
CONTINUOUS CUBE MAPPING

Cindy M. Grimm Bill Niebruegge

Department of Computer Science and Engineering
Washington University in St. Louis

One Brookings Drive
St. Louis, MO 63130

United States
cmg@cse.wustl.edu and niebruegge,@boeing.com

ABSTRACT

Existing environment mapping techniques include spherical
mapping and cube mapping. These techniques have inher-
ent flaws that cause sampling issues and aliasing. Continu-
ous cube mapping is offered as an alternative environment
mapping approach that effectively folds the cube onto the
sphere, providing a better parameterization of cube map-
ping. We provide a hardware implementation.

1. INTRODUCTION

Environment mapping is the process of surrounding a scene
with a large, textured shape and using it to determine the
color of each the scene’s objects. The two most prevalant
approaches are spherical mapping and cube mapping. Each
of these methods have inherent flaws, including sampling
issues and aliasing. Continuous cube mapping is introduced
to offer an improved parameterization of the surrounding
texture while only requiring a minimal increase in compu-
tation time.

2. ENVIRONMENT MAPPING

Environment mapping is used to create the illusion of a sur-
rounding environment or as a cheap alternative to area light
sources in a scene. In environment mapping, a scene is sur-
rounded by a large, textured shape. For each fragment of
an object, a reflected ray, based on the view direction and
surface normal, is first calculated - (Figure 1). The reflected
ray is a function of the incident ray and the surface normal,
2(N.I)N − I . This reflected ray is then used to index the
texture applied to the surrounding shape.

Two common approaches for environment mapping in-
clude spherical mapping and cube mapping. The difference
between the two approaches is how textures are stored in
memory and accessed. In spherical mapping, one square
texture is mapped onto a sphere. In cube mapping, there are

Fig. 1. Environment Mapping Rays [1]

six separate textures that represent the six faces of the cube.
Before sampling the textures in cube mapping, we must first
determine which texture to sample based on which face the
reflected vector intersects.

2.1. Spherical Mapping

In spherical mapping, the position on the sphere is defined
in terms of latitude and longitude. Latitude is referenced in
terms of the angle φ and longitude is referenced in terms of
the angle θ. Given the reflected vector, θ and φ are defined
as:

θ = arctan(
Ry

Rx
) (1)

φ = arccos(
Rz

|R|
) (2)

The corresponding uv texture coordinates are then defined
as:

u =
θ

2π
(3)

v = 0.5 +
φ

π
(4)

Spherical mapping’s flaws are due to the fact that the tech-
nique maps a square texture onto a spherical shape, causing
very different sampling rates at the poles and the equator.
This is most apparent at the poles of the sphere as shown in
Figure 2.

Fig. 2. Spherical Mapping: Pole View

Fig. 3. Spherical Mapping: Equator View

2.2. Cube Mapping

Cube mapping attempts to even out the sampling issues of
spherical mapping by using a cube shape. Each of the six
faces of the cube is a texture as shown in Figure 4. In cube
mapping, the reflected vector intersects one of the six faces
and corresponding uv texture coordinates are calculated.

Fig. 4. Cube Mapping [1]

Cube mapping has two flaws: there are discontinuities at the
edges of the cube and the parameterization at the edge of the
face is not the same as the center.

2.3. Parabolic Mapping

This environment mapping approach uses two parabolic maps,
one for each hemisphere of the sphere. This produces a
more even sampling but results in a fair amount of wasted
area in the texture map. The mapping functions, however,
are simple - a combination of multiplications and additions
[4].

3. CONTINUOUS CUBE MAPPING

Fig. 5. Sphere divided into six faces

Continuous cube mapping combines the fundamental con-
cepts of spherical and cube mapping while removing their
inaccuracies. The basic idea is to fold the cube onto the
sphere. The result is the sphere divided into six faces, each
of which is bounded by a great circle, resulting in a better
parameterization than the cube (see Figure 5). As in cube
mapping, the reflected vector will intersect one of the six
faces of the sphere, resulting in using the texture applied
to that face. This is a continuous mapping, meaning the pa-
rameterization of one face can be extended into any adjacent
face. This makes this method a better choice for capturing
and manipulating spherical data.

One difficulty is that the math for converting the re-
flected vector to the angles θ and φ is different for each face
of the sphere. However, since the mapping is symmetrical
on all six faces, we can simplify the math for only face and
rotate all other faces’ processing to it. This means we can
use the same equations for all faces, by simply rotating the
vector into the correct axes first. This rotation is handled by
rotating the axes in 90 degree combinations and then pro-
cessing with the base θ and φ. For this implementation, we
chose the positive-y face as the base face.

The steps of the algorithm are defined as:

1. Identify face based on the reflected vector (Rx, Ry,
Rz).

2. Rotate sphere so the reflected vector is in the positive-
y face.

3. Use sphere latitude/longitude equations to convert the
reflected vector to θ and φ.

4. Convert the angles θ and φ to square texture coordi-
nates u and v so that the great arc boundaries map to
the unit square.

Steps 3 and 4 can be combined and simplified if some pre-
processing is performed.

To determine which face the reflected vector is inter-
secting, we use the fact that the sphere can be divided by six

Fig. 6. Great arcs of the sphere

great circles as shown in Figure 6. Each face is then defined
by a combination of the resulting great arcs. To determine
which face is being intersected, we take the dot product of
the reflected vector with each of the six normals and check
combinations of the results. Figure 7 shows how to use the
sign of the resulting dot products to determine which face
is being intersected. For example, if it is intersecting the
positive-y face, the dot products with normals A, B, C, and
D will all be positive.

Fig. 7. Face determination table

Now we can simplify the math for the positive-y case only.
This involves combining steps 3 and 4, combining the pro-
jection from the sphere with the mapping to the unit square.
These steps simplify to the following equations for the u
and v coordinates.

u = 0.5 −
arctan(Rx

Ry
√

2
)

2 arcsin(1√
3
)

(5)

v =

1 + arcsin(Rz)

arcsin(1r
2+ Rx2

Ry2

)

2
(6)

4. EXAMPLES

Fig. 8. Icosahedron and Dodecahedron Shape [1]

The following example images compare the different envi-
ronment mapping methods. An icosahedron and a dodec-
ahedron (Figure 8) are used together to define the vertices
that will be mapped using the different methods. The ver-
tices of the icosahedron are represented as red crosses and
the vertices of the dodecahedron are represented as blue
crosses.

4.1. Spherical Mapping

Fig. 9. Spherical Mapping

For spherical mapping, the equations in section 2.1 were
used to transform the vertices to uv coordinates, resulting in
Figure 9. In this case the vertices of the two polygons are
distorted and the vertex at the pole of the sphere is pinched
together, almost erasing it completely.

4.2. Cube Mapping

For the cube mapping image, each vertex was treated as a
vector from the origin. It was then determined which cube
face this vector intersected and the corresponding uv co-
ordinates were computed based on where the vector inter-
sected the face. The resulting image, Figure 10, shows the
sampling issue with cube mapping. The crosses vary in size
and shape depending on where they are in the cube face.

4.3. Continuous Cube Mapping

For continuous cube mapping, each vertex was again treated
as a vector from the origin. It was then determined which

Fig. 10. Cube Mapping

face this vector intersected using the methods described in
Section 3. The math in Appendix B was then used to com-
pute the corresponding uv coordinates. The resulting im-
age, Figure 11, shows a more correctly spaced version of the
cube mapping example with more uniformly shaped crosses.
A better comparison is provided in Figure 12. This image
compares the two methods, with the red and blue crosses
representing continuos cube mapping.

5. REFERENCES

[1] Randima Fernando and Mark J. Kilgard, 2003
The Cg Tutorial: The Definitive Guide to Pro-
grammable Real-Time Graphics
Addison-Wesley

[2] Paul Debevec’s Light Probe Image Gallery
http://www.debevec.org/Probes/

[3] Parameterization Using Manifolds
Cindy Grimm
International Journal of Shape Modeling,
Volume 10, Number 1, Pages 51-80
Editor: B Falcidieno
World Scientific, June 2004

[4] Wolfgang Heidrich and Hans-Peter Seidel,
1998
View-independent Environment Maps
1998 SIGGRAPH / Eurographics Workshop
on Graphics, pages 39 - 46
Aug 1998

Fig. 11. Continuous Cube Mapping

6. APPENDICES

The appendices of this paper provide the Cg fragment shader
code and the math to convert texture coordinates in contin-
uous cube mapping. The math for this process was first pre-
sented in [3].

Appendix A gives the Cg fragment shader code. This
takes a reflected vector and uses the uv coordinate equations
described in Section 3 to perform texture lookups. The uv
coordinate equations from Section 3 are condensed versions
of the math presented in Appendx B. The math in Appendix
B is reversible. This process reversed is provided in Ap-
pendix C.

A. CG FRAGMENT SHADER

float4 Rotate_R(float3 R)
{

// makes the program think we’re only computing the
// positive-y texture
float x, y, z, texIndex;
float L = sqrt(2.0) / 2.0;

// create the normals to check against
float3 N1 = float3(L, L, 0.0);
float3 N2 = float3(-L, L, 0.0);
float3 N3 = float3(0.0, L, L);
float3 N4 = float3(0.0, L, -L);
float3 N5 = float3(L, 0.0, L);
float3 N6 = float3(-L, 0.0, L);

R = normalize(R);

bool check1 = ceil(dot(N1, R));
bool check2 = ceil(dot(N2, R));
bool check3 = ceil(dot(N3, R));
bool check4 = ceil(dot(N4, R));
bool check5 = ceil(dot(N5, R));
bool check6 = ceil(dot(N6, R));

// positive y
if (check1 && check2 && check3 && check4)

Fig. 12. Continuous Cube Mapping vs. Cube Mapping

{
// do nothing
x = R.x;
y = R.y;
z = R.z;
texIndex = 0.0;

}
// negative y
else if (!check1 && !check2 && !check3 && !check4)
{

// rotate around x, 180 degrees
x = R.x;
y = -1.0*R.y;
z = -1.0*R.z;
texIndex = 1.0;

}
// positive z
else if (check5 && check6 && check3 && !check4)
{

// rotate around x, 90 degrees
x = R.x;
y = R.z;
z = -1.0*R.y;
texIndex = 2.0;

}
// negative z
else if (!check5 && !check6 && !check3 && check4)
{

// rotate around x, -90 degrees
x = R.x;
y = -1.0*R.z;
z = R.y;
texIndex = 3.0;

}
// negative x
else if (!check5 && check6 && !check1 && check2)
{

// rotate around z, -90 degrees
x = R.y;
y = -1.0*R.x;
z = R.z;
texIndex = 4.0;

}
// positive x
else if (check5 && !check6 && check1 && !check2)
{

// rotate around z, 90 degrees
x = -1.0*R.y;
y = R.x;
z = R.z;
texIndex = 5.0;

}
else
{

// do nothing
x = 0.0;
y = 0.0;

z = 0.0;
texIndex = 6.0;

}

return float4(x, y, z, texIndex);
}

void frag_program(float3 R : TEXCOORD1,

out float4 oColor : COLOR,

uniform sampler2D decalX,
uniform sampler2D decalNegX,
uniform sampler2D decalY,
uniform sampler2D decalNegY,
uniform sampler2D decalZ,
uniform sampler2D decalNegZ)

{
float4 temp = Rotate_R(R);
float3 rotatedR = temp;
float texIndex = temp[3];

float x = rotatedR.x;
float y = rotatedR.y;
float z = rotatedR.z;

float S1 = atan2((x / y), sqrt(2.0));
float S2 = 2.0 * asin(1.0 / sqrt(3.0));

float S = 0.5 - S1/S2;
float T = (1.0 + (asin(z) /

(asin(1.0 / (sqrt (2.0 + (x/y)*(x/y))))))) / 2.0;

// Fetch relected environment color
if (texIndex == 0.0)
{

oColor = tex2D(decalY, float2(S, T));
}
else if (texIndex == 1.0)
{

oColor = tex2D(decalNegY, float2(S, T));
}
else if (texIndex == 2.0)
{

oColor = tex2D(decalZ, float2(S, T));
}
else if (texIndex == 3.0)
{

oColor = tex2D(decalNegZ, float2(S, T));
}
else if (texIndex == 4.0)
{

oColor = tex2D(decalNegX, float2(S, T));
}
else if (texIndex == 5.0)
{

oColor = tex2D(decalX, float2(S, T));
}
else if (texIndex == 6.0)
{

oColor = float4(0.0, 0.0, 0.0, 1.0);
}

}

B. MATH TO CONVERT FROM RX,RY,RZ TO SQUARE
TEXTURE COORDINATES

dPi = 3.0 * PI / 4.0

switch(face}
case 0:

dS = atan2(Ry, Rx)
dT = asin(Rz)
dS = dS / PI
dT = (dT + dPi / 2.0) / dPi
break

case 1:
dS = atan2(Ry, Rx)
dT = asin(Rz)
dS = 1.0 + dS / PI
dT = (dT + dPi / 2.0) / dPi
break

case 2:
dS = atan2(Rx, Rz)
dT = asin(Ry)
dS = dS / PI
dT = (dT + dPi / 2.0) / dPi
break

case 3:
dS = atan2(Rx, Rz)
dT = asin(Ry)
dS = 1.0 + dS / PI
dT = (dT + dPi / 2.0) / dPi
break

case 4:
dS = atan2(Rz, Ry)
dT = asin(Rx)
dS = dS / PI
dT = (dT + dPi / 2.0) / dPi
break

case 5:
dS = atan2(Rz, Ry)
dT = asin(Rx)

dS = 1.0 + dS / PI
dT = (dT + dPi / 2.0) / dPi
break

if (dS < -0.5)
dS = dS + 2.0

else if (dS > 1.5)
dS = dS - 2.0

c_dv1 = asin(-sqrt(1/3)) * 4 / (3 * PI) + 0.5
c_dv2 = asin(sqrt(1/3)) * 4 / (3 * PI) + 0.5

dSP = (0.75 + 1.0) * PI
dYdX = tan(PI * dS)
dA = dYdX / cos(dSP)
dTP = atan(1 / dA)
dPerc = (dTP + dPi / 2) / dPi

u = (dPerc - c_dv2) / (c_dv1 - c_dv2)

dZ = sin(dSP) * cos(dTP)
dAng2 = asain(dZ)
dTMe = (dAng2 + dPi / 2) / dPi

v = (dT - dTMe) / (1 - 2 * dTMe)

C. MATH TO CONVERT FROM SQUARE TEXTURE
COORDINATES TO RX, RY, RZ

dPi = 3.0 * PI / 4.0

c_dv1 = asin(-sqrt(1/3)) * 4 / (3 * PI) + 0.5
c_dv2 = asin(sqrt(1/3)) * 4 / (3 * PI) + 0.5

dPercV = c_dv2 * (1.0 - u) + c_dv1 * u

dSP = (0.75 + 1.0) * PI
dTP = (dPercV * dPi - dPi / 2)

dY = cos(dSP) * cos(dTP)
dX = sin(dTP)
dZ = sin(dSP) * cos(dTP)
dAng1 = atan2(dY, dX)
dAng2 = asin(dZ)
dSMe = dAng1 / PI
dTMe = (dAng2 + dPi / 2) / dPi

switch(face}
case 0:

dS = dU * PI
dT = dV * dPi - dPi / 2

Rx = cos(dS) * dCT
Ry = sin(dS) * dCT
Rz = sin(dT)
break

case 1:
dS = (dU + 1) * PI
dT = dV * dPi - dPi / 2

Rx = cos(dS) * dCT
Ry = sin(dS) * dCT
Rz = sin(dT)
break

case 2:
dS = dU * PI
dT = dV * dPi - dPi / 2

Rx = sin(dS) * dCT
Ry = sin(dT)
Rz = cos(dS) * dCT
break

case 3:
dS = (dU + 1) * PI
dT = dV * dPi - dPi / 2

Rx = sin(dS) * dCT
Ry = sin(dT)
Rz = cos(dS) * dCT
break

case 4:
dS = dU * PI
dT = dV * dPi - dPi / 2

Rx = sin(dT)
Ry = cos(dS) * dCT
Rz = sin(dS) * dCT
break

case 5:
dS = (dU + 1) * PI
dT = dV * dPi - dPi / 2

Rx = sin(dT)
Ry = cos(dS) * dCT
Rz = sin(dS) * dCT
break

