
Camera Keyframing Using Linear Interpolation
of Matrices

Amy Hawkins and Cindy M. Grimm∗

Washington University in St. Louis

Abstract

Alexa’s method for linearly interpolating matrices is well-suited for applica-
tion to camera matrices. This paper discusses implementation issues that arise
when applying this method to camera interpolation. We show how to include the
perspective matrix, even though Alexa’s operators cannot be applied directly to it.
We discuss cases where Alexa’s operators fail to converge and show how to work
around this problem. Additionally, we present implementation details for three
interpolation methods: linear, spline-based smooth approximation, and smooth in-
terpolation using subdivision.

We also discuss general issues with implementing Alexa’s method. We note
changes to his provided pseudocode and discuss suitable values for ε to maximize
efficiency. Finally, we show examples of the technique and describe a quality met-
ric that can be used to compare our technique to camera parameter interpolation.

1 Introduction

Camera keyframing is widely used in animation. A user places the camera in a se-
quence of “key” positions, and the computer produces a set of intermediate cameras.
The camera has 11 degrees of freedom (position, orientation, etc.) [MC80]. One
keyframing method is to interpolate each of these parameters separately to construct
the intermediate matrices. Unfortunately, a simple example demonstrates how cam-
era parameter interpolation fails. Figure 1(a) shows an object in the scene (the black
star). Two cameras face this object. (The red dot represents the camera’s location; the
arrow represents the direction it faces.) Figure 1(b) shows the result of camera parame-
ter interpolation. In many of the intermediate frames, the camera no longer faces the
object.

∗e-mail: {aeh1,cmg}@cse.wustl.edu. Funded in part by NSF grant CCF 0238062.

1

(a) Two keyframes (b) Parameter interpolation (c) Our interpolation

Figure 1: An example where camera parameter interpolation fails. The object in the
scene is represented by a black star. Camera positions are shown as red dots. The ori-
entation of each camera is shown by an arrow. b) Simply interpolating the parameters
usually causes the object to move out of the field of view. c) Using linear matrix com-
binations does a better job of keeping the object centered in the view (although it is not
guaranteed to do so).

To get around the rotation problem, most systems instead let the user specify a from
and at point for each key frame and derive the rotation parameters, interpolating the
remaining parameters separately. This is an effective method, but it does require some
experience to decide where to place the at point to get the desired result. The from
and at model also does not help with interpolating center of projection (COP) parame-
ters. These parameters produce interesting perspective distortions, but are little used
because, until recently, they were difficult to specify [GS05] and simply interpolating
the parameters nearly always fails.

In this paper we show that the linear matrix interpolation introduced by Alexa [Ale02]
can be adapted to direct interpolation of key frames. By performing interpolation on
the camera matrix itself, rather than on each of the parameters separately, we generate
reasonable in-between frames even for sequences containing both rotation and center
of projection changes.

In Section 5.1, we show a way to quantify the difference between these two results.
The most important property for a good interpolation is that the objects on the screen
move in a way that is intuitive to the animator. In the example above, the black star
is centered on the screen in each of the keyframes, but during the intermediate frames
the object moves to the right side of the screen. Meanwhile, in our interpolation, the
object stays close to the center of the screen during the entire animation. Since extra
motion is unintuitive to the user, we provide a metric to quantify the overall amount of
motion on the screen. The metric shows that in general, our method does a better job
of minimizing this motion.

2

1.1 Contributions

We first discuss issues which arise when applying this method to camera interpolation.
We show how to include important components of the perspective matrix, even though
Alexa’s operators cannot be applied directly to it. We discuss cases where Alexa’s op-
erators fail to converge and show how to re-phrase the problem in a more stable manner.
Additionally, we present implementation details for three interpolation methods: linear,
spline-based smooth approximation, and smooth interpolation using subdivision.

Next, we provide general information on Alexa’s technique. Alexa gives iterative meth-
ods for implementing the two operators required by his technique. We note corrections
to his pseudocode, and we discuss suitable values for ε to maximize efficiency.

Finally, we describe a metric that can be used to compare methods of camera interpo-
lation, and show that our method is a significant improvement over camera parameter
interpolation.

2 Background: The � and ⊕ operators

Our method uses the � and ⊕ operators developed by Alexa [Ale02] to generate linear
combinations of camera matrices.

The � operator implements scalar multiplication of a transformation matrix. Example:
Given a scalar s and transformation matrices A and B, let B = 2�A. Applying B gives
the same result as applying A twice.

The ⊕ operator is similar to matrix multiplication, with the exception that ⊕ is com-
mutative. The operator is defined so that if AB = BA, then A⊕B = AB = BA. In the
case where AB 6= BA, then ⊕ can be understood as applying A and B simultaneously.

The operators are implemented using the matrix logarithm and exponential:

s�A = e s logA, (1)
A⊕B = e logA+logB. (2)

(For more information about why the matrix logarithm and exponential are the right
choice to achieve the properties explained above, see [Ale02].)

Once these operators are defined, we use them to write the usual linear interpolation
equation:

[(1− t)�A]⊕ [t�B] t ∈ [0,1]. (3)

In the next section, we use this equation to interpolate between two camera matrices,
and we examine some issues which arise. Then, we show how to use Alexa’s operators

3

to perform two additional types of interpolation: spline-based smooth approximation,
and smooth interpolation using subdivision.

3 Application to Camera Matrices

3.1 Decomposing the Perspective Matrix

Four matrices are multiplied to define the camera matrix: perspective, scale, rotation
and translation. Michener and Carlbom [MC80] describe how to build these matrices
(commonly denoted as P, S, R, and T).

Alexa’s method was designed to work only for matrices which have no negative real
eigenvalues. Unfortunately, the perspective matrix does not fit this requirement. While
we could simply discard P when interpolating, this would prevent several useful para-
meters from being interpolated. The usual perspective matrix is:

P =

α γ u0 0
0 1 v0 0
0 0 −1

1+k
k

1+k
0 0 −1 0

 (4)

where α is the aspect ratio, γ is the skew, (u0,v0) is the center of projection, and k is
the distance to the near clipping plane divided by the distance to the far clipping plane.

To overcome the restrictions for using Alexa’s method, we decompose P into two parts.
Pb contains the important parameters and also fits Alexa’s requirements. Pa is generally
the same for all keyframes and need not be interpolated.

P =

1 0 0 0
0 1 0 0
0 0 −1

1+k
k

1+k
0 0 −1 0

α γ u0 0
0 1 v0 0
0 0 1 0
0 0 0 1

 = PaPb (5)

Assume we are given a function Lerp(A,B,t) which implements (3). Assume further
that we have computed matrices Pb1 and Pb2 — one from each input keyframe, built
from (5). Finally, assume that we have the remaining S, R, and T matrices for each
input camera. We write the following code to perform the interpolation:

Lerp(Pb1(SRT)1 , Pb2(SRT)2 , t) ; (6)

4

3.2 Issues with Large Rotations

Alexa claims that “a rotation by π together with a non-uniform scale [...] is the only
type of transformation that cannot be handled”. Unfortunately, we found this claim
to be untrue. The matrix square root fails to converge for many transformations with
rotational component ≥ π

2 combined with a non-uniform scale. In a test batch of 1000
such matrices, we found that the computation failed to converge 130 times. We saw no
obvious difference between those that converged correctly and those that failed. There-
fore, for the purposes of this paper, we consider any matrix with the above properties
potentially unsafe.

We address this problem by making the following observation: We can transform both
input matrices so that one of them lies at the origin, thus bringing the rotational com-
ponents of both matrices down to a safe range. One or both of the input matrices may
have a large rotational component before this transformation is performed. However,
as long as the rotation between the two matrices is < π

2 , then the transformation will
ensure that both matrices are safe when Alexa’s operators are applied. This also helps
with stability and predictability because the interpolation is always performed at the
same point in transformation space. The snippet of code in (6) should be changed
accordingly:

 Lerp(Pb1(SRT)1(SRT)−1
1 , Pb2(SRT)2(SRT)−1

1 , t)
 (SRT)1 ; (7)

If this transformation fails to bring the rotational components down to a safe range, it
indicates that the user has chosen keyframes where the rotation from one keyframe to
the next is ≥ π

2 . This is both rare and easily detected, and we can prompt the user to
add an additional keyframe to solve the problem.

Finally, we note that the animation resulting from (7) may be slightly different from
the animation resulting from (6), and that the numerical differences increase (from
magnitude 10−4 to magnitude 10) as the camera (and scene) are moved away from the
origin (by a distance of 103). In practice, we found that, whether or not the scene was
centered at the origin, there was little, or no, noticeable visible difference between the
two animations.

3.3 Smooth Interpolation

As an alternative to using the linear interpolation in (3), we present two methods for
calculating smooth interpolations. For each method, we revisit the large rotation issue
discussed above.

5

3.3.1 Approximate

For some applications, we may wish for the camera to take a smooth path rather than
one that is discontinuous at each keyframe. If we are willing to settle for a path which
approximates the keyframes but may not pass precisely through each one, then this can
be easily accomplished. We can combine an arbitrary number of matrices by using
Alexa’s operators in the following way:⊕

i

wi�Mi = e∑i wi·logMi (8)

where Mi are the matrices and wi are non-uniform B-spline weights [BBB87] for a
spline curve of degree Ck. In our implementation, k = 2.

This requires a small change in the way that we deal with large rotations. Above, we
considered each pair of keyframes, and transformed both so that one lay at the origin.
Here, we may be summing up to k + 2 matrices at once. Therefore, we transform all
the input matrices so that the matrix with the largest weight lies at the origin.

Since we transform more than 2 matrices at a time, there is a slightly higher likelihood
that the transformation will fail to bring the rotational components to a safe range.
If we wish to add additional keyframes to correct this failure, we must bear in mind
that no transformed matrix may have rotational component ≥ π

2 , and add intermediate
keyframes accordingly. We reiterate that this case happens rarely — the user must
specify fairly extreme changes between keyframes in order for our fix to fail.

3.3.2 Exact

With a bit more care in implementation, it is also possible to generate a smooth path
which passes through every keyframe. The four-point subdivision scheme in [DGL87]
describes how, given a list of control points (p0, . . . , pn−1), we can calculate a new
point which lies between points pi and pi+1:

pnew =
9
16

(pi + pi+1)−
1

16
(pi−1 + pi+2) (9)

Given a list of keyframes (M0, . . . ,Mn−1), we can rewrite this equation using Alexa’s
operators:

Mnew = [
9
16

� (Mi⊕Mi+1)]⊕ [− 1
16

� (Mi−1⊕Mi+2)] (10)

More succinctly, we can use (8) to perform the above calculation, where:

w = {− 1
16

,
9

16
,

9
16

,− 1
16
} (11)

M = {Mi−1,Mi,Mi+1,Mi+2} (12)

6

To do this, we must ensure that the boundary case is handled properly. When we wish
to compute Mnew which lies between M0 and M1 (or Mnew between Mn−2 and Mn−1),
we must compute a “dummy” matrix for M−1 (or Mn). We apply what we know from
the boundary case for points:

M−1 = Lerp (M1, M0, −1) ; (13)
Mn = Lerp (Mn−2, Mn−1, −1) ; (14)

If we are given n keyframes as input, and we perform m iterations of subdivision, the
result is an animation that is (n− 1)2m + 1 frames long. In order to accommodate
an arbitrary, user-defined number of output frames, we subdivide until (n− 1)2m + 1
is greater than the number of frames desired. Then, we use Lerp() to resample the
subdivided frames appropriately.

For clarity, we have described the resampling as a postprocessing step. In reality, this is
unnecessary — we can subdivide and resample in a single step. To accomplish this, we
do not compute any camera matrices during the subdivision step. Instead, we compute
an array where the ith entry is a list of keyframes and weights that will be combined
to build the ith camera matrix. In this manner, we “unroll” the recursive nature of the
subdivision algorithm. The end result is that every one of our final camera matrices is
computed only as a combination of keyframes, not as a combination of previous levels
of subdivision. Once we have computed this array, we can compute a frame of the
output by using (8) just one time.

For example, say we are building frame i of the output. Then, say that the desired
resampling dictates that frame i should be built using the jth and (j + 1)th entries of
the subdivision array, with interpolation percentage t. Recall that the jth entry in the
subdivision array specifies a list of weights, w j, and a list of matrices, M j. We can build
the resampled camera matrix for frame i by using (8) just a single time, where:

w = {(1− t)w j1 , . . . , (1− t)w jp , tw(j+1)1 , . . . , tw(j+1)q} (15)
M = {M j1 , . . . , M jp , M(j+1)1 , . . . , M(j+1)q} (16)

We deal with large rotations exactly as in the smooth approximation case. Before using
(8), we transform all the input matrices so that the matrix with the largest weight lies
at the origin.

4 Operator Implementation

Alexa’s operators are implemented as shown in (1), using the matrix exponential and
logarithm. Alexa shows how to implement these using iterative methods. In this sec-
tion, we discuss aspects of this implementation. First, we review the numerical methods

7

used in the pseudocode, and we note two corrections. Second, we discuss termination
conditions for these iterative methods.

4.1 Changes to Alexa’s Pseudocode

Our changes to Alexa’s pseudocode are noted by the boxed lines in Figure 3(a). Addi-
tionally, he uses ε three times to designate three distinct loop termination conditions.
We annotate these appearances with subscripts ε1, ε2 and ε3, to facilitate our discussion
in the following section.

4.1.1 Matrix exponential

The matrix exponential (Figure 2) is computed iteratively using a Padé approximation
with scaling. For the parameter q (the desired number of iterations), we use the value
found in MATLAB’s implementation, q = 6. [ML03]

4.1.2 Matrix logarithm

Compute X = eA

j = max (0,1+ log2(‖A‖))
A = 2− jA
D = I; N = I; X = I; c = 1
for k = 1 to q

c = c(q−k+1)
(k(2q−k+1))

X = AX
N = N + cX
D = D+(−1)kcX

end for

X = D−1N
X = X2 j

Figure 2: Pseudocode for computing
the matrix exponential.

The matrix logarithm, shown in Figure 3(a), is
computed in two steps. First, take the square
root of the matrix repeatedly, bringing it within
ε1 of the identity matrix. This is done so that
the second step, a truncated Taylor series, will
converge properly. The Taylor series continues
until the added terms become smaller than ε2.

The matrix logarithm makes repeated calls to
the matrix square root, shown in Figure 3(b).
Here, we can directly calculate the quality of
our result — simply square the output matrix
and compare it to the input matrix. When the
result of this comparison is < ε3, the calcula-
tion terminates.

We discuss appropriate values for ε1, ε2 and ε3
in the next section.

8

Compute X = log(A)
k = 0
while ‖A− I‖> ε1

A = A1/2

k = k +1
end while

A = A− I
Z = A; X = A; i = 1
while ‖Z‖> ε2

Z = ZA; i = i+1
X = X +Z/i

end while

X = 2kX

(a)

Q
Q

Q
QQ

Compute X = A1/2

X = A; Y = I
while ‖XX −A‖> ε3

iX = X−1; iY = Y−1

X = 1
2 (X + iY); Y = 1

2 (Y + iX)
end while

(b)

Figure 3: a) Pseudocode for computing the matrix logarithm. Boxed lines show
changes from the pseudocode given by Alexa. b) Pseudocode for computing the matrix
square root.

4.2 Suitable ε Values

Alexa reminds us that “all while loops in the pseudo codes should terminate after a
fixed number of iterations since numerical problems might lead to poor convergence”.
With that in mind, we study both the expected and maximum number of iterations taken
for each of these calculations to converge. Based on our studies, we present suggested
values for ε1, ε2 and ε3. We also give a suggested maximum number of iterations to
run each computation. (That is, we give a number of iterations, n, such that if the
computation has not converged to the specified ε after n iterations, it is unlikely to ever
converge.)

We work “from the inside out”, considering the pseudocode in the reverse order that it
was presented above.

4.2.1 Square root: ε3

To test the square root function, we generated 100 random transformation matrices
(rotations: composite of x,y,z rotation, with rotation angle in [0,π], scales: [10−2,102],
translations: [10−1,102]). We computed the square root of each matrix, and calculated
‖XX −A‖ (see pseudocode) at each iteration. We would like to choose ε3 to be as
small as possible without causing the expected number of iterations to be too high.
The reader should bear in mind that the square root function is called multiple times

9

by the logarithm function, and thus must be very fast. However, it also needs to be
accurate enough that numerical errors do not propagate upwards.

We found that running the computation for at least seven iterations seems to be critical.
By the sixth iteration, many of the test matrices had only converged to ε3 = 10−2.
However, by the seventh iteration, every single test matrix had converged to ε3 = 10−6

or better.

The Verdict: We suggest setting ε3 = 10−6. We expect the computation to take ≈ 7
iterations, so we run the computation for a maximum of 10 iterations. Note that it
is this part of the computation which occasionally fails to converge with large rota-
tions. Therefore, if the computation has run for more than 10 iterations, we return “no
convergence” and prompt the user to add an additional keyframe.

4.2.2 Logarithm: ε2

To test the Taylor series portion of the logarithm function, we again generate 100 ran-
dom transformation matrices and compute their logarithms. We would like to discover
how long it takes for the Taylor series computation to converge in practice. We would
also like to discover how dependent this computation is upon the preliminary portion
of the logarithm algorithm (the repeated square roots).

We find that, if the Taylor series does converge, then ‖Z‖ always becomes small
quickly, regardless of how many square roots we take in the preliminary step. In our
test cases, ε2 < 10−9 after no more than four iterations. The primary reason for lack of
convergence is not enough preliminary square roots (ε3 not sufficiently small).

The Verdict: We suggest setting ε2 = 10−9. We expect the computation to take ≈ 4
iterations, so we run the computation for a maximum of 7 iterations, returning “no
convergence” if we hit 7 iterations. If we ensure ε3 < 10−3 then we can show that
this is more than sufficient. The Taylor series of the log is log(Z) = log(I + B) =
|B| − (1/2)|B|2 + (1/3)|B|3 . . . If we stop the computation after n iterations than the
remaining error can be bounded by 1/(1− ε3)εn

3 which, after 4 iterations, is less than
10−9 as desired.

10

0.000000001

0.00001

0.1

1000

10000000

0 5 10 15 20 25 30

of repeated square roots

de
lta

 c
ha

ng
e

in
 lo

ga
rit

hm
 re

su
lt

(a) as number of initial square roots increases

0.000000001
0.0000001

0.00001
0.001

0.1
10

1000
100000

10000000

1E-061E-040.011100

epsilon1

de
lta

 c
ha

ng
e

in
 lo

ga
rit

hm
 re

su
lt

(b) as ε1 decreases

Figure 5: Change in logarithm result with all 100 test matrices overlaid. The vertical
lines on (b) represent ε = 0.5 and ε = 10−4

4.2.3 Logarithm: ε1

0.000001

0.0001

0.01

1

100

10000

1000000

0 5 10 15 20 25 30

of repeated square roots

de
lta

 c
ha

ng
e

in
 lo

ga
rit

hm
 re

su
lt

Figure 4: Change in logarithm result
as the number of initial square roots
increases. (1 test matrix).

To test the preliminary step of the logarithm
function, we generate 100 random transforma-
tion matrices as before. We know that ‖A− I‖
must be small, or else the subsequent Taylor se-
ries calculation will not converge. We test how
‖A− I‖ affects the final output of the logarithm
function.

For each of our test matrices, we compute its
logarithm 30 times, each time increasing the
number of preliminary square roots taken. We
compare each result to the previous one, and
plot the change. Figure 4 shows the graph of
one of our test matrices. The x-axis represents
the number of repeated square roots taken, and the y-axis shows the change in result as
more square roots are added.

We see that as more iterations of square roots are done, the change in the final answer
becomes very small, indicating convergence. However, at 26 iterations, this conver-
gence is suddenly lost. This surprising discovery indicates that it is possible to take too
many preliminary square roots!

To explain this phenomenon, we recall the purpose of the repeated square roots — we
aim to bring the input matrix closer to the identity matrix so that the Taylor series will
converge. Referring back to the pseudocode, we see that if the input matrix is extremely
close to the identity, then Z, A, and especially ZA will become so close to zero that we
may lose numerical precision.

Figure 5(a) shows the graphs from all 100 test matrices overlaid on each other. From

11

this, we see that the threshold for losing numerical precision is not determined by the
number of iterations we take. In Figure 5(b), we regraph the information shown in
Figure 5(a). This time, the x-axis represents decreasing ε1 rather than increasing the
number of iterations. Here it is clear that we lose numerical precision when ε1 drops
below 10−6. We also note that setting ε1 = 0.5, as Alexa suggests, yields results which
are quite poor. We can see this by examining the red line in Figure 5(b).

The Verdict: The choice of ε1 will depend somewhat on specific applications and the
need for speed versus accuracy. At one extreme, we could set ε1 just above the numer-
ical precision threshold of 10−6. However, if we cross-reference Figures 5(a) and 5(b),
we can see that this will cost us ≈ 20 iterations in the average case, and nearly 30
iterations in the worst cases.

In practice we set ε1 = 10−4. We expect the computation to take ≈ 12 iterations, and
we run the computation for a maximum of 20 iterations. We can convince ourselves
that the final result is sufficiently accurate by examining the green line in Figure 5(b).
Since the change in the result at this point is quite small for all of our test matrices, we
conclude that the result is not being significantly affected by performing any further
square roots.

5 Examples and Discussion

Our interpolation is well-behaved, even in situations where camera parameter interpo-
lation fails. In this section we show two examples where our method performs better.
We then perform analysis on randomly generated keyframe sequences to show how our
method performs on average.

Figure 6: A comparison of camera parameter camera interpolation (top) with our
method (bottom). Keyframes are marked in red.

Figure 6 compares our results with those of the camera parameter approach. The top
row shows how the table rotates out of view using the camera parameter method. Using
our method, (shown in the bottom row) the table stays in view.

12

Figure 7: A comparison of camera parameter camera interpolation (top) with our
method (bottom). Keyframes are marked in red.

Figure 7 is an example in which the center of projection changes between keyframes.
Once again, the camera parameter method (top row) causes the table to nearly move
out of view. Using the new method (bottom row), the table stays more centered on the
screen.

Although the speed of the camera movement is not readily apparent from the figure, a
video of the animation sequence shows that the camera changes speeds rather wildly
when camera parameter interpolation is used. Our method results in a much steadier
pace that is pleasing to watch.

5.1 Quality Metric

Keyframe 1

Keyframe 2

Vertex locations
during our
interpolation

Vertex locations
during parameter
interpolation

Figure 8: The path taken
by a single vertex during
our interpolation (blue),
versus camera parameter
interpolation (red).

It is important to be able to quantify the results of vari-
ous interpolation methods. To this end, we have devised
a quality metric based on the distance that mesh vertices
appear to travel as the camera moves.

To illustrate how our metric is computed, Figure 8 shows
two sets of locations, in camera space, of a single mesh
vertex. The red points are the locations of this ver-
tex during camera parameter interpolation, with t values
{0.1,0.2, ...0.9}. The blue points are the locations of the
same vertex during our interpolation. The location of the
vertex at each of the keyframes is also shown.

To compare the paths taken by the vertex during two dif-
ferent interpolations, we compute the total length of the
line segments connecting each set of points. Call these
lengths ltrad and lexp. Finally, we normalize against l0
(the length of the shortest possible path between the two

13

keyframes) by computing:

Ltrad = 100
(

l0− ltrad

l0

)
Lexp = 100

(
l0− lexp

l0

)
These values can be interpreted to mean “during camera parameter interpolation, the
vertex traveled a path that was Ltrad percent longer than the straight line path”. We
average this value over all the vertices in the mesh. This metric is meaningful because
it quantifies the amount of motion seen on the screen.

We randomly generated a test set of 100 pairs of keyframes, and found that our method
performs substantially better using this metric. Using our method, the average path
taken by a mesh vertex is 4% longer than the straight line path. With camera parameter
interpolation, the average path is 23% longer.

6 Web Information

Animations, source code, and an executable demo program are available online at
http://www.cse.wustl.edu/~aeh1/camera-interp-jgt/

References

[Ale02] Marc Alexa. Linear combination of transformations. In SIGGRAPH, pages
380–387. ACM, 2002.

[BBB87] Richard H. Bartels, John C. Beatty, and Brian A. Barsky. An introduction
to splines for use in computer graphics & geometric modeling. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 1987.

[DGL87] N. Dyn, J. A. Gregory, and D. Levin. A 4-point interpolatory subdivision
scheme for curve design. Computer Aided Geometric Design, 4:257–268,
1987.

[GS05] Cindy Grimm and Karan Singh. Implementing the ibar camera widget. Jour-
nal of Graphics Tools, 10(3):51–64, November 2005. This is the full imple-
mentation details for the UIST 2004 paper. There is source code available.

[Hig97] N. J. Higham. Stable iterations for the matrix square root. Numerical Algo-
rithms, 15(2):227–242, 1997.

14

[MC80] J. C. Michener and I. B. Carlbom. Natural and efficient viewing parameters.
In SIGGRAPH, pages 238–245. ACM, 1980.

[ML03] C. B. Moler and C. F. V. Loan. Nineteen dubious ways to compute the matrix
exponential, twenty-five years later. SIAM Review, 45(1):3–49, 2003.

[Sho85] K. Shoemake. Animating rotations with quaternion curves. In SIGGRAPH,
pages 245–254. ACM, 1985.

[ZS99] D. Zorin and P. Schroder. Subdivision for modeling and animation. In ACM
SIGGRAPH Course Notes, 1999.

15

