to ensure that, for every overlapping patc
Pk , Pk(t r)5dr . The resulting error will be at worst the max

Fig. 2 Finding the four data points to interpolate between for
an additional patch constraint. Left: the surface point, the tan-
gent plane, and the nearby data points. Middle: the projected
data points. Right: the selected points, shown in the tangent
plane.
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Fig. 3 The carpal bones from one person and three hamates from different people. Top: meshes produced from the data points
using Nuages †22‡. Bottom: manifold surfaces. Note the striation in the Nuages meshes where the slicing planes become parallel
to the surface.
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ate
mum of the individual patch area, since the final surface is a lin
combination of the given points. For each patch we find those d
points that project onto the domain of that patch and fit to j
those points.

For the manifold polyhedron, our degrees-of-freedom are
vertices of the polyhedron. Each control pointgi

k in its default
location is expressed as a linear combination of the vertices o
manifold polyhedron,Vj , i.e., gi

k5( jBj
kVj . Each point on the

surface is therefore of the form

S~p!5(
k

bk~p!Pk~p!5(
k

bk~p!(
i

bi~p!(
j

Bj
kVj . (4)

Similarly, we can express each vertex of the manifold poly
dron, in its default location, as the sum of the vertices of
generator polyhedron.

Curvature Constraints. An advantage of the least-squar
formulation is that it does a good job of approximating noisy da
Also, as demonstrated, the spline fitting problem can easily
approximated as a linear problem@21#. The least-squares formu
lation does, however, behave badly when the weights on a v
able are close to zero~visually, this produces ‘‘spiking’’ in the
surface!. We address this problem by adding additional constra
~the Ec), which ensure that every variable has sufficient weig
When parameterac from Eq. ~1! is set to one, then the constrain
has equal weight to moving a data point an equivalent dista
from the surface.

Polyhedral Constraints. When fitting the generator polyhe
dron and manifold polyhedron we add in additional constrai
that require vertices to lie at the centroid of their neighbors
$n i%,$nk% are then manifold polyhedron vertices forming th
star of n ~i.e., all the adjacent vertices! we add the constrain
b(n2(1/n)( in i)50.

Additional Patch Constraints. When fitting the patches we
add in additional constraints at regularly spaced intervals in
parameter space, resulting in a more even support.

We take a uniformly distributed set of points in the domain~a 5
by 5 grid of points! and determine where the embedded poi
should go based on nearby sample points. Each new const
finds four data points which surround the embedded point, if
exist, and interpolates between those four data points to prod
the desired location for the new constraint.

To find the four surrounding data points we first project all
the nearby data points onto the tangent plane at the const
point ~see Fig. 2!. Second, we find the four closest points~mea-
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suring distance in the plane! such that the four points are
‘‘around’’ the constraint point, i.e., the normalized dot products
the projected points are bigger than 0.5. We then take
weighted average of those point’s locations.

Results
For Fig. 3 we used one person’s scan in the neutral position

the hamate bone from three subjects. We compare our mode
meshes created using Nuages@22# software. The sample points w
used are the vertices of the Nuages’ meshes; we did not use
Nuages’ surface connectivity information. The models ranged
size from 921 to 4754 points. The data points were spaced
proximately 0.01 mm apart along the contours, with 1 mm spac
between the contours. On average, the average distance from
data points to the manifold surface is 0.053 mm with a60.02 95
percent confidence interval. The average maximum dista
was 0.42.

The parameterac produces similar results over a wide range
values~from 0.5 to 1.5! except for a few bones with spurious da
points on the inside of the bones. For these bones, the larger v
of ac was required.

Discussion
One drawback of the least-squares fitting technique is tha

uses the closest point to choose the parameter point; if the in
surface and the data points are misaligned this can cause fo
or pinching of the surface. This problem is most obvious when
data set has two parallel surfaces close together. One solution
adjust the generator polyhedron, but this is not very satisfacto

Conclusion
We have demonstrated a hierarchical technique for fitting

smooth surface to an entire bone. Manifold surfaces have sev
desirable properties, such as smoothness and arbitrary topo
which make them useful forin vivo, multiple joint analysis. The
technique requires a minor amount of user interaction for e
new bone type, but the remainder of the process is comple
automatic. The fitting process is robust in the presence of n
and unevenly sampled data points.
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