
Non-linear Perspective Widgets for Creating Multiple-View Images

Nisha Sudarsanam∗

Mindjet Corporation

Cindy Grimm†

Washington University in St. Louis

Karan Singh‡

University of Toronto

Fish-eye widgets
Unwrap widget

Fish-eye

a) Placing an unwrap and a fish-eye widget b) Placing two fish-eye widgets

Figure 1: Using multiple non-linear widgets to compare features on a human pelvis. (a) The unwrap widget is first used to place the two
acetabulum cavities in the same views. Next, we add a fish-eye widget to the left cavity to aid the comparison (1,289,814 faces, 49,989
vertices). (b) Placing two fish-eye widgets, one for each joint in the pelvis.

Abstract

Viewing data sampled on complicated geometry, such as a helix or
a torus, is hard because a single camera view can only encompass
a part of the object. Either multiple views or non-linear projection
can be used to expose more of the object in a single view, however,
specifying such views is challenging because of the large number
of parameters involved. We show that a small set of versatile wid-
gets can be used to quickly and simply specify a wide variety of
such views. These widgets are built on top of a general framework
that in turn encapsulates a variety of complicated camera placement
issues into a more natural set of parameters, making the specifica-
tion of new widgets, or combining multiple widgets, simpler. This
framework is entirely view-based and leaves intact the underlying
geometry of the dataset, making it applicable to a wide range of
data types.

CR Categories: I.3.3 [Computing Methodologies]: Computer
Graphics—Picture/Image GenerationViewing algorithms;

1 Introduction

One advantage of computers is that we can interact with, and dis-
play, complex models. To date, linear projection is the most com-
mon method for producing 2D images of 3D models. However,
linear projection has its limitations [Glassner 2004] — while it is
a good approximation of the human visual system, it can be dif-
ficult to find the “best” view of a model, or even to see certain

∗e-mail: nisha.sudarsanam@gmail.com
†e-mail: cmg@wustl.edu
‡e-mail: karan@dgp.toronto.edu

features of a model in a single view. Traditional artists such as
M.C. Escher, David Hockney and Picasso realized this, and delib-
erately introduced distortions of perspective in their work in order
to create artistic effects, mood changes, and to control the com-
position of a scene. The perspective distortion introduced in these
examples still relied on traditional linear perspective, but only lo-
cally. Singh [Singh 2002] referred to these distorted perspectives as
“non-linear perspectives”, and showed that computers can produce
similar distortions.

From a conceptual stand-point, non-linear or multiple perspective
images are built by blending two (or more) local linear perspectives
together. Often an image has some notion of a “global” perspective,
with the local perspectives defined as changes to this global one.
This global perspective helps to provide the user with some idea of
the 3D arrangement of the elements of the scene.

From an implementation stand-point there are two aspects to pro-
ducing non-linear perspectives. The first is the camera model or
mathematics used to produce them, the second is how the user in-
teracts with the camera model [Brosz et al. 2007]. Most of the ex-
isting proposed camera models are very general and very powerful
— but also difficult or time-consuming for the user to use.

In this paper we focus on making interaction very simple and easy,
trading versatility for usability. We take a two-tiered approach. At
the bottom is a general-purpose framework which encapsulates four
key ideas: What part of the model should be displayed, how should
its perspective be altered, where should it be displayed on the im-
age, and how should this local perspective interact with other exist-
ing ones. Above this we have defined four specific widgets which
were motivated, in part, by specific visualization tasks (Figures 1
and 2).

Like many approaches, we specify the projection by defining a
global viewpoint with local distortions. Unlike existing approaches,
our local distortions are defined so that they change appropriately
as the global viewpoint changes (Figures 3 and 9). This is the key
to making interactive non-linear projections — the user can still in-
teract with, and change, the global view while keeping the desired
local distortions.

Paper organization: We start with related work. Next, we describe
the choices behind the underlying framework and the four widgets
defined on top of it. We follow this with implementation specifics



a) Global view b) Adding 2 clipping widgets

Child 
widget

Parent 
widget

Magnified contact  
point

c) Adding fisheye

Exposed contact  
point

Isolated 
bones

Occluded contact 
point

Figure 2: (a) Our goal is to expose both the bone lying within the yellow oval and the contact points between the bones in the red oval. Note
that both of these features are currently completely occluded. (b) We add two clipping widgets in order to expose all three bones. (c) To
magnify the contact point between the two bones we add a fish-eye widget as a child widget of the clipping widget.

(the framework, the individual widgets, and how to combine multi-
ple widgets). Finally, we close with results.

1.1 Contributions

We present several widgets, each of which encapsulates a specific
composite projection into a simple-to-use, but still flexible, inter-
face. These widgets can be combined to create more complicated
projections. Unlike most non-linear projection systems, the user is
free to change the global view — the resulting composite view is
updated in a meaningful way.

The widgets presented here are built on top of a real-time, general,
non-linear perspective rendering framework. We demonstrate that
this framework easily supports existing projections by creating a
fish-eye and multi-perspective panorama widget.

2 Related Work

Non-linear perspectives and geometrical deformations are very
closely related in their effects, but differ in their implementation.
In general, view-based approaches can be applied to almost any
data set and do not alter that data set. In contrast, geometric defor-
mations are often tied to the underlying model representation and
actually alter the model.

2.1 Deformations

Rademacher et al. [Rademacher 1999] and Martin et al. [Marttin
et al. 2000] present approaches for deforming geometry based on
the observer’s position. Rademacher et al. [Rademacher 1999]
blend a set of pre-defined object-deformations corresponding to
a set of viewpoints closest to the current viewpoint. Martin et
al. [Marttin et al. 2000] use observer-dependent control functions
to indirectly control the transformations applied to the model. Our
approach is most like the latter, although our set of deformations is
very different.

Various approaches exists for interactive viewing of volume data
sets or geographical maps [Takahashi et al. 2002]. These methods
deform the underlying geometry of the data set in order to expose
interesting structures ([Bruckner and Gröller 2005; Grimm et al.
2004; McGuffin et al. 2003]). These deformations depend on the
current view of the model so changing the view of the model re-
sults in an inconsistent deformation, or the user must define a new
deformation.

Yagel et al. [Kurzion and Yagel 1997] present an alternative

approach to deforming a model that consists of deformation
proxies or rendering agents which were inspired by traditional
object-deformation paradigms. These rendering agents are view-
independent. That is, irrespective of the view, the object appears to
be deformed in the same way as it was initially defined. Our defor-
mations are similar, except that we also guarantee that the selected
region will always remain visible to the viewer.

Carpendale [Carpendale et al. 1997] developed a 3D technique for
“pushing” occluding objects out of the line of sight to reveal one
(or more) focus objects. Like our approach, this deformation is
dependent upon the viewing direction, so the user is free to change
the global view while keeping the focus objects revealed.

2.2 Non-linear perspectives

The field of non-linear perspective cameras is growing; a recent pa-
per [Brosz et al. 2007] provides a good overview of existing mod-
els and shows how many of these models can be described using a
view-based, free-form deformation. We focus here on the subset of
approaches most related to our work.

Fish-eye or other types [Yang et al. 2005] of lenses are extremely
useful for visualization of information graphs and other applica-
tions. Magnification lenses [Wang et al. 2005; LaMar et al. 2001]
are one method of visualizing expanded views of volume-data. We
include a widget for performing magnifications of specific areas of
the model.

An attractive method for defining cameras is to use image-space
constraints [Blinn 1988; Gleicher and Witkin 1992; Coleman et al.
2005]. Unfortunately, it can be difficult to control the camera
in this manner because the solver is not guaranteed to produce a
meaningful solution. Instead, we turn to defining specific camera
changes which produce known image-space changes [Sudarsanam
et al. 2005; Grimm and Singh 2005].

Initial work on multi-projection techniques focused on rendering
individual objects from different view points and compositing the
results together [Agrawala et al. 2000; Grimm 2001]. This was
extended to multiple cameras altering a single, global view [Singh
2002] with techniques to maintain global scene coherence [Cole-
man and Singh 2004]. These are very general systems and require
a lot of user input. We focus instead on creating a limited set of
specific multi-projections that are very quick and easy to define.

Multi-perspective panoramas can be produced from either a 3D
model and a camera path [Wood et al. 1997] or a set of im-
ages [Szeliski 1996; Agarwala et al. 2006]. A panorama is really a
special kind of non-linear projection. We show how our toolkit can



(a) Placing 
the unwrap 
widget in 
one cavity

Unwrap widget
Surface 
normal

b) Unwrapping animation Destination area

c) Changing the camera animationLeft, right, and back views

Figure 3: Showing the left and right acetabulum cavities in one image using the unwrap widget. (a) User places the widget in one cavity.
(b) Cavity is rotated and placed in the destination area (which is automatically calculated). (c) User changes the global camera to bring the
other cavity into view.

be used to create panoramas from known 3D geometry and a set of
keyframes.

3 Approach

3.1 The framework

Non-linear perspectives have traditionally been defined by specify-
ing several local perspectives and blending them together [Coleman
and Singh 2004; Coleman et al. 2005; Yang et al. 2005] or by de-
forming an existing view [Brosz et al. 2007; Popescu et al. 2006;
Sudarsanam et al. 2005]. Our framework combines elements of
both approaches, but is model and image-based instead of entirely
view-based — what part of the model do you want to display, where
do you want to display it, how do you want to change the viewing
parameters, and how do you want to blend this view with existing
ones? The key thing to note is that our local views are defined as
changes to the current global view, so that if the user changes the
global view, the local views change in a meaningful manner.

To define a widget in this framework the widget must define the
following four elements:

• A 3D source volume. This is the region of 3D space the new
local camera will affect.

• A 2D destination area. This is the region of image space the
3D source volume will be projected into.

• A set of camera parameter changes that distort the current
global view into the desired local perspective.

• A 3D blend region, which is a (possibly empty) subset of the
3D source volume. The local perspective will be blended into
the global one in this area.

The framework is responsible for blending the local perspectives
together based on the blend regions. The motivation behind this
design is two-fold: First, individual widgets can be defined, and
used, independently of each other, and it is relatively simple to build
composite widgets that communicate through the source and desti-
nation areas (Section 4.3). Second, the user can manipulate both
the widget and the global view, and the local perspective will adapt
accordingly.

Finally, our framework makes no assumption regarding the repre-
sentation of the data. The only constraint we require is that the data
be sufficiently sampled. If, for example, meshes are used to rep-
resent the data, then the triangulation should be sufficiently dense.
For volume data, the voxel size needs to be sufficiently small rela-
tive to the amount of deformation.

3.2 The widgets

We have developed four widgets that each encapsulate a specific as-
pect of a non-linear perspective change. The unwrap widget allows
the user to select a portion of the model and view it from a specific
direction, regardless of the orientation of the global camera. The
clipping widget allows the user to select a portion of the model that
is occluded and pull it out of the model so it is no longer occluded.
In this case, the view direction tracks the global one so that the user
can see both the inside and the outside of the object from the same
direction. The fish-eye and panorama widgets are versions of the
familiar fish-eye zoom and multi-perspective panorama.

4 Implementation

The framework takes in a 3D model and maps it to the image plane
by mapping each vertex 1 independently. A vertex’s image plane
location is a blended combination of the widgets that operate in
that area and, possibly, the global camera. More specifically, each
widget defines an area of influence and a local camera.

4.1 The framework

We first discuss what each widget needs to define, then how the
framework uses this information to project a vertex.

Each widget must define the source volume and the region over
which its local camera should be blended with the global one. To
allow the framework to perform the blending, each widget defines
a function w : R

3 → [0, 1] that takes in a point Q and returns a
number between zero (not in the source volume) and one (in the
source volume).

For the destination area, the widget defines a 3D bounding box
around its region of interest and a desired center and size in the
image plane. The framework automatically adjusts the center of
projection and zoom of the widget’s local camera so that the 3D
bounding box is projected into the destination area.

Finally, the widget must define a local camera C(Q) : R3 → R
2

to use for projecting the vertices. This camera is defined in terms
of changes to the global camera G : R3 → R

2.

Using these three elements, the framework projects a vertex using
the following equation:

P (Q) = (1 −
n

X

k=1

wk(Q))G(Q) +
n

X

k=1

wk(Q)Ck(Q) (1)

1If we are doing volume rendering this is the grid vertices of the volume.



Destination area(a) Placing the clipping widget
(b) Rotating the camera

Wireframe

Figure 4: This mug (5382 vertices, 10768 faces) has a knot on the inside as well as a knot in the handle. (a) Placing the clip widget around
the interior knot. We include a wireframe image to show the inside knot. (b) As the global camera rotates the local view of the internal knot
rotates in the same way, allowing comparison between the two knots. The destination position is recalculated for each frame.

If the sum of the weight functions wk is greater than one then we
normalize by dividing each weight by the sum of the weights. We
do not normalize if the sum is less than one because we want to
blend with the global camera. Note that if there is only one local
camera then this equation reduces to blending between the local
camera and the global one based on w, as expected.

As an aside, we could blend the individual camera parameters
and then project the vertex using this blended camera. While
this method might be considered the “correct” one, it is time-
consuming. We found that Equation 1 is a good approximation
which works well in practice. Essentially, we are blending between
locations in the 3D projection volume instead of blending the pa-
rameters that define the projection volume.

4.1.1 Source volumes and blend region

To simplify the specification of the source volumes and blend re-
gions we define a default fall-off function that takes as input three
parameters, rin, rout, and O, representing the inside and outside
radii and center of the volume. The fall-off function returns one if
the point is inside the inner sphere, and fades to zero outside of the
outer sphere.

g(x) = (x2 − 1)2 (2)

w(Q) =

8

<

:

1 ||Q − O|| < rin

g( ‖Q−O‖−rin

rout−rin

) rin ≤ ‖Q − O‖ ≤ rout

0 ‖Q − O‖ > rout

(3)

By default, rin is set to 0.8rout. This strikes a balance between
creating a smooth blend and minimizing the amount of the model
that is rendered distorted [Zanella et al. 2002]. Decreasing rin in-
creases the size and visual smoothness of the transition region, but
also decreases the amount of the model that is mapped with just the
local camera.

4.1.2 Destination area

The framework can automatically calculate a zoom and center-of-
projection change to move and re-size the destination area. Each
widget supplies a 3D bounding box B that serves as a proxy for
the source volume, and a current camera projection C. Before ad-
justment the destination area is the 2D bounding box around C(B),
i.e., the 3D bounding box projected to the screen using C. The cur-
rent 2D bounding box can be moved and re-sized to the desired one
using a center-of-projection (COP) and focal length change.

Let (vx, vy) be the vector from the current bounding box to the
desired one. To shift the box, we add (vx, vy) to C’s current COP.
The focal length adjustment is determined using similar triangles
and the 3D bounding box [Grimm and Singh 2005].

4.2 The widgets

4.2.1 The unwrap widget

The unwrap widget addresses the problem of trying to see two sides
of a model at the same time (see Figures 3 and 9). Although this
can always be accomplished using two images, it can be hard to
mentally integrate where the two features are spatially. Using the
unwrap widget, the user can fix one feature’s view point then in-
teractively 2 move the global view point to bring the other one into
view. This interaction helps to establish the spatial relationship be-
tween the two features while still viewing them from “good” angles.

To specify the source volume the user places a spherical 3D widget
around the area of interest. This widget has handles for control-
ling the 3D position and scale (rout) of the selected volume. The
surface normal closest to the center of the widget defines the de-
fault orientation of the widget (Figure 9); this can be overridden if
desired.

The fall-off function is calculated as defined in the previous section.
The local camera is constructed from the global one by rotating the
view point to look down outward-pointing direction of the unwrap
widget.

Our goal is to automatically place the selected region in screen
space so that the it does not overlap the model — note that the user
can override this default if desired. We first calculate what part of
the screen pm is currently occupied by the model. This is found by
projecting the model’s 3D bounding box using the global camera.
We next determine if the projected source volume pv lies to the left
or right of the center of pm. We push pv out of pm in this direction,
then scale pv (if necessary) so that it fits on the screen.

It is possible that there is not enough space around pm for pv . In
this case, the user can either choose to have the destination area
overlap pm, or have the system find a pan and scale for the global
camera that ensures that pm does not occupy more than 2/3 of the
horizontal screen space.

4.2.2 The clipping widget

Sometimes there are internal structures in a model which are not
visible from any direction. Like a traditional cut-away, the clipping
widget supports viewing these structures without the intervening
geometry; unlike the traditional approach, the viewing angle fol-
lows the global view, making it easy to see both the inside and the
outside from a variety of views.

The user specifies the source volume using a bounding box, which
they scale and place inside the model (Figure 4(a)). In this widget

2This interactivity is difficult to convey with static images; please see the

video.



Fish-eye widget

(a)  Placing the widget (b) m = 1.19 (c) m = 1.45 (d) Final view,  m = 1.6

Intermediate stages of magnification

Figure 5: (a) The fish-eye widget is represented as a sphere. Note the increasing size of the joint in successive frames (b-d) of the magnifica-
tion.

the fall-off region is empty — the vertices are either projected with
the global camera or the default one (inside the bounding box). The
default camera is identical to the global one, except the near and far
clipping planes are adjusted to enclose the bounding box.

The destination area is calculated as for the unwrap widget, de-
scribed above.

4.2.3 The fish-eye widget

The fish-eye widget (Figure 5) is represented by two concentric
spheres, which represent the inner (rin) and outer (rout) bound-
aries of the source blend volume. Inside of the inner sphere the
model is magnified by a factor m, provided by the user. The desti-
nation area is the same as the original, i.e., there should be no pan
and zoom.

The camera change can be accomplished either with a focal length
f change (makes the region bigger) or by panning the camera in,
which also introduces a perspective change. In the latter case, the
COP must be adjusted so that the destination area stays the same

(O is the center of the fish-eye widget, C
′

is the camera projection
after panning):

Eye
′

= Eye + ~Look(f(1.0 − 1.0/m)) (4)

COP
′

= COP + (C(O) − C
′

(O)) (5)

4.2.4 Panorama

The user defines a panorama by providing a set of keyframes, sim-
ilar in spirit to Wood et. al. [Wood et al. 1997]. Because our
panorama approach is based on blending geometry, and not im-
ages, we can support keyframes with substantial camera changes
(see Figure 7). Our panorama is also very similar to the view-based
approach of Singh [Singh 2002].

Unlike the previous widgets, the panorama widget produces mul-
tiple source volumes, local cameras, and destination areas, one for
each keyframe. The source volumes are created by partitioning the
model up amongst the different keyframes, and blending between
the partitions.

The source volumes are created by assigning each vertex in the
model to the camera that it is “closest” to. For each camera k, cast
a ray from the eye through the middle of the film plane and find
the first intersection point Pk with the model. For each vertex, find
the point Pk that it is closest to and assign it to that camera. The
clusters for the face panorama can be seen in Figure 7(b).

Note that in image-based rendering approaches it is more common
to use the dot product between the surface normal and the view

Keyframe 2
Vertices of right wing incorrectly allocated to 
keyframe 1, resulting in missing right wing 

Keyframe 1 b) Without the occlusion check

c) With the occlusion checka) Input keyframes

Figure 6: (a) The two input keyframes. The right wing is occluded
in keyframe 1 but not in keyframe 2. (b) The right wing is closer
to the center of camera 1’s ROI than camera 2’s, so it is initially
assigned to camera 1, which results in a missing right wing. (c)
After checking for occlusion the right wing is correctly assigned to
camera 2 and appears in the final panorama.

direction to determine camera assignment. However, in general the
surface normal of our models tends to vary a lot, which results in a
large number of small, isolated regions. This is why we do not use
this approach.

While our approach does tend to produce large, connected regions,
it is possible for vertices that are visible in one view to incorrectly
be assigned to a different view where they are occluded (Figure 6).
This occurs since our metric for clustering vertices does not take
into account the visibility of a vertex. To fix this problem, we can
incorporate an occlusion test. Create an id buffer for each camera,
and only assign a vertex to that camera if it is visible.

The weight function wk(Q) for each keyframe is constructed by
finding a pair of cameras that the point Q lies between and defining
rout as the distance between those cameras. If there is no such pair
of cameras then wk(Q) is set to one for the camera k that Q was
assigned to; all other weights are set to zero.

To determine “between”, let Ek and Pk be the eye point and center
point of the camera assigned to Q. Let Pi be the center point of
another camera. If < Q − Pk, Pi − Pk > is positive, then Q lies
between Pi and Pk. We take the closest such keyframe and define



Center of camera’s region of interest

(a) Three of nine input keyframes b) Camera clusters c) Final panorama d) Two keyframe panorama

Figure 7: Using nine (a) and two (d) keyframes to create a panorama that “unfolds” the face (7256 vertices, 14271 faces) across the image
plane. (a) Illustrates three of the nine keyframes used to generate (c). (b) Shows the mesh colored by which camera the vertices belong to. (c)
The final panorama. (d) Using only two key frames.

wk and wi as follows:

rout = ‖Pi − Pk‖/2 (6)

rin = rout/2 (7)

d = < Q − Pk, Pi − Pk > /(2rout) (8)

wk(Q) =

8

<

:

1 d < rin

g( d−rin

rout−rin

) rin ≤ d ≤ rout

0 > rout

(9)

wiQ = 1 − wk(Q) (10)

(11)

and all other camera weights for Q are set to zero.

To find the destination areas, first find the average Ca of all of the
keyframes by averaging their parameters. Project all of the Pk by
Ca to define the destination centers for each camera; the sizes are
left unchanged. Moving these positions changes the span of the
panorama (Figure 11).

4.3 Multiple widgets

The framework makes it simple to combine single widgets into
more complex ones (see Figures 1, 2 and 10). We define three
types of relationship that can exist between multiple widgets placed
in a data set: Independent, parent-child, and chained. The relation-
ship determines how the widgets communicate, particularly with
regards to the destination area. While placing the widgets, the user
can specify one of these relationships, with “independent” being
the default choice.

Independent widgets: This is the simplest case, where multiple
widgets are placed in a scene independently of each other. Each
widget has its own region of influence, which may or may not over-
lap with another. We compute the destination area independently
for each widget as per the approach outlined in the previous sec-
tions. If the destination areas map to the same side of the object the
system will arrange the 2D bounding boxes vertically as in Figure 1.

Parent-child widgets: In this case, widgets are usually embedded
spatially within one another, so that the child’s source volume is
contained within the parent’s. For example, a child fish-eye widget
could be embedded within a parent unwrap widget for magnifying
part of an unwrapped region. When the user selects such a relation-
ship, the framework passes the parent’s local camera to the child
widget instead of the global one. Thus, the fish-eye widget’s cam-
era is created using the rotated camera of the unwrap widget. The
child’s destination area is also set to be the parent’s.

Chained widgets In this case, multiple widgets (usually of the
same type) are strung together. Chaining widgets is useful in order
to specify a complicated piece of geometry or to prevent a fold-over
of geometry. When multiple widgets are chained together then the
calculation of the destination area follows the standard approach
only for the first widget in the sequence. The center-of-projection
(or zoom) is then propagated down the chain. Thus, the after-
projection parameters of successive widgets are computed with re-
spect to earlier widgets in the chain. This is done so that widgets
appear sequentially on the screen.

Foldover of geometry: Foldover or self-intersection of geometry
occurs when the difference between the default camera and the lo-
cal camera is large. In such a case, different faces in the transi-
tion region overlap one another resulting in self-intersections in the
transition region. No amount of blending can prevent this if the
two views are really disparate. The solution is for the user to place
additional smaller widgets that individually result in fold-over free
transformations. These smaller widgets exhibit a chain dependence
on each other.

4.4 Adding additional widget types

To add an additional widget to the framework the implementor
needs to create the widget itself and a function which takes in
the standard camera parameters (position, orientation, focal length,
center-of-projection) and produces the new, local camera parame-
ters. The system will, by default, use the 3D bounding box con-
taining the widget to specify the source volume (rin) and the initial
projected destination area. All of these defaults can be over-ridden.

4.5 GPU Implementation details

The calculation of the source volume, destination areas, and local
cameras are performed on the GPU. The actual movement of the
vertices is implemented on the GPU as a vertex program. The ver-
tex program takes in the weights, local camera matrices, and the
global camera matrix. It outputs the blended output location (Equa-
tion 1) and the vertex position and normal projected with just the
global camera matrix. The latter is used to perform lighting.

The GPU (GeForce Go 6400) implementation is substantially faster
than a pure CPU (1.73Ghz Pentium M processor) one, running at
0.78 frames per second rather than over 130 seconds for the pelvis
model with one widget. The rendering time is dependent on the
number of widgets and vertices but is independent of the type of
widgets introduced in the scene.



a) Seven input keyframes
b) Camera clusters 

shown in the 
panorama

c) Final panorama

Figure 8: (a) Seven of the eleven key frames used to generate a panorama of the gargoyle (129722 vertices, 259440 faces). (b) The panorama
colored by camera cluster. (c) The final panorama.

c) Unwrapping animation Destination area
a) User selects  

area
b) View direction 
for selected region

Surface 
Normal

d) Changing the camera animation

Figure 9: (a) The user places the unwrap widget on the area of interest to define the source volume. (b) The view direction is automatically
set to be the surface normal direction. (c) An animation showing how the selected area is “unwrapped” into the destination area (red box),
which is automatically defined. (d) The user changes the global camera. The destination area automatically switches sides as the global
camera rotates.

5 Results and remarks

The unwrap widget is demonstrated in Figures 1, 3, and 9. For
the first two figures we show frames of the unwrap animation fol-
lowed by a rotation of the global camera. The third figure shows
the unwrap widget combined with two fish-eye widgets.

The clipping widget is illustrated in Figures 2 and 4. In the first
example, a fish-eye widget was added to magnify the contact point
of the bones. In the second example we rotate the global camera in
order to view both knots from all directions.

We show four panorama images, two of the face (Figure 7), and one
each of the cow (Figure 11) and gargoyle (Figure 8). For the face
we show one panorama built from nine key frames, the second with
only two keyframes that are fairly disparate.

As the number of widgets added into the scene increases, it be-
comes more difficult to specify how they interact. With a large
number of widgets, it also becomes hard to perceive the underlying
structure of the data set and the usefulness of the final non-linear
projection is reduced. We have found that four independent wid-
gets on a large model (such as the human pelvis) is about all that
can reasonably be used.

For the unwrap widget it is an open question about whether or not
a distortion, versus two separate views, helps with maintaining spa-
tial context. The unwrap widget attempts to limit the distorted area
to parts of the model which are outside of the areas of interest to
reduce incorrect spatial cues. Like non-linear magnification in 2D
images, the area that is distorted is fairly apparent during animation,
i.e., when the tool or view is moving, but less so when the image
is still. Providing an effective cue for highlighting where the defor-
mation is and the amount of “bend” [Zanella et al. 2002] might help
to reduce confusion.

6 Conclusion

We have presented a flexible, general-purpose framework for build-
ing non-linear projections of data sets. Multiple widgets can be
combined easily in real-time to allow viewing of several features
within a single view. We illustrate the flexibility of our framework
by adapting it to create panoramic views.

7 Acknowledgements

The work presented here was funded in part by NSF grant 0238062.
The authors would like to thank J. J. Crisco of Brown Medical
School, Rhode Island Hospital for the bone data set (captured un-
der NIH AR44005), the AIM Shape repository for the human pelvis
model and the gargoyle model and Cyberware for the face scans.

References

AGARWALA, A., AGRAWALA, M., COHEN, M., SALESIN, D.,
AND SZELISKI, R. 2006. Photographing long scenes with multi-
viewpoint panoramas. In SIGGRAPH ’06: ACM SIGGRAPH
2006 Papers, ACM Press, New York, NY, USA, 853–861.

AGRAWALA, M., ZORIN, D., AND MUNZNER, T. 2000. Artis-
tic multiprojection rendering. In Proceedings of Eurographics
Rendering Workshop 2000, Eurographics, 125–136.

BLINN, J. 1988. Where am I? What am I looking at? In IEEE
Computer Graphics and Applications, vol. 22, 179–188.

BROSZ, J., SAMAVATI, F. F., SHEELAGH, M. T. C., AND SOUSA,
M. C. 2007. Single camera flexible projection. In NPAR
’07: Proceedings of the 5th international symposium on Non-



a) Chained Widgets
b) Unwraps corresponding to each widget of the chain c) Composite view

Figure 10: Our goal is to unwrap a larger portion of one of the coils of the helix (27,689 faces, 13,248 vertices). (a) Adding several instances
of the chained unwrap widget along the back of the helix. (b) Each unwrap widget produces a unique unwrapping. (c) These unwraps
are combined together to produce the final view. In addition to the local cameras being blended together, the destination positions of the
consecutive widgets are shifted as well (Section 4.3).

a) Three 
keyframes

c) Two different 2D 
destination positions d)

b) Camera 
clusters

Figure 11: (a) Three keyframes, along with the centers of the corresponding ROIs, used to generate a stretched-out cow panorama. (b) The
cow colored by the camera clusters. (c) The initial destination positions calculated automatically using the method outlined in Section 4.1
along with the corresponding panorama. (d) Modifying the destination positions to stretch the cow out further.

photorealistic animation and rendering, ACM, New York, NY,
USA, 33–42.

BRUCKNER, S., AND GRÖLLER, M. E. 2005. Volumeshop: An
interactive system for direct volume illustration. In Proceedings
of IEEE Visualization 2005, H. R. C. T. Silva, E. Gröller, Ed.,
671–678.

CARPENDALE, M. S. T., COWPERTHWAITE, D. J., AND FRAC-
CHIA, F. D. 1997. Extending distortion viewing from 2D to 3D.
IEEE Comput. Graph. Appl. 17, 4, 42–51.

COLEMAN, P., AND SINGH, K. 2004. Ryan: rendering your an-
imation nonlinearly projected. In NPAR ’04: Proceedings of
the 3rd international symposium on Non-photorealistic anima-
tion and rendering, ACM Press, New York, NY, USA, 129–156.

COLEMAN, P., SINGH, K., BARRETT, L., SUDARSANAM, N.,
AND GRIMM, C. 2005. 3D screen-space widgets for non-linear
projection. In GRAPHITE ’05: Proceedings of the 3rd inter-
national conference on Computer graphics and interactive tech-
niques in Australasia and South East Asia, ACM Press, New
York, NY, USA, 221–228.

GLASSNER, A. 2004. Digital cubism, part 2. IEEE Comput.
Graph. Appl. 24, 4, 84–95.

GLEICHER, M., AND WITKIN, A. 1992. Through-the-lens camera
control. Siggraph 26, 2 (July), 331–340. ISBN 0-201-51585-7.
Held in Chicago, Illinois.

GRIMM, C., AND SINGH, K. 2005. Implementing the IBar camera
widget. Journal of Graphics Tools 10, 3 (November), 51–64.
This is the full implementation details for the UIST 2004 paper.
There is source code available.

GRIMM, S., BRUCKNER, S., KANITSAR, A., AND GRÖLLER,
M. E. 2004. Flexible direct multi-volume rendering in inter-
active scenes. In Vision, Modeling, and Visualization (VMV),
386–379.

GRIMM, C. 2001. Post-rendering composition for 3D scenes. Eu-
rographics short papers 20, 3.

KURZION, Y., AND YAGEL, R. 1997. Interactive space defor-
mation with hardware-assisted rendering. IEEE Comput. Graph.
Appl. 17, 5, 66–77.

LAMAR, E. C., HAMANN, B., AND JOY, K. I. 2001. A magni-
fication lens for interactive volume visualization. In Proceed-
ings of Ninth Pacific Conference on Computer Graphics and
Applications- Pacific Graphics 2001, IEEE Computer Society
Press, Los Alamitos, California, H. Suzuki, L. Kobbelt, and
A. Rockwood, Eds., IEEE, 223–232.

MARTTIN, D., GARCIA, S., AND TORRES, J. C. 2000. Observer
dependent deformations in illustration. In NPAR ’00: Proceed-
ings of the 1st international symposium on Non-photorealistic
animation and rendering, ACM Press, New York, NY, USA, 75–
82.

MCGUFFIN, M. J., TANCAU, L., AND BALAKRISHNAN, R. 2003.
Using deformations for browsing volumetric data. In VIS ’03:
Proceedings of the 14th IEEE Visualization 2003 (VIS’03), IEEE
Computer Society, Washington, DC, USA, 53.

POPESCU, V., MEI, C., DAUBLE, J., AND SACKS, E. 2006. An
efficient error-bounded general camera model. In Proceedings of
3rd International Symposium on Data Processing, Visualization,
and Transmission.



RADEMACHER, P. 1999. View-dependent geometry. In Siggraph,
ACM Press/Addison-Wesley Publishing Co., ACM, 439–446.

SINGH, K. 2002. A fresh perspective. In Proceedings of Graphics
Interface 2002, 17–24.

SUDARSANAM, N., GRIMM, C., AND SINGH, K. 2005. Interac-
tive manipulation of projections with a curved perspective. In
Eurographics short papers, Eurographics, vol. 24 of Computer
Graphics Forum, 105–108. A specific type of non-linear projec-
tion that takes vanishing lines to sinusoids.

SZELISKI, R. 1996. Video mosaics for virtual environments. IEEE
Computer Graphics and Applications 16, 2, 22–30.

TAKAHASHI, S., OHTA, N., NAKAMURA, H., TAKESHIMA, Y.,
AND FUJISHIRO, I. 2002. Modeling surperspective projection
of landscapes for geographical guide-map generation. Comput.
Graph. Forum 21, 3.

WANG, L., ZHAO, Y., MUELLER, K., AND KAUFMAN, A. 2005.
The magic volume lens: An interactive focus+context technique
for volume rendering. In Proceedings of IEEE Visualization
(VIS) 2005, 367–374.

WOOD, D. N., FINKELSTEIN, A., HUGHES, J. F., THAYER,
C. E., AND SALESIN, D. H. 1997. Multiperspective panora-
mas for cel animation. In Proceedings of the 24th annual con-
ference on Computer graphics and interactive techniques, ACM
Press/Addison-Wesley Publishing Co., ACM, 243–250.

YANG, Y., CHEN, J. X., AND BEHESHTI, M. 2005. Nonlinear
perspective projections and magic lenses: 3D view deformation.
IEEE Comput. Graph. Appl. 25, 1, 76–84.

ZANELLA, A., CARPENDALE, M. S. T., AND ROUNDING, M.
2002. On the effects of viewing cues in comprehending distor-
tions. In NordiCHI ’02: Proceedings of the second Nordic con-
ference on Human-computer interaction, ACM, New York, NY,
USA, 119–128.


