
EUROGRAPHICS Workshop on Sketch-Based Interfaces and Modeling (2006), pp. 1–8 

submitted to EUROGRAPHICS Workshop on Sketch-Based Interfaces and Modeling (2006) 

Sketching Reaction-Diffusion Texture 
 

Paper ID 1020 

 

 

Abstract  
In this work, we present an interactive interface for sketching synthesized textures. Reaction-Diffusion (RD) is used as the 
basis for texture synthesis. RD allows an unlimited amount of non-repeating texture and offers great flexibility for mapping 
textures to arbitrary surfaces. However, it can be difficult to find starting values of parameters that will produce interesting 
patterns. We use machine learning to resolve the difficulty of determining appropriate initial values of the RD system. The 
system described here allows a user to sketch a pattern of spots or stripes with arbitrary orientations, and then automatically 
generates a pattern with the same attributes as the sketch. It also allows the user to interactively create more complex 
textures by adding another layer of pattern, as well as manipulate the color of the resulting texture. We also show that this 
procedure can be applied to realistic 3D surfaces. 
 
Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Color, shading, shadowing, and 
texture; I.3.8 [Computer Graphics]: Applications 
 

 
Figure 1. (a) User sketches ellipses with different orientation. Our system generates dots with similar size, shape, and 
orientation. (b) User adds smaller ellipses to the sketch. The system generates smaller dots in between larger dots. (c) User 
sketches lines with different slopes. The system generates random stripes with similar orientation. 
 
1. Introduction 
 
Textures are two-dimensional images or three-dimensional 
volumes that can be mapped onto an object’s surface. Very 
often, the object’s surface is larger than the texture sample 
available, hence the need for texture synthesis – generating 
more of a texture from a given sample. There are two main 
types of textures: raster textures, and procedural textures. 
Raster textures can be scanned pictures or painted images. 
They are ready-to-map, but the cost of memory storage is 
very high and resampling and mapping them to an arbitrary 
surface can be very difficult. Procedural textures, on the 
other hand, are defined mathematically, and therefore take 
little memory to store. They are also easier to resample and 
map to a surface. In this paper, we focus on textures 
generated from a method called Reaction-Diffusion. In 
addition to allowing an unlimited amount of non-repeating 
texture, this approach also offers greater flexibility for both 
controlling the attributes of patterns and mapping textures 
to arbitrary surfaces. 

Reaction-Diffusion (RD) was first introduced as a model 
of morphogenesis, a biological pattern-formation process in 
which two or more chemicals – called morphogens – diffuse 
over a surface and react with each other. The differences in 
concentration of morphogens form certain animal coat 
patterns, such as spots and stripes [Tur52]. This process is 

defined by differential equations, which control the change 
in concentration of one morphogen relative to other 
morphogens over time. 

A RD system consists of numerous parameters, a few of 
these being the reaction rates k/s, the diffusion rates D, and 
the random factor β (Section 3). At present there is no 
intuitive way to determine the values of these parameters 
that will produce interesting patterns, much less a pattern 
that has certain attributes. Thus, although RD can produce 
interesting and varied textures, it is difficult for a user to use 
a RD system without having a deep knowledge of its 
internal workings. We solve this problem by developing an 
interactive interface that allows users to sketch a rough 
version of their desired pattern. Our system then 
automatically generates a texture sample that contains 
similar features (Figure 1). This is done by analyzing the 
sketch’s attributes and using machine-learning technique to 
map these attributes to the appropriate starting parameters. 
Our approach allows for more control over the attributes of 
the patterns produced by the RD system (in case of Figure 1, 
the size and orientation of spots and stripes). The system 
also includes a coloring interface that gives the user 
freedom to vary the color of the generated textures. Finally, 
we show that our approach can be applied to generate 
patterns, as defined by a user, on a 3D surface.  



2  Paper ID 1020 

submitted to EUROGRAPHICS Workshop on Sketch-Based Interfaces and Modeling (2006) 

The rest of this paper is organized as follows. In Section 
2, we present our interface for sketching RD textures. In 
Section 3, we provide a brief background of RD systems. In 
Section 4, we summarize the previous work that has been 
done on generating textures with RD. Section 5 contains a 
detailed description of the implementation of this system, 
including our extension to existing techniques and our 
application of machine learning to solve the problem of 
finding the appropriate parameter values. In Section 6, we 
illustrate how our method extends to 3D surfaces. We 
conclude with a discussion of the future work in Section 7. 
 
2. Sketching RD textures using the interface 
 
Initially, the user sketches ellipses and lines in the sketch 
window, which act as inputs to the system. The system then 
generates a texture consisting of spots or stripes that has 
similar attributes as the initial sketch. These attributes are 
shape, size, spacing, and orientation of the spots and stripes 
that form the textures.  

The sketch window is divided into smaller regions to 
allow for a pattern with varied attributes across the entire 
image. For the purpose of experimenting, the sketch was 
divided into four regions (Figure 2), but this could be n by n 
regions for a larger texture. Average values of attributes in 
each region are used in determining the final attributes of 
the output texture. Since patterns in different regions can 
vary in size, shape, or orientation, linear interpolation of the 
attribute values between neighboring regions gives the 
output texture a smooth transition from one region to the 
next. 
 
2.1. Sketching spots 
 
2.1.1. Controlling size of spots. Spots are described by 
their size, shape and orientation. The user can generate 
spots by sketching ellipses in the sketch window. The 
system calculates the average size of ellipses in each region. 
A mapping function then maps these values to a set of 
starting parameters such that the spots generated by this 
system will have the same size as those sketched. This 
mapping function is described later in Section 5.4.1. As 
shown in Figure 2, the spots are varied in size across the 
image with a smooth transition in size from the top left to 
the bottom right corner. 
 
2.1.2. Controlling orientation of spots. Using the same 
technique as that for varying the size of spots as explained 
above, their orientation can also be varied across the image 
(Figure 3). Implementation details for generating textures 
with arbitrarily oriented spots can be found in Section 5.3. 
 
2.1.3. Controlling spacing among spots. In general, a RD 
system of spots would have the spacing between spots 
determined by the size of spots. Implementing cascaded RD 
system as described in [Tur92], our system allows the user 
to generate patterns from a sketch where arbitrary sized 
spots can have arbitrary spacing between them (Figure 4). 
This technique will be described in detail in Section 4. 
 

                 
Figure 2. Size of the spots produced varies over the grid 
(right), as depicted in user’s sketch (left). 

                  
Figure 3. Orientation of spots produced (right) varies over 
the grid as sketched (left). 

                 
Figure 4. Small spots with large spacing (right) as sketched 
in the sketch window (left). The red lines are produced 
when the sketch is analyzed. These lines correspond to the 
distances among the spots. 

                 
Figure 5a. The first simulation produces yellow spots 
(right) based on the sketch of the larger ellipses (left). 

                 
Figure 5b. The second simulation produces red spots 
(right). Red lines between smaller ellipses in the sketch are 
produced when the sketch is analyzed (left). 



 Paper ID 1020     3 

submitted to EUROGRAPHICS Workshop on Sketch-Based Interfaces and Modeling (2006) 

 

                  
Figure 6. The system generates pattern of stripes (right) 
that have the same orientation as in user’s sketch (left). 
 
2.1.4. Complex patterns. The previous subsections 
described how spots with desired size, orientation and 
spacing can be obtained. However, the spots generated in 
this way have only one size in each region. In order to have 
small spots interspersed with larger spots through out the 
image (Figure 5b), we implement cascaded RD system as 
described in [Tur92]. 

 Using our interface, the user first sketches only the large 
ellipses in the sketch window (Figure 5a). The system 
generates spots with spacing and orientation as sketched. 
These spots form the first layer of patterns, with a coloring 
scheme as described in Section 2.3. To add more spots into 
this texture, the user first freezes these larger spots (set the 
morphogens concentration in these cells constant). A 
second set of ellipses can now be drawn in the sketch 
window (Figure 5b). The system produces a second set of 
spots (the second layer of patterns), with orientation as 
sketched, in between the first set. The outcome of this 
second set of spots depends on the spacing among the first 
set and the size of the second set. The size of the second set 
of spots should be small enough for them to form in 
between the larger spots.  

 
2.2. Sketching stripes 
 
Stripe pattern can be generated by sketching straight lines in 
the sketch window (Figure 6). Stripes are described by their 
width and orientation. The user needs to draw at least one 
line representing stripes in each region of the sketch 
window. The system calculates average slopes of lines in 
each region. Based on these values, the system then 
generates stripes with orientations similar to those in the 
sketch. The detailed description of this implementation can 
be found in Section 5.1. The user can choose one of four 
different sizes to draw the line, resulting in four different 
thicknesses of the stripes. 
 
2.3. Color control 
 
Our system generates textures by imitating the RD process 
between morphogens. The concentration of each 
morphogen is mapped to a color. The patterns of spots and 
stripes are formed through the variations in concentration of 
the morphogens as a result of the RD process. After the 
texture is produced, the user can use the color control 
interface provided by the system to vary the color of the 

texture by changing the mapping of the morphogen 
concentrations to colors.  

The color control interface is based on the work 
presented in [KTBG03]. The interface provides two sets of 
colors illustrated by the two long spacing bars in Figures 7 
and 8. The upper bar displays the set of colors used for the 
first layer of patterns while the lower bar displays the set of 
colors used for the second layer (this second color set is 
used only in the case of complex patterns, as in Figure 8). A 
user can use the Red/Green/Blue slide bars to define the 
colors to be used for either of the two sets. Colors can be 
added, modified, removed or the order of colors can be 
changed for each of the two sets. A user can also adjust the 
spacing between colors in one set by moving the buttons 
(one for each color) on the spacing bar. Apart from the 
spacing bar, the user can use a Bezier curve to blend 
between colors. The blending of colors in each set is based 
on the distance between two adjacent colors on the spacing 
bar, and by the shape of the corresponding Bezier curve. 

The concentration of a given morphogen is mapped to the 
continuous set of colors; the lowest concentration (valley) 
corresponds to the first color in the set, and the highest 
concentration (peak) corresponds to the last color (Figure 7). 

 
Figure 7. Concentration of morphogen A is mapped to the 
upper set of colors, with the lowest concentration mapped 
to violet and the highest concentration mapped to pink. 
Transition between the valley to the peak of the 
morphogen’s concentrations is visualized by a change in 
color, from violet to yellow, to green, and then to pink. 

 
Figure 8. Spots belonging to the first layer are mapped to 
the first color set (pink to yellow), while spots belonging to 
the second layer are mapped to the second color set (pink to 
red). 



4  Paper ID 1020 

submitted to EUROGRAPHICS Workshop on Sketch-Based Interfaces and Modeling (2006) 

3. Background of Reaction-Diffusion 
 
A Reaction-Diffusion (RD) system consists of two (or 
more) morphogens diffusing over a surface and reacting 
with one another to form a stable pattern. This pattern is 
visualized by mapping each morphogen’s concentration to a 
color. In general, this process can be modeled by the 
following differential equations [Tur91]: 

bDbaG
t
b

aDbaF
t
a

b

a

2

2

),(

),(

∇+=
∂
∂

∇+=
∂
∂

  (Eq. 1) 

where a and b represent the concentrations of morphogens 
A and B, and Da and Db are diffusion rates of A and B, 
respectively. At any point in time, the concentrations a and 
b are determined by the above functions. F(a,b) and G(a,b) 
describe the change in the concentration of A and of B, 
respectively, as a result of the reaction processes between A 
and B. These functions will decide if one morphogen 
inhibits the other, or sustains the other at the same position. 
Laplacians ∇2a and ∇2b are the measures of how high the 
concentrations of A and B are relative to the concentrations 
of the same morphogens, respectively, in the surrounding 
cells. In the case of a grid (Figure 9a), the formula for ∇2a is 
as follows: 

jijijijiji aaaaaa ,1,1,,1,1
2 4−+++=∇ +−+−      (Eq. 2) 

In general, for an arbitrary surface, e.g. a mesh (Figure 
9b), the formula will be: 

i

n

k
ik naaa −=∇ ∑

=1

2    (Eq. 3) 

For a given morphogen A, if the concentration of A in the 
current cell is higher than that of A in the surrounding cells, 
Laplacian ∇2a is negative. In the next time step, A diffuses 
away from this cell, thus the concentration of A reduces. 
The reverse occurs if the concentration of A is lower in the 
current cell relative to the surrounding cells. Da and Db 
specify how fast A and B diffuse across the surface. At any 
time t, the concentration of A is the sum of a reaction 
process between A and B – denoted by F(a,b) – and a 
diffusion process of A – denoted by Da∇

2a (see Appendix).  

 
Figure 9a. Morphogen A 
diffuses to and from four 
adjacent cells. 

 
Figure 9b. Morphogen A 
diffuses to and from all 
adjacent cells. 

4. Previous work 
 
The work by Turing in [Tur52] describes a RD system of 
two morphogens that forms spots (Turing spot system). 
Other researchers have since shown that simple patterns, 
from spots to stripes, can also be generated with reaction-
diffusion mechanisms using different systems of 
morphogens and equations [Bar81, Mur82, Mei82]. In 
[Mei82], Meinhardt described a RD system of two 
morphogens that produces spots (Meinhardt spot system), 
and another RD system of five morphogens that produces 
stripes (Meinhardt stripe system). In 1991, Witkin and Kass 
adapted RD for texture synthesis and added anisotropy by 
varying diffusion across the surface [WK91]. It was also 
shown that complex patterns could be generated using 
double simulations of cascaded RD systems [Tur91].  

Using the three RD systems (Turing spot, Meinhardt spot, 
and Meinhardt stripe), we can generate random spots or 
stripes by applying random variations to the concentrations 
of morphogens in the system. We can also generate regular 
stripes by raising the initial concentration of one morphogen 
at certain cells, called “initiator cells.” During RD 
simulation, stripes radiate from these cells (Figure 10). 

Cascaded systems built upon these three basic forms can 
also generate more complex patterns, such as leopard spots 
or mixed spots of different sizes [Tur92]. We will explain 
the generation of some of these complex patterns in the 
following paragraphs. In the following section, we will 
describe our extensions that give the user more flexibility in 
generating RD textures. 

Mixed spots of different sizes are obtained by first 
generating large size spots. These large spots are then 
frozen – the concentrations of morphogens in those cells 
that form the spots are kept constant. The second simulation 
then creates small spots in between the large spots (Figure 
11a).  

Leopard spots, or rosettes, as shown in Figure 11b, are 
generated using the Turing spot system in a similar way, but 
with one extra step. After freezing the large spots, the 
concentrations of morphogens in cells that form these spots 
– cells with peak concentration of a given morphogen A and 
valley concentration of the other – are reset to the initial 
level [Tur92]. During the second simulation, since the 
concentration of morphogen A in cells within the large spots 
is lower than its peak, A tries to diffuse to cells surrounding 
the large spots, which leads to inhibition of morphogen B 
from collecting in these cells. As a result, the small spots 
tend to form a circle around the large spots instead of in 
between them. In Figure 11b, A is represented by black 
color and B by yellow color. 

 
Figure 10. Regular stripes radiate from initiator cells 
during RD process. 



 Paper ID 1020     5 

submitted to EUROGRAPHICS Workshop on Sketch-Based Interfaces and Modeling (2006) 

 
Figure 11a. Mixed spots 
generated by the Meinhardt 
spot system. 

 
Figure 11b. Leopard spots 
produced by Turing spot 
system. 

                 
Figure 12. Two-step generation of small spots with large 
spacing using cascaded Turing spot system. First, large 
spots with large spacing are produced (left). Next, small 
spots are produced at the same sites where large spots had 
been (right).  
 

When single RD simulation is employed to generate 
spots, the distance between spots, or spacing, is proportional 
to the size of the spots. The larger the spots are, the wider 
the spacing is. However, using cascaded Turing spot 
systems as described in [Tur92], small spots with large 
spacing can be generated (Figure 12). The first simulation 
yields large spots with large spacing. The concentration of 
morphogens from the first simulation is then used to set up 
the second simulation such that smaller spots are produced 
at the same positions where the large spots had been, thus 
maintaining large spacing. In other words, the first 
simulation produces spots with the specified spacing. The 
second simulation yields spots with the desired size while 
maintaining the previous spacing. 

The existing systems of spots and stripes described above 
have limited flexibility. For example, the spots and stripes 
described before cannot be oriented in any arbitrary 
direction that the user may desire. More importantly, the 
user needs to directly tweak parameters of the RD system in 
order to get a desired pattern. It can be difficult to find 
initial values of morphogens that produce interesting 
patterns, much less a pattern that has certain desired 
attributes. In the following section we describe our interface 
with which a user can sketch RD texture. This is an intuitive 
method for a user to generate patterns automatically, 
without the need for knowledgeable tweaking of RD 
parameters. In order to allow more flexibility to the textures 
that can be generated, we also provide extensions that 
support arbitrarily oriented spots and stripes. We also show 
how we give additional control to the attributes of the 
patterns, and how we apply machine learning to map from 
our high-level spot description to RD parameters. 

5. Implementation 
 
5.1. High-level description for spots 
 
The main objective of this work is to develop an intuitive 
and easy way for a user to automatically generate a desired 
texture. The first step is the intuitive sketch interface 
described in Section 2. However, the RD systems which are 
used to generate the textures require values of various 
parameters as inputs. In order to extract the parameter 
values from the sketch, we devised a high-level description 
for the spots in terms of the three parameters: size, 
orientation and spacing. 

When the user draws spots in the sketch window, the 
system fits ellipses to the spots, and extracts their centers, 
orientations and radii. The area of a spot is used to describe 
its size; the ratio of minor radius to major radius to describe 
its shape, and the major axis to describe its orientation. We 
then use Delaunay triangulation method to determine the 
closest neighbors of a spot, and then calculate the distance 
from this spot to its neighbors. In Figure 4a, red lines 
produced during this process correspond to the distances 
between spots. The average distance between adjacent spots 
in the user’s sketch is then used as the spacing between all 
the spots for the purpose of generating the texture. 

 
5.2. Application of Machine learning for mapping user's 
sketch to RD parameters 
 
In the previous section, we describe how physical attributes 
of the sketch are calculated. Once these values have been 
extracted from the user’s sketch, they need to be mapped to 
the parameters. In order to resolve the mapping between 
physical attributes and RD parameters, we use machine 
learning. This step is described in the following paragraphs. 
 
5.2.1. Preparing training data for machine learning. 
The purpose of our machine learning function is to map the 
spot attributes to parameter values. The first step is to learn 
how a set of initial parameter values map to spot attributes. 
Since the parameters used to determine orientation and size 
with spacing are independent, learning the mapping for the 
orientation and for the size with spacing can be done 
separately. To reduce the total number of data points, we 
generated four different sets of training data, two for Turing 
and Meinhardt spots’ orientation and two for Turing and 
Meinhardt spots’ size and spacing. The RD system was run 
15,600 times with different parameter settings to generate 
textures with various patterns that serve as training data for 
this learning process. For each RD spot system, we use a 
different threshold value for morphogen A or B to trace the 
boundary of the spot. We then fit ellipses to these spots. 
Bad textures (e.g. when the patterns are not well formed, or 
if the size of the spots is too small to perform ellipse fitting) 
are excluded. Using the same method as for extracting spot 
attributes from user’s sketch, we calculate the physical 
attributes of spots generated by the RD system (Figure 13).  
 
 



6  Paper ID 1020 

submitted to EUROGRAPHICS Workshop on Sketch-Based Interfaces and Modeling (2006) 

 

                 
Figure 13. Ellipses (left) are fitted to RD spots (right). 
Yellow lines connect each ellipse to their closest neighbors 
as determined by Delaunay triangulation. 

During the texture generation process, the training data 
were fed to a machine learning function to map the spot 
attributes from the user’s sketch to corresponding RD 
parameters. 
 
5.2.2. Locally Weighted Regression. To implement 
machine learning, we choose Locally Weighted Regression 
(LWR) because it does not require an extremely large 
collection of training data, and yet it is highly efficient for 
learning complex mappings from real-valued input vectors 
to real-valued output vectors using noisy data.  

Locally Weighted Regression is a memory-based 
algorithm for learning continuous curves that uses only 
training data close to the particular point X. Points nearby 
are weighted by their distance to point X. A nonlinear 
regression – an estimation technique using interpolation to 
predict one variable from one or more other variables – is 
then calculated using these weighted points. Using a 
memory-based algorithm for machine learning also means 
that we need to store the training data and run LWR 
function every time to generate the parameters. We use the 
LWR Matlab function presented in [SA94].  

 
5.2.3. Mapping functions. The results we get from 
mapping size and spacing of spots to RD parameters are not 
always reliable because of the erratic nature of training data. 
Therefore, we build a mapping function for size and spacing 
of spots using linear interpolation. The function takes 
spacing or area as input and returns reaction rates and 
direction coefficients as outputs. For orientation of spots, 
the mapping function is a LWR function that takes the ratio 
of minor radius to major radius as well as the major axis 
vector of the sketched ellipses as inputs, and returns 
direction coefficients as outputs. 
 
5.3. Extensions to existing RD spots 
 
5.3.1. Arbitrarily oriented spots. The existing RD 
systems described in the Section 4 can generate only 
anisotropic spots, which are elliptical spots in vertical or 
horizontal directions. This is because these systems allow 
the morphogens to diffuse to four neighbors only, along the 
directions North, South, East, and West (Figure 9a). In this 
work, apart from using anisotropic diffusion rates, we also 
allow the morphogens to diffuse from and to each of the 
eight neighbors (Figure 14a). In addition to diffusion rates 

Da and Db shown in Equation 1, we also expand the formula 
calculating Laplacians (Equation 2) and add direction 
coefficients to the flow of morphogens to and from 
neighbor cells (Figure 14a). These coefficients specify 
preferential directions in which morphogens diffuse faster, 
thus the spots are elongated in these directions. As a result, 
spots can have arbitrary orientation. 
 
5.3.2. Non-homogeneous patterns. In a RD system, there 
are several parameters such as the reaction rates, diffusion 
rates, and direction coefficients that determine the size, 
shape, spacing, and orientation of the spots. In order to 
allow non-homogeneous patterns, instead of using the same 
parameter values everywhere, we blend the parameter 
values across the grid. The result is patterns of spots that 
have size, orientation, and spacing changing across the 
image (Figure 15). 

 
Figure 14a. Morphogens 
from one cell can diffuse 
from and to all eight of its 
neighbors. Diffusion 
coefficients give the spots 
shape and orientation. 

 
Figure 14b. Anisotropic 
Turing spots with the user-
supplied direction 
indicated by arrow 

           
(a)                   (b) 

Figure 15. Examples of non-homogeneous textures of spots 
with size (a) and orientation (b) changing across the image. 

                     
Figure 16. Seeding the stripe system with line segments 
(left) results in a texture with similar orientation (right). 
Note that slopes of the stripes vary across the image. 



 Paper ID 1020     7 

submitted to EUROGRAPHICS Workshop on Sketch-Based Interfaces and Modeling (2006) 

5.4. Oriented random stripes 
 
Direction coefficients can be used to generate oriented spots 
(as explained in Section 5.3.1), but they do not help in 
generating oriented stripes. Initiator cells that form oriented 
random line segments, however, can create oriented random 
stripes. The system calculates the average slopes of the lines 
sketched by the user in each of the regions of the sketch 
window. These values are used to seed random lines with 
slight variations of these average slopes. The Meinhardt 
stripes system then generates random stripes that have 
similar orientations (Figure 16).  
 
6. Sketching RD texture on a 3D mesh 
 
We demonstrate our interface for creating RD textures on 
3D surfaces. Instead of drawing on a separate sketching 
window, the user can draw spots directly on a mesh. The 
system then fits ellipses to the spots, computes their 
attributes, maps these to appropriate parameters, which are 
then associated with vertices of the mesh that lie within 
these ellipses. The remaining vertices are assigned 
parameter values that are a linear combination of the values 
at vertices lying within the closest ellipses.  

To generate spots of different sizes on the bunny in 
Figure 19, the diffusion rates of morphogens A and B are 
propagated and blended over the mesh based on the size and 
position of spots sketched by the user. The relative 
proportions of morphogen flowing to each of the 
neighboring vertices are calculated as explained below.  

For each vertex i in the mesh and its neighboring vertex 
ik (among its n neighboring vertices numbered i1 through 
in), the term dik denotes the distance between centroids of 
the two triangles on either side of the edge connecting 
vertex i to vertex ik (Figure 17). The percentage coefficient 
Pik for the flow of morphogens between these two vertices 
is calculated as the ratio: 

 

∑
=

= n

k
ik

ik
ik

d

dP

1

 (Eq. 4) 

And the Laplacian ∇2a for vertex i is given by Equation 5, 
where ai is the morphogen concentration in vertex i. 

⎟
⎠

⎞
⎜
⎝

⎛
−×=∇ ∑

=
i

n

k
ikik aaPa

1

2 4  (Eq. 5) 

To generate oriented spots, the vector showing the 
orientation of the ellipse is projected onto the tangent plane 
at each vertex (Figure 18). During RD simulation, the faces 
surrounding each vertex are rotated so that this projected 
vector becomes parallel to the x axis. These faces are then 
scaled down along the x axis according to the ratio of the 
minor radius to the major radius of the ellipse sketched by 
the user. Finally, the relative proportions of morphogen 
flowing to each of the neighboring vertices are determined 
based on these transformed faces surrounding the vertex in 
the same manner as described above. Once the differential 
flow of morphogens has been calculated, it is applied to the 

original mesh to generate the desired pattern. As shown in 
Figure 20, the method produces spots with desired 
orientation on a cube. However, due to irregular distribution 
of vertices, the orientation of spots is not as clear when 
generated on the bunny. 

 
Figure 17. Proportional flow of morphogens along each 
edge between the current vertex and its neighboring 
vertices is determined by the normalized distances between 
the centroids of the two faces on either side of that edge. 

 
 (a)               (b) 

Figure 18. (a) The original mesh showing the current 
vertex and its surrounding vertices. The arrow shows the 
projection of the sketched ellipse’s major axis vector onto 
the tangent plane at the current vertex. (b) Illustration of 
the vertices after a rotation followed by scaling down the 
faces along the x-axis.  

         
Figure 19. Spots of different sizes generated on a 3D mesh. 

                    
Figure 20. Oriented spots generated on a cube. 



8  Paper ID 1020 

submitted to EUROGRAPHICS Workshop on Sketch-Based Interfaces and Modeling (2006) 

 
7. Summary and future work 
 
The system described here allows a user to make a simple 
sketch of a desired pattern and then automatically generates 
a large amount of texture that has a similar pattern. This 
interface allows the user to produce a desired texture with 
ease and without the need for any internal knowledge of the 
Reaction-Diffusion process. Instead of having to run the 
system several times to find the right set of parameters that 
will produce desired texture, the user can sketch the patterns 
they want and have the system automatically generate a 
texture with similar attributes. This is a much more natural 
and intuitive method.  

As part of future work, the dimension and resolution of 
the grid can be dynamically determined based on user’s 
sketch, such as number and size of ellipses or stripes, in 
order to make the texture synthesis more flexible. As 
demonstrated here, this system can be extended to support 
automatic texture synthesis on canonical 3D surfaces. The 
next step will be the development of a stable and robust 
system for automatic texture synthesis on a 3D model. 

 
8. Appendix: 
 
8.1. Formulae for Turing spot system 
 

( )[ ]

( )[ ]bDbabkspeed
t
b

aDabkspeed
t
a

ba

aa

2

216

∇+−−=
∂
∂

∇+−=
∂
∂

β

 

 
8.2. Formulae for Meinhardt spot system 
 

( )[ ]bDpbpasspeed
t
b

aDpap
b
a

sspeed
t
a

b

a

2
32

2

2
31

2

01.0

01.0

∇++−=
∂
∂

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
∇+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+−=

∂
∂

β

β
 

 
8.3. Formulae for Meinhardt stripe system 
 

[ ]

( )[ ]

( )[ ]eDkebspeed
t
e

dDkdaspeed
t
d

ckdbeaspeed
t
c

bDbk
c

dbspeed
t
b

aDak
c

easpeed
t
a

ede

dde

c

bab

aab

2

2

22

2
2

2
2

01.001.0

01.0

01.0

∇+−=
∂
∂

∇+−=
∂
∂

−+=
∂
∂

⎥
⎦

⎤
⎢
⎣

⎡
∇+−=

∂
∂

⎥
⎦

⎤
⎢
⎣

⎡
∇+−=

∂
∂

β

β

 

 

 
9. References: 
 
[Bar81] BARD J. B. L.: A Model for Generating Aspects of 

Zebra and Other Mammalian Coat Patterns. Journal of 
Theoretical Biology, Vol. 93, No. 2, pp. 363–385 
(November 1981). 

[EMP*02] EBERT D. S., MUSGRAVE F. K., PEACHEY D., 
PERLIN K., WORLEY S.: Texturing & Modeling: A 
Procedural Approach, Morgan Kaufmann, 3rd edition, 
(December 2002). 

[KTBG03] KULLA C. D., TUCEK D. J.., BAILEY R., GRIMM C. 
M.: Using Texture Synthesis for Non-Photorealistic 
Shading from Paint Samples. 11th Pacific Graphics 
Conference on Computer Graphics and Applications, pp. 
477 (October 2003). 

[Mal82] MALDELBROT B. B.: The Fractal Geometry of 
Nature, W. H. Freeman and Company, New York, 1982. 

[Mei82] MEINHARDT H.: Models of Biological Pattern 
Formation, Academic Press, London, 1982. 

[Mur81] MURRAY J. D.: On Pattern Formation Mechanisms 
for Lepidopteran Wing Patterns and Mammalian Coat 
Markings. Philosophical Transactions of the Royal 
Society B, Vol. 295, pp. 473–496 (October 1981). 

[Per85] PERLIN K.: An Image Synthesizer. Computer 
Graphics, Vol. 19, No. 3 (SIGGRAPH ’85), pp. 287–296 
(July 1985). 

[PH89] PERLIN K., HOFFERT E. M.: “Hypertexture,” 
Computer Graphics, Vol. 23, No. 3 (SIGGRAPH ’89), 
pp. 253–262 (July 1989). 

[SA94] SCHAAL S., ATKESON C. G.: Assessing the quality of 
learned local models. Advances in Neural Information 
Processing Systems 6 Morgan Kaufmann, San Mateo, 
CA, pp. 160-167, 1994. 

[Tur52] TURING A.: The Chemical Basis of Morphogenesis. 
Philosophical Transactions of the Royal Society B, Vol. 
237, pp. 37–72 (August 14, 1952). 

[Tur91] TURK G.: Generating Textures on Arbitrary 
Surfaces Using Reaction-Diffusion. Computer Graphics, 
Vol. 25, No. 4 (SIGGRAPH ’91), pp. 289–298 (July 
1991). 

[Tur92] TURK G.: Texturing Surfaces Using Reaction-
Diffusion. PhD Dissertation, The University of North 
Carolina at Chapel Hill, 1992. 

[WK91] WITKIN A., KASS M.: Reaction-Diffusion Textures. 
Computer Graphics, Vol. 25, No. 4 (SIGGRAPH ’91), 
pp. 299–308 (July 1991). 

 


