
EUROGRAPHICS Symposium on Sketch-Based Interfaces and Modeling (2009), pp. 1–8
C. Grimm and J. J. LaViola Jr. (Editors)

Editing Level-Set Models with Sketched Curves

M. Eyiyurekli1, C. Grimm2 and D. Breen1

1Department of Computer Science, Drexel University
2Department of Computer Science and Engineering, Washington University in St. Louis

Abstract
Level set models are deformable implicit surfaces where the deformation is controlled by a speed function in the
level set partial differential equation (PDE). These models are widely used in computer graphics applications
due to their implicit definition, low-level volumetric representation and the powerful numerical techniques used
to produce the PDE-based deformation. We present a set of interactive sketch-based level-set surface editing
operators. These operators allow a user to sketch curves above or on a level-set surface in order to edit the
surface’s shape. Once the curves are sketched the surface interactively evolves to locally fit to the curves. A user
may then modify the curves in order to refine the shape of the model. The mathematics, algorithms and techniques
needed to implement numerous sketch-based level set modeling capabilities are described. The speed functions that
produce the surface deformations within the context of solving the level-set PDE are detailed. Several examples
are presented to demonstrate the flexibility and usefulness of the editing operators.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Physically based modeling

1. Introduction

Surface models, e.g. triangle meshes, NURBS, and subdi-
vision surfaces, have been the most widespread modeling
representation used within computer graphics and visualiza-
tion for several decades. In these models topologically 2D
surfaces existing in 3D Cartesian space have been explicitly
represented with 2D structures, such as triangles and spline
patches. While these have been the predominant models for
quite some time, implicit models, which represent surfaces
as iso-surfaces of a 3D scalar field, continue to become more
prevalent and important within such disparate disciplines as
special effects and medicine/biology.

Level set models are one type of implicit model and are
defined as an iso-surface, i.e. a level set, of a dynamic im-
plicit function φ. The surface is deformed by solving a partial
differential equation (PDE) on a regular sampling of φ, i.e.
a volume dataset. Level set methods provide the techniques
needed to change the voxel values of the volume in a way
that moves the embedded iso-surface to meet a user-defined
goal. Level set models offer numerous benefits in compari-
son to other types of geometric surface representations. They
are guaranteed to define simple (non-self-intersecting) and
closed surfaces. Thus level set editing will always produce a

Figure 1: A rubber duck is created from a level-set sphere
and a set of sketched curves. One curve defines a cross-
section of the duck model. The wing is created using two
curves, one to identify the extent of the wing and the second
one to define a cross-section of the wing.

physically-realizable (and therefore manufacturable) object.
Level set models easily change topological genus, making

submitted to EUROGRAPHICS Symposium on Sketch-Based Interfaces and Modeling
(2009)

2 M. Eyiyurekli, C. Grimm & D. Breen / Editing Level-Set Models with Sketched Curves

them ideal for representing complex structures of unknown
genus. They are free of edge connectivity and mesh quality
issues, and therefore do not require remeshing during editing
operations. Because of their volumetric representation they
easily support solid modeling operations and calculations,
while offering a powerful surface modeling paradigm.

Sketching communicates ideas rapidly through the cre-
ation of approximate geometric forms, and requires low
overhead, no need for precise input or specialized knowl-
edge. Sketching also provides easy-to-use methods for spec-
ifying an initial shape, as well as an intuitive approach for the
correction and revision of the shape. Most current sketch-
based editing systems use 3D meshes for their underlying
surface representation. While these types of geometric mod-
els are widely used and are supported by numerous mod-
eling systems, meshes limit the range of deformations dur-
ing sketch-based editing operations, especially when the op-
erations produce drastic model changes, such as extreme
squeezing or spreading. In these cases, mesh-based systems
need to perform a remeshing operation, which can be time-
consuming and can slow system response; thus impeding
user interaction and productivity.

A sketch-based modeling system based on implicit mod-
els remedies this problem by removing the inefficiency of
remeshing during surface deformation. Additionally, there
is a need for sketch-based modeling techniques for level-set
models, as they become more widely used in entertainment
and medical applications. To address this need we have de-
veloped an approach for interactive sketch-based editing of
level-set models. This approach allows a user to sketch a
curve on, above or near a level-set model. The model then
evolves in response to the user’s curve-based input to cre-
ate a surface that locally matches the shape of the curves.
The curves may then be modified, with the level-set surface
adjusting to the curve changes. Some of these methods are
utilized to create a rubber duck from a level-set sphere and a
set of sketch curves, as seen in Figure 1. An outline curve is
sketched and the sphere deforms to fit this curve. In order to
create the wing the user draws one curve on the surface that
identifies where the wing is going to be placed and another
curve over the surface to define a cross-section of the wing.

Contributions. The mathematics, algorithms and tech-
niques needed to implement a variety of sketch-based level-
set modeling capabilities have been implemented. These ca-
pabilities include local and global surface editing using sin-
gle or multiple curves that are specified on or above a level-
set surface. We have defined level-set speed functions to
implement the capabilities within an interactive modeling
framework. Our work provides a general, expressive and
interactive set of editing operators for PDE-based implicit
models. Previous work in level-set and PDE-based model-
ing have primarily focused on volume sculpting and CSG
operations. Ours are the first free-form editing operators de-
veloped for level-set models.

2. Previous Work

SKETCH [ZHH96] introduced a gesture-based interface for
the rapid modeling of CSG-like models consisting of sim-
ple primitives. The user sketches the salient features of a
3D primitive and the system instantiates the corresponding
3D model in the scene. An improved sketch-based model-
ing system, Teddy [IMT99], uses 2D user strokes to con-
struct 3D polygonal surfaces. This highly interactive sys-
tem translates simple user strokes to actions such as paint,
erase, extrude, cut and smooth to create 3D models. They
later developed a framework to create visually smooth sur-
faces from their sketch-based modeling environment [IH03].
This work was extended in [NISA07] (FiberMesh) to use a
set of 3D curves to define the surfaces. For a given set of
curves, the system automatically constructs a smooth sur-
face by applying functional optimization. Another applica-
tion created by the same approach is Plushie [MI07], an in-
teractive design system for 3D plush toys. In all of these ap-
plications a relatively coarse mesh (1000-2000 vertices) is
used to achieve interactive performance. [ONNI03] use a bi-
nary volume dataset to overcome the topological restrictions
of Teddy.

Wires [SF98] is a deformation technique which uses
curves (wires), placed in close proximity to a polygonal sur-
face, as handles to deform the surface locally. This technique
has been applied to animation of facial expressions, cloth
animation and surface stitching. Lawrence and Funkhouser
[LF04] utilize a painting paradigm for local surface defor-
mations, where user-applied “paint” defines instantaneous
surface velocities. They initially implemented this technique
using level-set surfaces, but later switched to polygonal sur-
faces in order to achieve interactive rates and improve spatial
resolution. Cherlin et al. [CSSJ05] use interpolating para-
metric surfaces in their sketch-based modeling framework.
While complex models can be created, the authors state
that it is time-consuming to use. Layered procedural sur-
faces may be created and manipulated with Surface Trees
[SS08], a hierarchical representation of surface patches and
surface editing operations. This approach merges sketch-
based interaction with a 3D analog of the intuitive layer-
based metaphors found in 2D graphic design tools.

A number of surface editing operators for level set models
have been described in [MBWB02]. These include sharp-
ening, smoothing, blending, embossing, volumetric CSG
and morphological operations. The algorithms and numer-
ical techniques used to implement these operators are de-
tailed in [MBW∗05]. Baerentzen and Christensen [BC02]
used the Level Set Method in their volume sculpting system,
which included such capabilities as add/remove material,
smooth/unsmooth and morphological operations. Another
PDE-based volumetric sculpting system [DQ04, DQ05] de-
fined smooth surfaces as a solution to a fourth order elliptic
PDE subject to geometric and physical constraints, such as

c© 2009 The Author(s)
Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.

cindygrimm
Inserted Text
and

cindygrimm
Cross-Out

cindygrimm
Replacement Text
this impedes

cindygrimm
Inserted Text
se

cindygrimm
Inserted Text
, sketch-based (?)

cindygrimm
Cross-Out

cindygrimm
Replacement Text
A more free-form (SKETCH was all about cubes, Teddy does no cubes by does do blobby things)

cindygrimm
Inserted Text
Citations?

cindygrimm
Cross-Out

cindygrimm
Replacement Text
I'm not sure, but I think they didn't do level-sets in the thin-shell sense, but kept values at all grid values.

cindygrimm
Cross-Out

cindygrimm
Replacement Text
You don't capitalize level set elsewhere...

cindygrimm
Highlight

M. Eyiyurekli, C. Grimm & D. Breen / Editing Level-Set Models with Sketched Curves 3

curvature and normals. The surface is deformed by solving
the PDE with the given boundary conditions.

Wyvil et al. [WGG99] created an implicit modeling sys-
tem that combines CSG operations with blending and warp-
ing. They use a tree-based representation, called the Blob-
Tree, where leaves of the tree are the primitives and inner
nodes are the operations, i.e. warp, blend, union, intersec-
tion and difference, as well as Barr deformations [Bar84].
ShapeShop [SWSJ05] uses BlobTrees as the underlying
shape representation for a sketch-based editing framework.
A curve-based primitive is introduced that may be “inflated”
or extruded. Sketch-based models are produced by combin-
ing this primitive with CSG and blending operations. This
work was extended by the addition of a curve-based free-
form deformation capability [SdGWS08]. Karpenko et al.
[KHR02] and BlobMaker [AJ03] use variational implicit
surfaces as model representation for free-form modeling.
These systems suffer from time requirements for solving the
variational function. Other implicit sketching systems have
used convolution surfaces [TZF04] and spherical implicit
functions [AGB04], and also have significant computational
requirements.

3. Level Set Methods

The Level Set Method [OS88,OF02] is a technique for track-
ing the evolution of a deforming interface/surface. It repre-
sents the deforming surface as an iso-surface

S = {x | φ(x) = k}, (1)

where k ∈ < is the iso-value, x ∈ <3 is a point in space on
the iso-surface and φ : <3→< is a scalar function. In other
words S is the set of points which form the kth iso-surface
of φ. The choice of k is arbitrary. Deformations are defined
by the change of S over time. The dynamic level set equation
defines k to be constant (usually 0) and φ to evolve with time,

φ(x, t) = k. (2)

This equation can be transformed into a partial differential
equation that can be solved by well-established numerical
methods. Taking the time derivative of both sides of Equa-
tion 2 produces

∂φ(x, t)
∂t

+∇φ(x, t)
ds
dt

= 0. (3)

Equation 3 is a Hamilton-Jacobi type equation and defines
an initial value problem for the time-dependent scalar func-
tion φ. There are several numerical approaches for solving
the dynamic level set equation [OF02]. Equation 3 can be
rewritten as

∂φ

∂t
=−∇φ ·F(x,Dφ,D2

φ . . .), (4)

where F is a user-defined speed term which depends on a set
of order-n derivatives of φ as well as other functions of x.
F defines the speed of the level set surface at point x in the

Cross-section
curve

ROI curve

Figure 2: Values of the F function defined by a user-sketched
curve. Surface normals scaled by F are drawn as blue ar-
rows at points on the surface.

direction of the local surface normal (∇φ/|∇φ|). The sur-
face is deformed over time by moving it either in or out in
the direction of the normal. The magnitude and direction of
the movement is specified by the F function, which is de-
fined over the entire volume. Figure 2 presents the values
produced by F at specific points on a surface given a cross-
sectional curve. A set of surface normals scaled by F are
drawn as blue arrows on the surface immediately below this
curve.

4. Interactive Level-Set Modeling Framework

The sketch-based editing operators utilize previously-
developed foundational technology. This technology in-
cludes an interactive level-set modeling framework and a lo-
calized editing technique for Catmull-Rom splines [EB09b].
Our interactive level-set modeling framework consists of
four major components: (1) the level-set library that solves
the level-set PDE on a narrow band, (2) the OpenGL user
interface (UI), (3) the data structures that hold the volume
and narrow-band information, and (4) the routines that trans-
late user input into speed functions for the level-set PDE
[EB09a].

The first component of the framework utilizes the VIS-
PACK level-set library [Whi08] to efficiently solve the level-
set PDE. We have developed an editing user interface using
QT within an OpenGL application that has been integrated
with the VISPACK library. The application accepts user ac-
tions and translates them into speed functions for the level-
set equation. We have also enhanced the narrow-band im-
plementation† in VISPACK to further improve its computa-
tional capabilities. The original VISPACK library computes
the level-set equation over the entire surface at every time
step. Additional data structures that achieve real-time evalu-
ation of the level-set equation have been implemented. These
data structures restrict computation to only those limited ar-
eas of the surface which are being modified.

We employ Catmull-Rom (C-R) splines in our model-
ing system to provide an interactive and easy-to-use method

† Rather than track all the level sets, the narrow-band method per-
forms computations only for those grid points which are located in
a narrow band around the zero level set.

c© 2009 The Author(s)
Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.

cindygrimm
Sticky Note
Blow up the text before you make the pdf so the text in the figure is at least the size of the text itself.

Should also label bottom points as being the starting surface

cindygrimm
Cross-Out

cindygrimm
Replacement Text
Same here - capitalize or not?

cindygrimm
Inserted Text
an example of the type of function F we produce in order to make the surface evolve towards a sketched-curve. The...

cindygrimm
Inserted Text
; we use k=0 here

4 M. Eyiyurekli, C. Grimm & D. Breen / Editing Level-Set Models with Sketched Curves

for curve editing. C-R spline’s ability to interpolate control
points is an important feature, one that allows us to accu-
rately translate user input into a mathematical representa-
tion. Other spline representations could also be utilized for
curve definition. In order to overcome the limitation that
moving a C-R control point only modifies the immediate
neighborhood around the control point, we developed an ap-
proach for the localized, interactive editing of C-R splines
[EB09b]. To provide greater flexibility, control and expres-
siveness, we have implemented techniques that expand and
generalize the result of modifying one C-R control point.
The techniques allow the user to define the range and type
of influence that manipulation of a single control point may
produce on a C-R curve, thus creating a versatile and pow-
erful localized curve editing capability.

5. Sketch-Based Editing Operators

Several sketch-based techniques have been implemented to
edit level-set surfaces. The editing operations can be applied
locally to a user-defined region or globally to the entire sur-
face. A single closed curve on the surface can be used to
identify a specific region of interest (ROI) to be deformed.
The user then draws one or more curves on or over the sur-
face to define the outlines of the final model. The surface
within the ROI moves towards these curves with the speed
functions described below. The curves may then be modified
to further shape the surface.

Our sketch-based operators require the definition of a 3D
curve using a conventional 3-button mouse. To provide this
input, we offer two methods for specifying 3D curves. The
first method provides a helping-plane. During editing opera-
tions the 2D input produced by mouse strokes can be mapped
onto an arbitrary plane within the scene. If utilized, the plane
can be added at a point of interest on the model and displayed
in the scene with a translucent color. Initially, the plane’s
normal is set to face the user, however, it can be changed to
an arbitrary orientation with a mouse interaction. 2D input
is mapped onto the plane during curve sketching operations.
A helping-plane (displayed in translucent yellow) is used to
define the shark tail in Figure 9, and the initial plane of the
shamrock and duck in Figures 1 and 8. In the second method
the 3D curve is defined to lie on a plane perpendicular to the
view direction. The curve begins at the point where the first
mouse click intersects the level-set surface.

5.1. Sketching a Single Cross-section
With this operator a curve may be used to define a cross-
section of a local shape change. The user draws a closed
boundary curve (B) on the surface to define an ROI and an-
other curve (Cd) that defines a cross-section of the desired
shape. Every point within the ROI moves in the general di-
rection of Cd with a speed function defined in Equation 5
until the surface reaches Cd . We created a “mountain” on the
surface with Cd defining the peak and B defining the extent

Figure 3: Top: Two curves are sketched, one on and one
above the surface. The surface grows to fit to both cross-
sections. The final result is displayed with a surface drawn
translucently on the right. Bottom: A control point is mod-
ified (left). The surface grows to fit to the modified curve
(right).

Cd

Cs

L

End point
on Cd

End point
on L and Cs Level-set surface

Shortest distance
from end point on
Cd to level-set
surface

Figure 4: Projecting the cross section curve onto the level-
set surface. The line L in 3D space is created using the clos-
est points to the end points of Cd on the surface. Points start-
ing from L move towards Cd and stop once they reach the
surface, creating the projected curve Cs.

of the foothills (Figure 3). Once the evolution starts, a third
curve (Cs) is created on the surface. This curve is represented
as a dense set of points and is the projection of Cd onto the
surface. The projection curve is created in two steps. First,
the closest points on the surface to both end points of Cd are
found. A 3D line segment L is created using these two closest
points. L and Cd are both represented with the same number
of dense points and a one-to-one correspondence is defined
between each pair of points on the curves. Next, all points
on L move to the level-set surface either towards or away
from their corresponding points depending on their position
with respect to the surface and Cd . The points stop when they
reach the surface creating a projection curve Cs of the cross-
section curve Cd on the surface. Figure 4 shows Cd , Cs and L
around the level-set surface. At every step of the evolution,
Cs moves toward Cd and the surface grows to meet the new
Cs, until Cs (and the surface) reaches Cd . We recognize that
there are cases where ordering/pairing produced by the pro-
jection may result in inconsistencies as the surface deforms.
We have not experienced this in our work to date. If prob-
lems do arise in the future, a more more robust projection
method [SPK04] may be utilized.

The red dots on the cross-section curve in Figure 3 are
control points that can be manipulated by clicking and drag-
ging. New control points can also be added to the curve.
After a control point is moved or added, the curve is re-

c© 2009 The Author(s)
Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.

cindygrimm
Sticky Note
Increase text size in all figures...

M. Eyiyurekli, C. Grimm & D. Breen / Editing Level-Set Models with Sketched Curves 5

Figure 5: Top: One cross-section curve is used to create a
mohawk for the mannequin head. Middle: Two curves define
the shape of the mohawk. The surface fits to these curves.
Bottom: The cross-section curve is modified to further refine
the final shape. The surface is drawn translucently to provide
a clearer view of the curves and control points.

calculated and the level-set equation is solved once more to
fit to the new cross-section. An initial bump defined by two
sketched curves is shown in Figure 3 (top). A control point
on the upper curve is pulled upwards. Figure 3 (bottom-
right) presents the resulting cross-section curve and the sur-
face that evolves to fit to the curve.

The speed function for this operator is

F(x) =
dup(x)

max(dup(x))
∗ f (dout(x))∗

max(din(x))−din(x)
max(din(x))

,

(5)

f (d) =

{
1.0 d > ε

(d/ε)2 d ≤ ε,
(6)

where x is a point on the surface, dout(x) is the geodesic
distance from x to B, and din(x) is the geodesic distance from
x to Cs. The first step of calculating dup for point x involves
finding the closest point in the point set representing Cs from
x, called xcs. Recall that xcs has a corresponding point on Cd ,
called xcd . dup(x) is simply the Euclidean distance between
xcs and xcd . Both max functions are taken over all points in
the ROI. f () is defined in Equation 6, and ensures that the
speed function (and therefore the deformation) goes to zero
within a distance ε to boundary curve B.

The first term of Equation 5 ensures that the evolution will
stop once the surface reaches the Cd curve. Together the last
two terms define the speed function as a decreasing function
of geodesic distance from the cross-section curve Cd to the
boundary curve B. In Figure 5 this operator is used to give
the mannequin head a mohawk.

5.2. Multiple Cross-Section Curves

The operator from the previous section was extended to cre-
ate editing capabilities that use several curves to define a 3D
shape. Given a set of cross-sectional curves, we develop two
approaches to create a surface that conforms to the shape
of these curves. These two techniques were implemented for
editing a level set surface by sketching multiple curves with a
conventional 2D mouse, and are described in Sections 5.2.1
and 5.2.2. In both approaches the user first draws a closed
curve on the surface to define an ROI. Multiple cross-section
curves are then sketched to define the 3D shape. Once the
initial curves are placed the user then can modify them to
specify further details. The surface is drawn in translucent
colors in this mode to facilitate curve editing. Once curve
sketching is completed, the system may be placed in surface
evolution mode. In this mode the surface evolves within the
ROI after each curve modification. This mode may also be
toggled off to once again allow multiple edits of the curves
before the surface is updated.

5.2.1. Sketching over the surface

This method allows the user to edit and deform a level-set
model by sketching planar curves over the surface. We have
explored several methods that will fit a surface to a given
set of curves in 3D space and have found two reasonable
approaches. In the first approach, the surface grows locally
until it reaches one of the curves, and then stops at the first
curve. The second approach involves blending the influence
of each cross-section curve at each point within the ROI.
Both methods utilize the speed function defined in Equation
5 and require the calculation of dup and din relative to each
cross-section curve at every point in the ROI.

In the first approach the speed function at point x on the
surface is calculated with Equation 5 using the closest curve,
where “closest” is defined to be the one with the lowest as-
sociated din value. The shape in Figure 6 (top right) is pro-
duced with this method. The second approach uses a blend-
ing function to calculate the speed of a point on the surface
by combining contributions from multiple individual speed
functions. In general this approach drives the surface to a
location between non-intersecting cross-section curves. We
found this approach to produce more pleasing results and
has been used for the remaining examples. Equation 7 de-
scribes the general structure of the speed function for multi-
ple curves.

F(x) =
Nc

∑
c=1

αc(x)∗Fc(x), (7)

c© 2009 The Author(s)
Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.

cindygrimm
Sticky Note
Ref fig 6

6 M. Eyiyurekli, C. Grimm & D. Breen / Editing Level-Set Models with Sketched Curves

Figure 6: Sketching cross-section curves over the surface.
Top left: The input curves. Top right: Fitting the surface
to the closest curve. Middle left: Blending with α

1
c . Middle

right: Blending with α
2
c . Bottom left: Blending with α

3
c . Bot-

tom right: Blending with α
4
c .

where Nc is the number of cross-section curves, αc(x) is one
of the four blending functions in Equation 8, and Fc(x) is de-
fined by Equation 5. For both terms the subscript c indicates
that the calculation is done relative to cross-section curve c.

α
1
c(x) = 1

2 + 1
2 ∗ cos(din(x)

max(din(x))
π)

α
2
c(x) = 1− din(x)

max(din(x))
α

3
c(x) = 1

Nc

α
4
c(x) = 1

din(x)

(8)

where din(x) is the shortest distance between point x and
the Cs curve associated with cross-section curve c, and
max(din(x)) is computed over all cross-section curves.

Figure 6 shows how the surface deforms given the input
curves in the top left and the different blending functions
defined in Equation 8. Although all blending functions gen-
erate reasonable results, α

1
c generates the closest fit to all

cross-section curves while producing smooth transitions on
the surface in between curves. α

2
c also produces a close fit

to the curves but the transitions between curves are not as
smooth as those produced with α

1
c . α

3
c is unable to fit to some

of the curves closer to the surface and α
4
c produces a rather

sharp drop-off from the cross-section curves. We use α
1
c for

the remaining examples in the paper.

5.2.2. Sketching on the Surface

We have also developed a third approach for modifying a
3D surface from a set of sketched curves by giving the user
control over curve-curve intersections. This method requires
all cross-section curves to be drawn on the surface initially.
A 3D line intersection algorithm is then used to calculate

Figure 7: Sketching on the surface. Top-left: Initial layout.
Top-right: moving one control point. Middle-left: Final lay-
out of cross-section curves. Middle-right: Surface evolving
to fit the cross-section curves. Bottom row shows two images
of the final shape, with the surface drawn translucently to
better see the curves.

intersection points between two curves. Short line segments
connecting two consecutive points on each curve are tested
against each other for intersections. A bounding box opti-
mization technique is utilized to improve running time. Ap-
proximate 3D intersection points are calculated using a clos-
est point algorithm. Once the intersection points are calcu-
lated the two curves are bound together, and the two curves
stay attached to each other at these intersection points during
curve editing operations.

Once all curves are drawn and all the intersection points
are calculated, the user can modify the curves by pulling on
the control points. Any of the cross-section curves can be
selected by switching between curves using the arrow keys.
Once a control point on a curve is moved, the curve is mod-
ified using techniques described in [EB09b]. When a sin-
gle curve is edited the change is propagated to intersecting
curves via intersection points. When an intersection point on
one curve is moved to a new location, the movement is inter-
preted as an editing operation performed on the connected
neighboring curves at the shared intersection points. Once
curve sketching is complete, the system may be placed in
surface evolution mode, and the surface moves within the
ROI to fit to the cross-section curves using the speed func-
tion in Equations 7 and 8. Figure 7 presents a surface editing
session using this approach.

5.3. Global Deformations

All editing operators described so far are local, i.e. they are
applied only in a user-defined portion of the surface. These
operators can be extended to act globally. In this mode,
the operators are applied to the entire surface. The general

c© 2009 The Author(s)
Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.

cindygrimm
Cross-Out

M. Eyiyurekli, C. Grimm & D. Breen / Editing Level-Set Models with Sketched Curves 7

Figure 8: Global editing example. The sphere is modified
with 4 curves to create a shamrock. An intermediate step
during evolution is shown in top middle frame and the fi-
nal result is drawn translucently in top right. The model is
further modified to add a stem in bottom right with a point-
based editing operator.

shapes of a number of models have been specified with this
operator. For example the petals of the shamrock in Figure
8, and the initial definition of the shark and duck in Figures
1 and 9. The speed function for this operator is also defined
in Equations 5, 7 and 8. Note that the function f () (Equation
6) will always be 1 during global editing, since there is no
ROI boundary.

6. Results

In this section we present models created using our sketch-
based editing tool. Table 1 shows running times and model
resolutions. All models have been created on a 3.2 GHz Intel
Xeon CPU. Figures 3, 6 and 7 begin with a box model with
resolution 161×161×101. Figure 5 uses the scan-converted
mannequin head model at resolution 134× 160× 186. Fig-
ures 1, 8 and 9 all start with a 20× 20× 20 sphere within a
150× 150× 150 resolution volume. The final resolution of
the bounding box around each model is given in Table 1.

We created three “plastic toys” using the sketch-based
modeling system. The shark model in Figure 9 is created
using eight curves and a combination of local and global
editing operators. The initial body is created from the sphere
using a single cross-section curve and the global editing op-
erator. Three additional curves further define the head and
the tail and create a slightly curved body. Three fins are
added similarly by using a closed curve to define a ROI and
a cross-section curve for the fin shape. A painting capabil-
ity [EB09a] allows color to be placed on the model. The
painted and shaded final model can be seen from different
views in Figure 9.

The duck (Figure 1) and the shamrock (Figure 8) models

Figure 9: The sphere and a cross-section curve is used to
create the initial shark body. The tail and head are modified
using additional curves. The fins are added by locally editing
the shark body. The final painted model is shown from three
different views.

are similarly created using sketched curves and the level-
set sphere model. Details like the eyes on the duck and the
stem of the shamrock are created using point-based free-
form editing operators [EB09a].

Model Resolution Speed (fps)
Figures 3, 6, 7 161×161×101 50-100

Figure 5 134×160×186 58
Figure 8 45×50×35 83
Figure 9 85×99×54 66-90
Figure 1 79×67×37 66-90

Table 1: Model resolution and running times for the final
results. Speed is in frames-per-second (fps).
7. Conclusions and Future Work

We have developed interactive sketch-based level-set surface
editing operators. These operators allow a user to edit level-
set surfaces using sketched curves above or on the surface.
The mathematics, algorithms and techniques needed to im-
plement numerous sketch-based level set modeling capabil-

c© 2009 The Author(s)
Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.

cindygrimm
Inserted Text
,

8 M. Eyiyurekli, C. Grimm & D. Breen / Editing Level-Set Models with Sketched Curves

ities have been described. We have designed level-set speed
functions that implement the surface deformations within the
context of solving the level-set PDE. Several examples have
been presented to demonstrate the flexibility and usefulness
of the editing operators. These initial examples have been
created with low-resolution volume datasets, which limit the
amount of surface detail that can be specified. Now that the
mathematics of the operators have been designed, tested and
validated, the next phase of our work will implement these
editing capabilities within a high-resolution level-set frame-
work, e.g. DT-grids [NM06]. This will allow us in the future
to create level-set models with much finer surface structures
and shapes.

8. Acknowledgements

The authors would like to thank Ross Whitaker for the use
of and assistance with the VISPACK library. This research
was supported by NSF grant CCF-0702441.

References
[AGB04] ALEXE A., GAILDRAT V., BARTHE L.: Interactive

modeling from sketches using spherical implicit functions. In
Proc. AFRIGRAPH’04 (2004), pp. 25–34.

[AJ03] ARAUJO B., JORGE J.: Blobmaker: Free-form modelling
with variational implicit surfaces. In Proc. 12th Encontro Por-
tugues de Computacao GraÞca (2003).

[Bar84] BARR A.: Global and local deformations of solid primi-
tives. In Proc. SIGGRAPH (1984), ACM, pp. 21–30.

[BC02] BAERENTZEN J., CHRISTENSEN N.: Volume sculpting
using the level-set method. In Proc. International Conference on
Shape Modeling and Applications (2002), pp. 175–182.

[CSSJ05] CHERLIN J. J., SAMAVATI F., SOUSA M. C., JORGE
J. A.: Sketch-based modeling with few strokes. In Proc. Spring
Conference on Computer Graphics (2005), pp. 137–145.

[DQ04] DU H., QIN H.: A shape design system using volumetric
implicit PDEs. Computer Aided Design 36, 11 (2004), 1101–
1116.

[DQ05] DU H., QIN H.: Dynamic PDE-based surface design us-
ing geometric and physical constraints. Graphical Models 67, 1
(2005), 43–71.

[EB09a] EYIYUREKLI M., BREEN D.: Interactive free-form
level-set surface-editing operators, 2009. in preparation.

[EB09b] EYIYUREKLI M., BREEN D.: Localized editing of
Catmull-Rom splines, 2009. to be published in Proc. CAD’09.

[IH03] IGARASHI T., HUGHES J. F.: Smooth meshes for sketch-
based freeform modeling. In Proc. ACM Symposium on Interac-
tive 3D Graphics (2003), pp. 139–142.

[IMT99] IGARASHI T., MATSUOKA S., TANAKA H.: Teddy: A
sketching interface for 3-D freeform design. In Proc. SIGGRAPH
(1999), pp. 409–416.

[KHR02] KARPENKO O., HUGHES J., RASKAR R.: Free-form
sketching with variational implicit surfaces. Computer Graphics
Forum 21, 3 (2002), 585–594.

[LF04] LAWRENCE J., FUNKHOUSER T.: A painting interface
for interactive surface deformations. Graphical Models 66, 6
(2004), 418–438.

[MBW∗05] MUSETH K., BREEN D., WHITAKER R., MAUCH
S., JOHNSON D.: Algorithms for interactive editing of level set
models. Computer Graphics Forum 24, 4 (2005), 821–841.

[MBWB02] MUSETH K., BREEN D., WHITAKER R., BARR A.:
Level set surface editing operators. ACM Transactions on Graph-
ics (Proc. SIGGRAPH) 21, 3 (2002), 330–338.

[MI07] MORI Y., IGARASHI T.: Plushie: an interactive design
system for plush toys. ACM Transactions on Graphics (SIG-
GRAPH 2007) 26, 3 (2007), 45.

[NISA07] NEALEN A., IGARASHI T., SORKINE O., ALEXA M.:
Fibermesh: designing freeform surfaces with 3D curves. ACM
Transactions on Graphics (SIGGRAPH 2007) 26, 3 (2007), 41.

[NM06] NIELSEN M., MUSETH K.: Dynamic tubular grid: An
efficient data structure and algorithms for high resolution level
sets. Journal of Scientific Computing 26, 3 (2006), 261–299.

[OF02] OSHER S., FEDKIW R.: Level Set Methods and Dynamic
Implicit Surfaces. Springer, Berlin, 2002.

[ONNI03] OWADA S., NIELSEN F., NAKAZAWA K., IGARASHI
T.: A sketching interface for modeling the internal structures
of 3D shapes. In Proc. 4th International Symposium on Smart
Graphics (2003), pp. 49–57.

[OS88] OSHER S., SETHIAN J.: Fronts propagating with
curvature-dependent speed: Algorithms based on Hamilton-
Jacobi formulations. Journal of Computational Physics 79
(1988), 12–49.

[SdGWS08] SUGIHARA M., DE GROOT E., WYVILL B.,
SCHMIDT R.: A sketch-based method to control deformation
in a skeletal implicit surface modeler. In Proc. 5th Eurographics
Workshop on Sketch-Based Interfaces and Modeling (2008).

[SF98] SINGH K., FIUME E.: Wires: a geometric deformation
technique. In Proc. SIGGRAPH (1998), pp. 405–414.

[SPK04] SINGH K., PEDERSEN H., KRISHNAMURTHY V.: Fea-
ture based retargeting of parameterized geometry. In Proc. Geo-
metric Modeling and Processing (2004), pp. 163–172.

[SS08] SCHMIDT R., SINGH K.: Sketch-based procedural sur-
face modeling and compositing using surface trees. Computer
Graphics Forum 27, 2 (2008), 321–330.

[SWSJ05] SCHMIDT R., WYVILL B., SOUSA M. C., JORGE
J. A.: Shapeshop: Sketch-based solid modeling with blobtrees.
In Proc. 2nd Eurographics Workshop on Sketch-Based Interfaces
and Modeling (2005), pp. 53–62.

[TZF04] TAI C. L., ZHANG H., FONG J. C. K.: Prototype mod-
eling from sketched silhouettes based on convolution surfaces.
Computer Graphics Forum 23, 1 (2004), 71–83.

[WGG99] WYVILL B., GALIN E., GUY A.: Extending the CSG
tree. warping, blending and boolean operations in an implicit sur-
face modeling system. Computer Graphics Forum 18, 2 (June
1999), 149–158.

[Whi08] WHITAKER R. T.: VISPACK. Tech. Rep. UUCS 08-
0011, School of Computing, University of Utah, 2008.

[ZHH96] ZELEZNIK R. C., HERNDON K. P., HUGHES J. F.:
Sketch: an interface for sketching 3D scenes. In Proc. SIG-
GRAPH (1996), pp. 163–170.

c© 2009 The Author(s)
Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.

