
CONTINUOUS CUBE MAPPING

Cindy M. Grimm Bill Niebruegge

Department of Computer Science and Engineering
Washington University in St. Louis

One Brookings Drive
St. Louis, MO 63130

United States
cmg@cse.wustl.edu and niebruegge.1@osu.edu

ABSTRACT

Existing environment mapping techniques include spherical
mapping and cube mapping. These techniques have inher-
ent flaws that cause sampling issues and aliasing. Continu-
ous cube mapping is offered as an alternative environment
mapping approach that effectively folds the cube onto the
sphere, providing a better parameterization of cube map-
ping. We provide a hardware implementation.

1. INTRODUCTION

Environment mapping is the process of surrounding a scene
with a large, textured shape and using it to determine the
color of each the scene’s objects. The two most prevalant
approaches are spherical mapping and cube mapping. Each
of these methods have inherent flaws, including sampling
issues and aliasing. Continuous cube mapping is introduced
to offer an improved parameterization of the surrounding
texture while only requiring a minimal increase in compu-
tation time.

2. ENVIRONMENT MAPPING

Environment mapping is used to create the illusion of a sur-
rounding environment or as a cheap alternative to area light
sources in a scene. In environment mapping, a scene is sur-
rounded by a large, textured shape. For each fragment of
an object, a reflected ray, based on the view direction and
surface normal, is first calculated - (Figure 1). The reflected
ray is a function of the incident ray and the surface normal,
R = 2(N.I)N − I . This reflected ray is then used to index
the texture applied to the surrounding shape.

Two common approaches for environment mapping in-
clude spherical mapping and cube mapping. The difference
between the two approaches is how textures are stored in
memory and accessed. In spherical mapping, one square
texture is mapped onto a sphere. In cube mapping, there are

Fig. 1. Environment Mapping Rays [1]

six separate textures that represent the six faces of the cube.
Before sampling the textures in cube mapping, we must first
determine which texture to sample based on which face the
reflected vector intersects.

2.1. Spherical Mapping

In spherical mapping, the position on the sphere is defined
in terms of latitude and longitude. Latitude is referenced in
terms of the angle φ and longitude is referenced in terms of
the angle θ. Given the reflected vector, θ and φ are defined
as:

θ = arctan(
Ry

Rx
) (1)

φ = arccos(
Rz

|R|
) (2)

The corresponding uv texture coordinates are then defined
as:

u =
θ

2π
(3)

v = 0.5 +
φ

π
(4)

Spherical mapping’s flaws are due to the fact that the tech-
nique maps a square texture onto a spherical shape, causing
very different sampling rates at the poles and the equator.
This is most apparent at the poles of the sphere as shown in
Figure 2.

Fig. 2. Spherical Mapping: Pole View

Fig. 3. Spherical Mapping: Equator View

2.2. Cube Mapping

In cube mapping, the environment is stored as the six faces
of a cube. Each of the faces is a texture with uv coordinates
ranging from 0 to 1. The first step is to determine which of
the faces the reflected ray intersects. The uv values to be
sampled are determined by finding the point of intersection
with the face within this range.

The cube shape is a more straightforward shape than the
sphere since the surrounding sides are flat, making creating
the necessary textures easier. Think of standing in one po-
sition and taking six photographs each at an orthogonal 90
degree view from the others. This would provide the neces-
sary six textures (Figure 5).

Fig. 4. Spherical Sampling vs. Cube Sampling

While cube mapping offers a more intuitive represen-
tation of the surroundings, it still introduces issues at the
edges of the cube. With spherical mapping, the sampling is
uniform while in cube mapping it differs between the center
of the cube face and the edge (Figure 4). This difference
in sampling results in artifacts. Likewise, the abrupt edges
of the cube result in discontinuities with textures that span

across an edge. These issues will not be as apparent when
texturing more complex shapes (Figure 6).

Fig. 5. Cube Mapping Textures [2]

Fig. 6. Cube Mapping Example [2]

2.3. Parabolic Mapping

This environment mapping approach uses two parabolic maps,
one for each hemisphere of the sphere. This produces a
more even sampling but results in a fair amount of wasted
area in the texture map. The mapping functions, however,
are simple - a combination of multiplications and additions
[6].

3. CONTINUOUS CUBE MAPPING

Continuous cube mapping combines the fundamental con-
cepts of spherical and cube mapping while removing their
inaccuracies. The basic idea is to fold the cube onto the

Fig. 7. Sphere divided into six faces

sphere. The result is the sphere divided into six faces, each
of which is bounded by a great circle, resulting in a better
parameterization than the cube (Figure 7). As in cube map-
ping, the reflected vector will intersect one of the six faces
of the sphere, resulting in using the texture applied to that
face. This is a continuous mapping, meaning the parameter-
ization of one face can be extended into any adjacent face.
This makes this method a better choice for capturing and
manipulating spherical data.

One difficulty is that the math for converting the re-
flected vector to the angles θ and φ is different for each face
of the sphere. However, since the mapping is symmetrical
on all six faces, we can simplify the math for only one face
and rotate all other faces’ processing to it. This means we
can use the same equations for all faces, by simply rotating
the vector into the correct axes first. This rotation is handled
by rotating the axes in 90 degree combinations and then pro-
cessing with the base θ and φ. For this implementation, we
chose the positive-y face as the base face.

The steps of the algorithm are defined as:

1. Identify face based on the reflected vector (Rx, Ry,
Rz).

2. Rotate sphere so the reflected vector is in the positive-
y face.

3. Use sphere latitude/longitude equations to convert the
reflected vector to θ and φ.

4. Convert the angles θ and φ to square texture coordi-
nates u and v so that the great arc boundaries map to
the unit square.

Fig. 8. Great arcs of the sphere

Steps 3 and 4 can be combined and simplified if some pre-
processing is performed.

To determine which face the reflected vector is inter-
secting, we use the fact that the sphere can be divided by six
great circles (Figure 8). Each face is then defined by a com-
bination of the resulting great arcs. To determine which face
is being intersected, we take the dot product of the reflected
vector with each of the six normals and check combinations
of the results. Figure 9 shows how to use the sign of the
resulting dot products to determine which face is being in-
tersected. For example, if it is intersecting the positive-y
face, the dot products with normals A, B, C, and D will all
be positive.

Fig. 9. Face determination table

Now we can simplify the math for the positive-y case only.
This involves combining steps 3 and 4, combining the pro-
jection from the sphere with the mapping to the unit square.
These steps simplify to the following equations for the u
and v coordinates.

u = 0.5 −
arctan(Rx

Ry
√

2
)

2 arcsin(1√
3
)

(5)

v =

1 + arcsin(Rz)

arcsin(1r
2+ Rx2

Ry2

)

2
(6)

4. EXAMPLES

Fig. 10. Icosahedron and Dodecahedron Shape [4]

The following example images compare the different envi-
ronment mapping methods. An icosahedron and a dodeca-
hedron (Figure 10) are used together to define the vertices
that will be mapped using the different methods. The ver-
tices of the icosahedron are represented as red crosses and

the vertices of the dodecahedron are represented as blue
crosses.

Fig. 11. Spherical Mapping

4.1. Spherical Mapping

For spherical mapping, the equations in section 2.1 were
used to transform the vertices to uv coordinates, resulting in
Figure 11. In this case the vertices of the two polygons are
distorted and the vertex at the pole of the sphere is pinched
together, almost erasing it completely.

4.2. Cube Mapping

Fig. 12. Cube Mapping

For the cube mapping image, each vertex was treated
as a vector from the origin. It was then determined which
cube face this vector intersected and the corresponding uv

coordinates were computed based on where the vector inter-
sected the face. The resulting image, Figure 12, shows the
sampling issue with cube mapping. The crosses vary in size
and shape depending on where they are in the cube face.

4.3. Continuous Cube Mapping

Fig. 13. Continuous Cube Mapping

Fig. 14. Cube Mapping vs. Continuous Cube Mapping Cross

For continuous cube mapping, each vertex was again
treated as a vector from the origin. It was then determined
which face this vector intersected using the methods de-
scribed in Section 3. The math in Appendix B was then
used to compute the corresponding uv coordinates. The re-
sulting image, Figure 13, shows a more correctly spaced
version of the cube mapping example with more uniformly
shaped crosses (a comparison of the middle faces is the best
example). Figure 14 compares crosses from each method.

The cube mapping cross has aliasing, while the continuous
cube mapping cross is smoother.

5. REFERENCES

[1] Randima Fernando and Mark J. Kilgard, 2003
The Cg Tutorial: The Definitive Guide to Pro-
grammable Real-Time Graphics, pages 169 -
197
Addison-Wesley

[2] NVIDIA Cube Map OpenGL Tutorial
http://developer.nvidia.com/object/cube map ogl tutorial.html

[3] Parameterization Using Manifolds
Cindy Grimm
International Journal of Shape Modeling,
Volume 10, Number 1, Pages 51-80
Editor: B Falcidieno
World Scientific, June 2004

[4] Dodecahedron – from Wolfram MathWorld
http://mathworld.wolfram.com/Dodecahedron.html

[5] Models of Light Reflection For Computer
Synthesized Pictures
James F. Blinn
Computer Graphics (Proceedings of SIG-
GRAPH 77)
Jul 1977, 192-198

[6] Wolfgang Heidrich and Hans-Peter Seidel,
1998
View-independent Environment Maps
1998 SIGGRAPH / Eurographics Workshop
on Graphics
Aug 1998, pages 39 - 46

6. APPENDICES

The appendices of this paper provide the Cg fragment shader
code and the math to convert texture coordinates in contin-
uous cube mapping. The math for this process was first pre-
sented in [3].

Appendix A gives the Cg fragment shader code. This
takes a reflected vector and uses the uv coordinate equations
described in Section 3 to perform texture lookups. The uv
coordinate equations from Section 3 are condensed versions
of the math presented in Appendx B. The math in Appendix
B is reversible. This process reversed is provided in Ap-
pendix C.

A. CG FRAGMENT SHADER

float4 Rotate_R(float3 R)
{

// makes the program think we’re only computing the
// positive-y texture
float x, y, z, texIndex;
float L = sqrt(2.0) / 2.0;

// create the normals to check against
float3 N1 = float3(L, L, 0.0);
float3 N2 = float3(-L, L, 0.0);
float3 N3 = float3(0.0, L, L);
float3 N4 = float3(0.0, L, -L);
float3 N5 = float3(L, 0.0, L);
float3 N6 = float3(-L, 0.0, L);

R = normalize(R);

bool check1 = ceil(dot(N1, R));
bool check2 = ceil(dot(N2, R));
bool check3 = ceil(dot(N3, R));
bool check4 = ceil(dot(N4, R));
bool check5 = ceil(dot(N5, R));
bool check6 = ceil(dot(N6, R));

// positive y
if (check1 && check2 && check3 && check4)
{

// do nothing
x = R.x;
y = R.y;
z = R.z;
texIndex = 0.0;

}
// negative y
else if (!check1 && !check2 && !check3 && !check4)
{

// rotate around x, 180 degrees
x = R.x;
y = -1.0*R.y;
z = -1.0*R.z;
texIndex = 1.0;

}
// positive z
else if (check5 && check6 && check3 && !check4)
{

// rotate around x, 90 degrees
x = R.x;
y = R.z;
z = -1.0*R.y;
texIndex = 2.0;

}
// negative z
else if (!check5 && !check6 && !check3 && check4)
{

// rotate around x, -90 degrees
x = R.x;
y = -1.0*R.z;
z = R.y;
texIndex = 3.0;

}
// negative x
else if (!check5 && check6 && !check1 && check2)
{

// rotate around z, -90 degrees
x = R.y;
y = -1.0*R.x;
z = R.z;
texIndex = 4.0;

}
// positive x
else if (check5 && !check6 && check1 && !check2)
{

// rotate around z, 90 degrees
x = -1.0*R.y;
y = R.x;
z = R.z;
texIndex = 5.0;

}
else
{

// do nothing
x = 0.0;
y = 0.0;
z = 0.0;
texIndex = 6.0;

}

return float4(x, y, z, texIndex);
}

void frag_program(float3 R : TEXCOORD1,

out float4 oColor : COLOR,

uniform sampler2D decalX,
uniform sampler2D decalNegX,
uniform sampler2D decalY,
uniform sampler2D decalNegY,
uniform sampler2D decalZ,
uniform sampler2D decalNegZ)

{
float4 temp = Rotate_R(R);
float3 rotatedR = temp;
float texIndex = temp[3];

float x = rotatedR.x;
float y = rotatedR.y;
float z = rotatedR.z;

float S1 = atan2((x / y), sqrt(2.0));
float S2 = 2.0 * asin(1.0 / sqrt(3.0));

float S = 0.5 - S1/S2;
float T = (1.0 + (asin(z) /

(asin(1.0 / (sqrt (2.0 + (x/y)*(x/y))))))) / 2.0;

// Fetch relected environment color
if (texIndex == 0.0)
{

oColor = tex2D(decalY, float2(S, T));
}
else if (texIndex == 1.0)
{

oColor = tex2D(decalNegY, float2(S, T));
}
else if (texIndex == 2.0)
{

oColor = tex2D(decalZ, float2(S, T));
}
else if (texIndex == 3.0)
{

oColor = tex2D(decalNegZ, float2(S, T));
}
else if (texIndex == 4.0)
{

oColor = tex2D(decalNegX, float2(S, T));
}
else if (texIndex == 5.0)
{

oColor = tex2D(decalX, float2(S, T));
}
else if (texIndex == 6.0)
{

oColor = float4(0.0, 0.0, 0.0, 1.0);
}

}

B. MATH TO CONVERT FROM RX,RY,RZ TO SQUARE
TEXTURE COORDINATES

dPi = 3.0 * PI / 4.0

switch(face}
case 0:

dS = atan2(Ry, Rx)
dT = asin(Rz)
dS = dS / PI
dT = (dT + dPi / 2.0) / dPi
break

case 1:
dS = atan2(Ry, Rx)
dT = asin(Rz)
dS = 1.0 + dS / PI
dT = (dT + dPi / 2.0) / dPi
break

case 2:
dS = atan2(Rx, Rz)
dT = asin(Ry)
dS = dS / PI
dT = (dT + dPi / 2.0) / dPi
break

case 3:
dS = atan2(Rx, Rz)
dT = asin(Ry)
dS = 1.0 + dS / PI
dT = (dT + dPi / 2.0) / dPi
break

case 4:
dS = atan2(Rz, Ry)
dT = asin(Rx)
dS = dS / PI
dT = (dT + dPi / 2.0) / dPi
break

case 5:
dS = atan2(Rz, Ry)
dT = asin(Rx)
dS = 1.0 + dS / PI
dT = (dT + dPi / 2.0) / dPi
break

if (dS < -0.5)
dS = dS + 2.0

else if (dS > 1.5)
dS = dS - 2.0

c_dv1 = asin(-sqrt(1/3)) * 4 / (3 * PI) + 0.5
c_dv2 = asin(sqrt(1/3)) * 4 / (3 * PI) + 0.5

dSP = (0.75 + 1.0) * PI
dYdX = tan(PI * dS)
dA = dYdX / cos(dSP)
dTP = atan(1 / dA)
dPerc = (dTP + dPi / 2) / dPi

u = (dPerc - c_dv2) / (c_dv1 - c_dv2)

dZ = sin(dSP) * cos(dTP)
dAng2 = asain(dZ)
dTMe = (dAng2 + dPi / 2) / dPi

v = (dT - dTMe) / (1 - 2 * dTMe)

C. MATH TO CONVERT FROM SQUARE TEXTURE
COORDINATES TO RX, RY, RZ

dPi = 3.0 * PI / 4.0

c_dv1 = asin(-sqrt(1/3)) * 4 / (3 * PI) + 0.5
c_dv2 = asin(sqrt(1/3)) * 4 / (3 * PI) + 0.5

dPercV = c_dv2 * (1.0 - u) + c_dv1 * u

dSP = (0.75 + 1.0) * PI
dTP = (dPercV * dPi - dPi / 2)

dY = cos(dSP) * cos(dTP)
dX = sin(dTP)
dZ = sin(dSP) * cos(dTP)
dAng1 = atan2(dY, dX)
dAng2 = asin(dZ)
dSMe = dAng1 / PI
dTMe = (dAng2 + dPi / 2) / dPi

switch(face}
case 0:

dS = dU * PI
dT = dV * dPi - dPi / 2

Rx = cos(dS) * dCT
Ry = sin(dS) * dCT
Rz = sin(dT)
break

case 1:
dS = (dU + 1) * PI
dT = dV * dPi - dPi / 2

Rx = cos(dS) * dCT
Ry = sin(dS) * dCT
Rz = sin(dT)
break

case 2:
dS = dU * PI
dT = dV * dPi - dPi / 2

Rx = sin(dS) * dCT
Ry = sin(dT)
Rz = cos(dS) * dCT
break

case 3:
dS = (dU + 1) * PI
dT = dV * dPi - dPi / 2

Rx = sin(dS) * dCT
Ry = sin(dT)
Rz = cos(dS) * dCT
break

case 4:
dS = dU * PI
dT = dV * dPi - dPi / 2

Rx = sin(dT)
Ry = cos(dS) * dCT
Rz = sin(dS) * dCT
break

case 5:
dS = (dU + 1) * PI
dT = dV * dPi - dPi / 2

Rx = sin(dT)
Ry = cos(dS) * dCT
Rz = sin(dS) * dCT
break

