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ABSTRACT life-like 3D animation of facial expression. Both the time varying
texture created from the video streams and the accurate reproduc-
We have created a system for capturing both the three-dimensionaltion of the 3D face structure contribute to the believability of the
geometry and color and shading information for human facial ex- resulting animation.
pressions. We use this data to reconstruct photorealistic, 3D ani-  Our system differs from much previous work in facial anima-
mations of the captured expressions. The system uses a large setion, such as that of Lee [10], Waters [14], and Cassel [3], in that
of sampling points on the face to accurately track the three dimen- we are not synthesizing animations using a physical or procedu-
sional deformations of the face. Simultaneously with the tracking ral model of the face. Instead, we capture facial movements in
of the geometric data, we capture multiple high resolution, regis- three dimensions and then replay them. The systems of [10], [14]
tered video images of the face. These images are used to create are designed to make it relatively easy to animate facial expression
texture map sequence for a three dimensional polygonal face modelmanually. The system of [3] is designed to automatically create
which can then be rendered on standard 3D graphics hardware. Thea dialog rather than faithfully reconstruct a particular person’s fa-
resulting facial animation is surprisingly life-like and looks very cial expression. The work of Williams [15] is most similar to ours
much like the original live performance. Separating the capture of except that he used a single static texture image of a real person’s
the geometry from the texture images eliminates much of the vari- face and tracked points only in 2D. The work of Bregler et al [2]
ance in the image data due to motion, which increases compressioris somewhat less related. They use speech recognition to locate
ratios. Although the primary emphasis of our work is not compres- viseme$ in a video of a person talking and then synthesize new
sion we have investigated the use of a novel method to compressvideo, based on the original video sequence, for the mouth and jaw
the geometric data based on principal components analysis. Theregion of the face to correspond with synthetic utterances. They do
texture sequence is compressed using an MPEG4 video codec. Annot create a three dimensional face model nor do they vary the ex-
imations reconstructed from 512x512 pixel textures look good at pression on the remainder of the face. Since we are only concerned
data rates as low as 240 Kbits per second. with capturing and reconstructing facial performances out work is
unlike that of [5] which attempts to recognize expressions or that
CR Categories: 1.3.7 [Computer Graphics]: Three Dimen- 0f [4] which can track only a limited set of facial expressions.
sional Graphics and Realism: Animation; 1.3.5 [Computer Graph-  An obvious application of this new method is the creation of
ics]: Computational Geometry and Object Modeling believable virtual characters for movies and television. Another
application is the construction of a flexible type of video compres-
. sion. Facial expression can be captured in a studio, delivered via
1 Introduction CDROM or the internet to a user, and then reconstructed in real
time on a user’'s computer in a virtual 3D environment. The user
One of the most elusive goals in computer animation has been thecan select any arbitrary position for the face, any virtual camera
realistic animation of the human face. Possessed of many degreesjewpoint, and render the result at any size.
of freedom and capable of deforming in many ways the face has  One might think the second application would be difficult to
been difficult to simulate accurately enough to convince the average gchieve because of the huge amount of video data required for the
person that a piece of computer animation is actually an image of a time varying texture map. However, since our system generates ac-
real person. ) curate 3D deformation information, the texture image data is pre-
We have created a system for capturing human facial expres- cisely registered from frame to frame. This reduces most of the
sion and replaying it as a highly realistic 3D “talking head” con- variation in image intensity due to geometric motion, leaving pri-
sisting of a deformable 3D polygonal face model with a changing marily shading and self shadowing effects. These effects tend to
texture map. The process begins with video of a live actor’s face, pe of low spatial frequency and can be compressed very efficiently.
recorded from multiple camera positions simultaneously. Fluores- The compressed animation looks good at data rates of 240 kbits
cent colored 1/8 circular paper fiducials are glued on the actor's per second for texture image sizes of 512x512 pixels, updating at
face and their 3D position reconstructed over time as the actor talks 30 frames per second.
and emotes. The 3D fiducial positions are used to distort a 3D The main contributions of the paper are a method for robustly
polygonal face model in mimicry of the distortions of the real face. capturing both a 3D deformation model and a registered texture im-
The fiducials are removed using image processing techniques andage sequence from video data. The resulting geometric and texture

the video streams from the multiple cameras are merged into a sin-data can be compressed, with little loss of fidelity, so that storage
gle texture map. When the resulting fiducial-free texture map is ap-

plied to the 3D reconstructed face mesh the result is a remarkably ~*Visemes are the visual analog of phonemes.
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Figure 1: The six camera views of our actress’ face.
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requirements are reasonable for many applications.

Section 2 of the paper explains the data capture stage of the
process. Section 3 describes the fiducial correspondence algorithm.
In Section 4 we discuss capturing and moving the mesh. Sections 5
and 6 describe the process for making the texture maps. Section 7 Done once
of the paper describes the algorithm for compressing the geometric
data.
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2 Data Capture . .
Figure 2: The sequence of operations needed to produce the labeled
We used six studio quality video cameras arranged in the pattern3D dot movements over time.
shown in Plate 1 to capture the video data. The cameras were syn-
chronized and the data saved digitally. Each of the six cameras
was individually calibrated to determine its intrinsic and extrinsic
parameters and to correct for lens distortion. The details of the
calibration process are not germane to this paper but the intereste
reader can find a good overview of the topic in [6] as well as an
extensive bibliography.

We glued 182 dots of six different colors onto the actress’ face.
The dots were arranged so that dots of the same color were as faf1
apart as possible from each other and followed the contours of the'©
face. This made the task of determining frame to frame dot corre-

spondence (described in Section 3.3) much easier. The dot patter - X ) ; .
was chosen to follow the contours of the face (i.e., outlining the nl'he left side of the flowchart is described in Section 3.3.1, the
eyes, lips, and nasio-labial furrows), although the manual applica- Middle in Sections 3.1, 3.2, and 3.3.2, and the right side in Sec-

tion of the dots made it difficult to follow the pattern exactly. tion 3.1.1.
The actress’ head was kept relatively immobile using a padded
foam box; this reduced rigid body motions and ensured that the 3 1 Two-dimensional dot location
actress’ face stayed centered in the video images. Note that rigid
body motions can be captured later using a 3D motion tracker, if For each camera view the 2D coordinates of the centroid of each
desired. colored fiducial must be computed. There are three steps to this
The actress was illuminated with a combination of visible and process: color classification, connected color component genera-
near UV light. Because the dots were painted with fluorescent pig- tion, and centroid computation.
ments the UV illumination increased the brightness of the dots sig- First, each pixel is classified as belonging to one of the six dot
nificantly and moved them further away in color space from the colors or to the background. Then depth first search is used to lo-
colors of the face than they would ordinarily be. This made them cate connected blobs of similarly colored pixels. Each connected
easier to track reliably. Before the video shoot the actress’ face wascolored blob is grown by one pixel to create a mask used to mark
digitized using a cyberware scanner. This scan was used to creatghose pixels to be included in the centroid computation. This pro-
the base 3D face mesh which was then distorted using the positionscess is illustrated in Figure 4.
of the tracked dots. The classifier requires the manual marking of the fiducials for
one frame for each of the six cameras. From this data a robust color
. classifier is created (exact details are discussed in Section 3.1.1).
3 Dot Labeling Although the training set was created using a single frame of a 3330
o ) ) frame sequence, the fiducial colors are reliably labeled throughout
The fldUC|-a|S are used to generate a set of 3D pOIntS which act asSthe sequence. False positives are quite rare, with one major ex-
control points to warp the cyberware scan mesh of the actress head ception, and are almost always isolated pixels or two pixel clusters.
They are also used to establish a stable mapping for the texturesthe majority of exceptions arise because the highlights on the teeth
generated from each of the six camera views. This requires thatand mouth match the color of the white fiducial training set. Fortu-
each dot have a unique and consistent label over time so that it ispately, the incorrect white fiducial labelings occur at consistent 3D
associated with a consistent set of mesh vertices. locations and are easily eliminated in the 3D dot processing stage.
The classifier generalizes well so that even fairly dramatic changes

The dot labeling begins by first locating (for each camera view)
connected components of pixels which correspond to the fiducials.
drhe 2D location for each dot is computed by finding the two dimen-

sional centroid of each connected component. Correspondence be-
tween 2D dots in different camera views is established and potential
3D locations of dots reconstructed by triangulation. We construct
reference set of dots and pair up this reference set with the 3D
cations in each frame. This gives a unique labeling for the dots
that is maintained throughout the video sequence.

A flowchart of the dot labeling process is shown in Figure 2.



in fiducial color over time do not result in incorrect classification.
For example, Figure 5(b) shows the same green fiducial in two dif-
ferent frames. This fiducial is correctly classified as green in both
frames.

The next step, finding connected color components, is com-
plicated by the fact that the video is interlaced. There is signif-
icant field to field movement, especially around the lips and jaw,
sometimes great enough so that there is no spatial overlap at all
between the pixels of a fiducial in one field and the pixels of the
same fiducial in the next field. If the two fields are treated as a sin-
gle frame then a single fiducial can be fragmented, sometimes into _. ) . , . -
many pieces. Figure 3: Animage of the actress’s face. A typical training set for

One could just find connected color components in each field e yellow dots, selected from the image on the left.
and use these to compute the 2D dot locations. Unfortunately,

this does not work well because the fiducials often deform and e .. . . .
to be classified is given the label of the closest item in the training

are sometimes partially occluded. Therefore, the threshold for the N . ; .
number of pixels needed to classify a group of pixels as a fiducial S€t Which in our case is the color data contained in the color class
has to be set very low. In our implémentation any connected com- images. Because we have 3 dimensional data we can approximate

ponent which has more than three pixels is classified as a fiducial (€ nearest neighbor classifier by subdividing the RGB cube uni-

rather than noise. If just the connected pixels in a single field are formly into voxels, and assigning class labels to each RGB voxel.

counted then the threshold would have to be reduced to one pixel. 10 €lassify a new color you quantize its RGB values and then index

This would cause many false fiducial classifications because there/Nt0 the cube to extract the label. .

are typically a few 1 pixel false color classifications per frame and ___10 create the color classifier we use the color class images to
2 or 3 pixel false clusters occur occasionally. Instead, we find con- assign color classes to each v_ox_el. Assume that the color class
nected components and generate lists of potential 2D dots in eachiMage for color clasg’; hasn distinct colors,cy...c,. Each of
field. Each potential 2D dot in field one is then paired with the the Voxels corresponding to the coler is labeled with the color
closest 2D potential dot in field two. Because fiducials of the same

classC;. Once the voxels for all of the known colors are labeled,
the remaining unlabeled voxels are assigned labels by searching
through all of the colors in each color claSsand finding the color
closest top in RGB space. The colgs is given the label of the
color class containing the nearest color. Nearness in our case is the
Euclidean distance between the two points in RGB space.

If colors from different color classes map to the same sub-cube,
we label that sub-cube with the background label since it is more
important to avoid incorrect dot labeling than it is to try to label
every dot pixel. For the results shown in this paper we quantized
the RGB color cube into a 32x32x32 lattice.

is not very large, the closest potential 2D dot is virtually guaran-
teed to be the correct match. If the sum of the pixels in the two
potential 2D dots is greater than three pixels then the connected
components of the two 2D potential dots are merged, and the re-
sulting connected component is marked as a 2D dot.

The next step is to find the centroid of the connected compo-
nents marked as 2D dots in the previous step. A two dimensional
gradient magnitude image is computed by passing a one dimen-
sional first derivative of Gaussian along thendy directions and
then taking the magnitude of these two values at each pixel. The
centroid of the colored blob is computed by taking aweighted sum 3 2 Camera to camera dot correspondence and
of positions of the pixe{z, y) coordinates which lie inside the gra- .
dient mask, where the weights are equal to the gradient magnitude. 3D reconstruction

In order to capture good images of both the front and the sides of
3.1.1 Training the color classifier the face the cameras were spaced far apart. Because there are such
extreme changes in perspective between the different camera views,

We create one color classifier for each of the camera views, sincethe projected images of the colored fiducials are very different. Fig-
the lighting can vary greatly between cameras. In the following ure 5 shows some examples of the changes in fiducial shape and
discussion we build the classifier for a single camera. color between camera views. Establishing fiducial correspondence

The data for the color classifier is created by manually marking between camera views by using image matching techniques such as
the pixels of frame zero that belong to a particular fiducial color. optical flow or template matching would be difficult and likely to
This is repeated for each of the six colors. The marked data is generate incorrect matches. In addition, most of the camera views
stored as &olor class imageseach of which is created from the  will only see a fraction of the fiducials so the correspondence has to
original camera image by setting all of the pixelst marked as the be robust enough to cope with occlusion of fiducials in some of the
given color to black (we use black as an out-of-class label becausecamera views. With the large number of fiducials we have placed
pure black never occurred in any of our images). A typical color on the face false matches are also quite likely and these must be
class image for the yellow dots is shown in Figure 3. We generated detected and removed. We used ray tracing in combination with
the color class images using the “magic wand” tool available in a RANSAC [7] like algorithm to establish fiducial correspondence
many image editing programs. and to compute accurate 3D dot positions. This algorithm is robust

A seventh color class image is automatically created for the to occlusion and to false matches as well.
background color (e.g., skin and hair) by labeling as out-of-class First, all potential point correspondences between cameras are
any pixel in the image which was previously marked as a fiducial generated. If there are cameras, ana 2D dots in each camera
in any of the fiducial color class images. This produces an image , ; k 2 ;
of theyface with black holes where thg fiducials F\jvere. 9° view then( 2 ) n” point correspondences will be tested. Each

The color classifier is a discrete approximation to a nearest correspondence gives rise to a 3D candidate point defined as the
neighbor classifier [12]. In a nearest neighbor classifier the item closest point of intersection of rays cast from the 2D dots in the
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gure inding the 2D dots in the images Figure 5: Dot variation. Left: Two dots seen from three different

cameras (the purple dot is occluded in one camera’s view). Right:
two camera views. The 3D candidate point is projected into each A single dot seen from a single camera but in two different frames.

of the two camera views used to generate it. If the projection is
further than a user-defined epsilon, in our case two pixels, from the Id like th d . b .
centroid of either 2D point then the point is discarded as a potential S€t We would like the correspondence computation to be automatic

3D point candidate. All the 3D candidate points which remain are and quite efficient. To §implify the mf'itching we used a fiducial .
added to the 3D point list. pattern that separates fiducials of a given color as much as possi-

ble so that only a small subset of the unlabeled 3D dots need be
checked for a best match. Unfortunately, simple nearest neighbor
matching fails for several reasons: some fiducials occasionally dis-
appear, some 3D dots may move more than the average distance
between 3D dots of the same color, and occasionally extraneous 3D
dots appear, caused by highlights in the eyes or teeth. Fortunately,
o ) s . neighboring fiducials move similarly and we can exploit this fact,
For each 3D point in the potential 3D match “ét'?, ) possi- modifying the nearest neighbor matching algorithm so that it is still
ble combinations of three points in the 3D point list are computed €fficient but also robust.
and the combination with the smallest variance is chosen as the true ~ For each frame we first move the reference dots to the loca-
3D position. Then all 3D points which lie within a user defined tions found in the previous frame. Next, we find a (possibly incom-
distance, in our case the sphere subtended by a cone two pixellete) match between the reference dots and the 3D dot locations
in radius at the distance of the 3D point, are averaged to generatefor frame:. We then move each matched reference dot to the loca-
the final 3D dot position. This 3D dot position is assigned to the tion of its corresponding 3D dot. If a reference dot does not have
corresponding 2D dot in the reference camera view. a match we “gUeSS” a new location for it by mOVing it in the same
This algorithm could clearly be made more efficient because direction as its neighbors. We then perform a final matching step.
many more 3D candidate points are generated then necessary. One
could search for po_tentlal camera to camera correspon_d_ences only&3.1 Acquiring the reference set of dots
along the epipolar lines and use a variety of space subdivision tech-
niques to find 3D candidate points to test for a given 2D point. The cyberware scan was taken with the dots glued onto the face.
However, because the number of fiducials in each color set is small Since the dots are visible in both the geometric and color informa-
(never more thar0) both steps of this simple and robust algorithm  tion of the scan, we can place the reference dots on the cyberware
are reasonably fast, taking less than a second to generate the 2D dahodel by manually clicking on the model. We next need to align
correspondences and 3D dot positions for six camera views. Thethe reference dots and the model with the 3D dot locations found in
2D dot correspondence calculation is dominated by the time takenframe zero. The coordinate system for the cyberware scan differs
to read in the images of the six camera views and to locate the 2D from the one used for the 3D dot locations, but only by a rigid body
dots in each view. Consequently, the extra complexity of more ef- motion plus a uniform scale. We find this transform as follows: we
ficient stereo matching algorithms does not appear to be justified. first hand-align the 3D dots from frame zero with the reference dots
acquired from the scan, then call the matching routine described in
Section 3.3.2 below to find the correspondence between the 3D dot
3.3 Fr.ame to frame dot correspondence and la- locations, f;, and the reference dotd;. We use the method de-
beling scribed in [9] to find the exact transforrdi, between the two sets
of dots. Finally, we replace the temporary locations of the reference
tdots withd; = f;.
8nd user ! to transform the cyberware model into the coordinate
system of the video 3D dot locations.

Each of the points in the 3D point list is projected into a refer-
ence camera view which is the camera with the best view of all the
fiducials on the face. If the projected point lies within two pixels of
the centroid of a 2D dot visible in the reference camera view then
it is added to the list of potential 3D candidate positions for that 2D
dot. This is the list of potential 3D matches for a given 2D dot.

We now have a set of unlabeled 3D dot locations for each frame.
We need to assign, across the entire sequence, consistent labels
the 3D dot locations. We do this by defining a reference set of
dots D and matching this set to the 3D dot locations given for each
frame. We can then describe how the reference dots move over time

as follows: Letd; € D be the neutral location for the reference dot 3.3.2 The matching routine

j. We define the position of; at framei by an offset, i.e., ) o ) )
The matching routine is run twice per frame. We first perform a

conservative match, move the reference dots (as described below in
dj- =d; + {;’; 1) Section 3.3.3), then perform a second, less conservative, match. By
moving the reference dots between matches we reduce the problem
Because there are thousands of frames and 182 dots in our dataf large 3D dot position displacements.
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To construct a mesh we begin with a cyberware scan of the head.
: : : Because we later need to align the scan with the 3D video dot data,
Bg ~ Smal  Big  Smal Big ~ Smal we scanned the head with the fiducials glued on. The resulting scan
epsilon epsilon  epsilon epsilon epsilon  epsilon .

suffers from four problems:

Figure 7: Examples of extra and missing dots and the effect of e The fluorescent fiducials caused “bumps” on the mesh.
different values fok.
e Several parts of the mesh were not adequately scanned, namely,

the ears, one side of the nose, the eyes, and under the chin.
The matching routine can be thought of as a graph problem These were manually corrected.

where an edge between a reference dot and a frame dot indicates )
that the dots are potentially paired (see Figure 6). The matching  ® The mesh does not have an opening for the mouth.
routine proceeds in several steps; first, for each reference dot we
add an edge for every 3D dot of the same color that is within a given
distancer. We then search for connected components in the graph  The humps caused by the fluorescent fiducials were removed by
that have an equal number of 3D and reference dots (most con-gselecting the vertices which were out of place (approximately 10-30
nected components will have exactly two dots, one of each type). syrrounding each dot) and automatically finding new locations for
We sort the dots in the vertical dimension of the plane of the face them by blending between four correct neighbors. Since the scan
and use the resulting ordering to pair up the reference dots with the produces a rectangular grid of vertices we can pick the neighbors

e The scan has too many polygons.

3D dot locations (see Figure 6). . ) to blend between i, v) space, i.e., the nearest valid neighbors in
In the video sequences we captured, the difference in the 3D dothe positive and negativeandw direction.
positions from frame to frame varied from zero to abbuttimes The polygons at the mouth were split and then filled with six

the average distance separating closest dots. To adjust for this, Weows of polygons located slightly behind the lips. We map the teeth
run the matching routine with several valuescafnd pick the run and tongue onto these polygons when the mouth is open.
that generates the most matches. Different choicesmbduce We reduced the number of polygons in the mesh from approxi-

different results (see Figure 7): dfis too small we may not find  mately460, 000 to 4800 using Hoppe's simplification method [8].
matches for 3D dots that have moved a lot.e I6 too large then

the connected components in the graph will expand to include too .

many 3D dots. We try approximately five distances ranging from 4.2 Moving the mesh

0.5 to 1.5 of the average distance between closest reference dots. The vertices are moved by a linear combination of the offsets of
If we are doing the second match for the frame we add an ad- the nearest dots (refer to é uation 1). The linear combination for

ditional step to locate matches where a dot may be missing (or ex- . q : S

tra). We take those dots which have not been matched and run theach vertex; is expressed as a set of blend coefficients, one

matching routine on them with smaller and sma#lemlues. This for each dot, such that,, _,, aj = 1 (most of thea; s will be

resolves situations such as the one shown on the right of Figure 7. zero). The new |ocatiop;. of the vertexv; at framei is then

3.3.3 Moving the dots i =p;+ Y aplldi — di|
k

We move all of the matched reference dots to their new locations

then interpolate the locations for the remaining, unmatched refer- wherep; is the initial location of the vertex;.

ence dots by using their nearest, matched neighbors. For each ref-  For most of the vertices the),s are a weighted average of the

erence dot we define a valid set of neighbors using the routine in closest dots. The vertices in the eyes, mouth, behind the mouth,

Section 4.2.1, ignoring the blending values returned by the routine. and outside of the facial area are treated slightly differently since,
To move an unmatched daf, we use a combination of the  for example, we do not want the dots on the lower lip influencing

offsets of all of its valid neighbors (refer to Equation 1). et C vertices on the upper part of the lip. Also, although we tried to keep

D be the set of neighbor dots for ddf. Let 7 be the set of  the head as still as possible, there is still some residual rigid body
neighbors that have a match for the current franferovidedn,, # motion. We need to compensate for this for those vertices that are
0, the offset vector for doif}, is calculated as follows: lef; = not directly influenced by a dot (e.qg., the back of the head).

d§ — d; be the offset of doj (recall thatd; is the initial position We use a two-step process to assign the blend coefficients to
for the reference daf). the vertices. We first find blend coefficients for a grid of points

evenly distributed across the face, then use this grid of points to



Figure 8: Left: The original dots plus the extra dots (in white). The ' Figure 9: Masks surrounding important facial features. The gradi-
labeling curves are shown in light green. Right: The grid of dots. ent of a blurred version of this mask is used to orient the low-pass

Outline dots are green or blue. filters used in the dot removal process.
assign blend coefficients to the vertices. This two-step process iSthe dots inD.. letl: = —1% . Then the corresponding's are
g . : " C =l
helpful because both the fluorescent fiducials and the mesh vertices
are unevenly distributed across the face, making it difficult to get I;
smoothly changing blend coefficients. o = ﬁ
The grid consists of roughly400 points, evenly distributed and di€Dy "

placed by hand to follow the contours of the face (see Figure 8).
The points along the nasolabial furrows, nostrils, eyes, and lips are
treated slightly differently than the other points to avoid blending
across features such as the lips. X ; : ; . .
Because we want the me:Eh movement to go to zero outside ofPOINts — using the above routine (replacing the dots with the grid
the face, we add another set of unmoving dots to the reference setglo'nhs)'d W_ehsper:]mal Cafe. the o_gtllnl_ng grl_(?hpomts; g|1ey dare ofply
: : : - blended with other outlining grid points. e new blend coeffi-
These new dots form a ring around the face (see Figure 8) enclosmgCielnts are found by takin 75 of the grid point's blend coefficients

all of the reference dots. For each frame we determine the rigid : . ; I =
body motion of the head (if any) using a subset of those reference and0.25 of the average of the neighboring grid point’s coefficients.
More formally, letg; = [aw, ..., ax] be the vector of blend co-

dots which are relatively stable. This rigid body transformation is efficients for the grid point. Then the new vectog! is found as

then applied to the new dots. = . . ; ! .
We label the dots, grid points, and vertices as beibgve be- follows, whereN; is the set of neighboring grid points for the grid

We next filter the blend coefficients for the grid points. For each
grid point we find the closest grid points — since the grid points
are distributed in a rough grid there will usually beneighboring

low, or neither with respect to each of the eyes and the mouth. points:

Dots which areabovea given feature can not be combined with , 0.25

dots which aréelowthat same feature (or vice-versa). Labeling is g; = 0.75g; + ——— gj
accomplished using three curves, one for each of the eyes and one [Vl JEN;

for the mouth. Dots directly above (or below) a curve are labeled

asabove(or below) that curve. Otherwise, they are labelesither. We apply this filter twice to simulate a wide low pass filter.

To find the blend coefficients for the vertices of the mesh we
. . . find the closest grid point with the same label as the vertex and copy
4.2.1 Assigning blends to the grid points the blend coefficients. The only exception to this is the vertices for

The algorithm for assigning blends to the grid points first finds the 1€ polygons inside of the mouth. For these vertices we fa&é

closest dots, assigns blends, then filters to more evenly distributeth® closest grid point on the top lip and) — 3 of the closest grid

the blends. point on the bottom lip. The& values ard.8, 0.6, 0.4, 0.25, and
Finding the ideal set of reference dots to influence a grid point 0-1 from top to bottom of the mouth polygons.

is complicated because the reference dots are not evenly distributed

across the face. The algorithm attempts to find two or more dots

distributed in a rough circle around the given grid point. To do 5 Dot removal

this we both compensate for the dot density, by setting the searchgetqre e create the textures, the dots and their associated illumi-

dl_s”tanCﬁ “us'lrllg.thehtwo closest dots, and by checking for dots which 440 effects have to be removed from the camera images. Inter-

will both “pull” in the same direction. reflection effects are surprisingly noticeable because some parts of

Tofind the closest dots to the grid popntve first findd, andos, the face fold dramatically, bringing the reflective surface of some
the distance to the closest and second closest dot, respectively. Le}jqis into close proximity with the skin. This is a big problem along

L 51468 . . . . .

D C D be the set of dots within.8 21322 distance ofp whose the naso-labial furrow where diffuse interreflection from the col-
labels do not conflict witlp's label. Next, we check for pairs of  gred dots onto the face significantly alters the skin color.

dots that are more or less in the same direction fpoand remove First, the dot colors are removed from each of the six camera

the furthest one. More precisely, I8 be the normalized vector  jmage sequences by substituting skin texture for pixels which are
fromp to the dotd; € D,, and leti; be the normalized vector from  covered by colored dots. Next, diffuse interreflection effects and
ptothedotd; € Dy. If 61 - 9> > 0.8 then remove the furthest of  any remaining color casts from stray pixels that have not been prop-
di andd;; from the setD,,. _ erly substituted are removed.

We assign blend values based on the distance of the dots from  “The skin texture substitution begins by finding the pixels which
p. If the dot is not inDy, then its corresponding value is0. For correspond to colored dots. The nearest neighbor color classifier



mouth, found using the eye and lip masks shown in Figure 9, are
left unchanged.

Some temporal variation remains in the substituted skin texture
due to imperfect registration of the high frequency texture from
frame to frame. A low pass temporal filter is applied to the dot mask
regions in the texture images, because in the texture map space
the dots are relatively motionless. This temporal filter effectively
eliminates the temporal texture substitution artifacts.

6 Creating the texture maps

Figure 11 is a flowchart of the texture creation process. We create

Figure 10: Standard cylindrical texture map. Warped texture map texture maps for every frame of our animation in a four-step pro-
that focuses on the face, and particularly on the eyes and mouth.Cess. The first two steps are performed only once per mesh. First
The warp is defined by the line pairs shown in white. we define a parameterization of the mesh. Second, using this pa-

rameterization, we createggometry majontaining a location on
the mesh for each texel. Third, for every frame, we create six pre-

described in Section 3.1.1 is used to mark all pixels which have liminary texture maps, one from each camera image, along with
any of the dot colors. A special training set is used since in this Weight maps. The weight maps indicate the relative quality of the

case false positives are much less detrimental than they are for thedata from the different cameras. Fourth, we take a weighted aver-
dot tracking case. Also, there is no need to distinguish between dotage of these texture maps to make our final texture map.

colors, only between dot colors and the background colors. The  We create an initial set of texture coordinates for the head by
training set is created to capture as much of the dot color and thetilting the mesh back 10 degrees to expose the nostrils and pro-
boundary region between dots and the background colors as possiiecting the mesh vertices onto a cylinder. A texture map generated
ble. using this parametrization is shown on the left of Figure 10. We

A dot mask is generated by applying the classifier to each pixel SPecify a set of line pairs and warp the texture coordinates using
in the image. The mask is grown by a few pixels to account for any the technique described by Beier and Neely[1]. This parametriza-
remaining pixels which might be contaminated by the dot color. tion results in the texture map shown on the right of Figure 10.
The dot mask marks all pixels which must have skin texture substi- Only the front of the head is textured with data from the six video
tuted. streams.

The skin texture is broken into low spatial frequency and high ~ Next we create the geometry map containing a mesh location
frequency components. The low frequency components of the skin for each texel. A mesh location is a trip(&, 81, 32) specifying
texture are interpolated by using a directional low pass filter ori- 2 trianglek and barycentric coordinates in the triangl@ (32,
ented parallel to features that might introduce intensity discontinu- 1 — 81 — 82). To find the triangle identifiek for texel (u, v) we
ities. This prevents bleeding of colors across sharp intensity bound- €xhaustively search through the mesh's triangles to find the one that
aries such as the boundary between the lips and the lighter coloredcontains the texture coordinatés, v). We then set the;s to be
regions around the mouth. The directionality of the filter is con- the barycentric coordinates of the pofat v) in the texture coordi-
trolled by a two dimensional mask which is the projection into the nates of the trianglé. When finding the mesh location for a pixel
image plane of a three dimensional polygon mask lying on the 3D We a_llready know in which triangles its nelght_)ors above_ and to the
face model. Because the polygon mask is fixed on the 3D mesh, left lie. Therefore, we speed our search by first searching through
the 2D projection of the polygon mask stays in registration with these triangles and their neighbors. However, the time required for
the texture map as the face deforms. this task is not critical as the geometry map need only be created

All of the important intensity gradients have their own polygon ©Once. o
mask: the eyes, the eyebrows, the lips, and the naso-labial furrows ~ Next we create preliminary texture maps for frah@ne for
(see 9). The 2D polygon masks are filled with white and the re- _each camera. This is a modified version of the technlque described
gion of the image outside the masks is filled with black to create an in [11]. To create the texture map for camerave begin by de-
image. This image is low-pass filtered. The intensity of the result- forming the mesh into its fram¢ position. Then, for each texel,
ing image is used to control how directional the filter is. The filter We getits mesh locatiork, 51, 32 ), from the geometry map. With
is circularly symmetric where the image is black, i.e., far from in- the 3D coordinates of trianglés vertices and the barycentric coor-
tensity discontinuities, and it is very directional where the image dinates3;, we compute the texel's 3D locationWe transformt by
is white. The directional filter is oriented so that its long axis is Camera’s projection matrix to obtain a locatiofy;, ), on camera
orthogonal to the gradient of this image. c's image plane. We then color the texel W_lth the color from cam-

The high frequency skin texture is created from a rectangular €rac’s image at(z,y). We set the texel's weight to the dot product
sample of skin texture taken from a part of the face that is free Of the mesh normal at 7, with the direction back to the camera,
of dots. The skin sample is highpass filtered to eliminate low fre- @ (see Figure 12). Negative values are clamped to zero. Hence,
guency components. At each dot mask pixel location the highpassWeights are low where the camera’s view is glancing. However,
filtered skin texture is first registered to the center of the 2D bound- this weight map is not smooth at triangle boundaries, so we smooth
ing box of the connected dot region and then added to the low fre- it by convolving it with a Gaussian kernel.
quency interpolated skin texture. La_st, we merge the Six preliminary texture maps. As they do

The remaining diffuse interreflection effects are removed by not align perfectly, averaging them blurs the texture and loses de-
clamping the hue of the skin color to a narrow range determined tail. Therefore, we use only the texture map of our bottom, center
from the actual skin colors. First the pixel values are converted camera for the center 46 % of the final texture map. We smoothly
from RGB to HSV space and then any hue outside the legal range transition (over 23 pixels) to using a weighted average of each pre-
is clamped to the extremes of the range. Pixels in the eyes andliminary texture map at the sides.
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Figure 11: Creating the texture maps.

We texture the parts of the head not covered by the aforemen-  The data in thed matrix can be projected onto the principal

tioned texture maps with the captured reflectance data from our Cy- component basis as follows:

berware scan, modified in two ways. First, because we replaced the

mesh’s ears with ears from a stock mesh (Section 4.1), we moved w=U0TA

the ears in the texture to achieve better registration. Second, we

set the alpha channel to zero (with a soft edge) in the region of the Row: of W is the projection of columni; onto the basis vectar;.

texture for the front of the head. Then we render in two passes to More precisely, thgth element in rowi of W corresponds to the

create an image of the head with both texture maps applied. projection of framej of the original data onto thé&h basis vector.
We will call the elements of th&” matrix projectioncoefficients

Similarly, A can be reconstructed exactly frdiri by multipli-

7 Compression cation by the basis set, i.ed, = UW.
The most important property of the principal components for our
7.1 Principal Components Analysis purposes is that they are the best linear basis set for reconstruction

) ) o in thel> norm sense. For any given matiik, wherek is the num-
The geometric and texture map data have different statistical char-per of columns of the matrix and < rank(A4), the reconstruction
acteristics and are best compressed in different ways. There is sig-grror

nificant long-term temporal correlation in the geometric data since

similar facial expressions occur throughout the sequence. The short e=[|A—Us UI;FAH; ©)
term correlation of the texture data is significantly increased over ‘

that of the raw video footage because in the texture image spacewhere|| B||%. is the Frobenius norm defined to be
the fiducials are essentially motionless. This eliminates most of the

intensity changes associated with movement and leaves primarily N " & 5
shading changes. Shading changes tend to have low spatial fre- 1Bl = Z Zbiy‘
quencies and are highly compressible. Compression schemes such i=1 j=1

as MPEG, which can take advantage of short term temporal corre-yij| he minimized if U is the matrix containing the most signif-
lation, can exploit this increase in short term correlation. icant principal components of.

_For the geometric data, one way to exploit the long term corre-  \ye can compress a data seby quantizing the elements of its
lation is to use principal component analysis. If we represent our correspondingV andU matrices and entropy coding them. Since
data set as a matrid, where frame of the data maps columiof the compressed data cannot be reconstructed without the principal
A, then the first principal component dfis component basis vectors both thié and U matrices have to be

T oNT, T compressed. The basis vectors add overhead that is not present
muaX(A u) (A" ) @ with basis sets that can be computed independent of the original
data set, such as the DCT basis.

For data sequences that have no particular structure the extra
overhead of the basis vectors would probably out-weigh any gainin
compression efficiency. However, for data sets with regular frame
to frame structure the residual error for reconstruction with the
principal component basis vectors can be much smaller than for
other bases. This reduction in residual error can be great enough to

4)

The u which maximizes Equation 2 is the eigenvector associated
with the largest eigenvalue of AT, which is also the value of the
maximum. Succeeding principal components are defined similarly,
except that they are required to be orthogonal to all preceding prin-
cipal components, i.eu; u; = 0 for j # i. The principal com-
ponents form an orthonormal basis set represented by the rbatrix
where the columns df’ are the principal components dfordered o5 nensate for the overhead bits of the basis vectors.
by eigenvalue size with the most significant principal component in The principal components can be computed using the singular
the first column ol value decomposition (SVD) [13]. Efficient implementations of this
algorithm are widely available. The SVD of a matrixis
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where the columns dff are the eigenvectors ofA”, the singular
values,o;, along the diagonal matriX are the square roots of the
eigenvalues ofAA”, and the columns of are the eigenvectors
of AT A. Theith column ofU is theith principal component of
A. Computing the firsk left singular vectors ofd is equivalent to
computing the firsk principal components.

Figure 13: Reduction in entropy after temporal prediction.

animation in which the actress makes random expressions while
reading from a script

The facial expressions look remarkably life-like. The anima-
tion sequence is similarly striking. Virtually all evidence of the
7.2 Geometric Data colored fiducials and diffuse interreflection artifacts is gone, which

) is surprising considering that in some regions of the face, especially

The geometric data has the long term temporal coherence proper-5round the lips, there is very little of the actress’ skin visible — most
ties mentioned above since the motion of the face is highly struc- of the area is covered by colored fiducials.
tured. The overhead of the basis vectors for the geometric datais  ggth the accurate 3D geometry and the accurate face texture
fixed because there are orlg2 fiducials on the face. The maxi-  contribute to the believability of the reconstructed expressions. Oc-
mum number of basis vectors1i82 « 3 since there are three num- ¢ ysijon contours look correct and the subtle details of face geom-
bers,z, y, andz, associated with each fiducial. Consequently, the etry that are very difficult to capture as geometric data show up
basis vector overhead steadily diminishes as the length of the ani-\ya| in the texture images. Important examples of this occur at
mation sequence increases. _ _ the nasolabial furrow which runs from just above the nares down

The geometric data is mapped to matrix form by taking the 3D {4 g|ightly below the lips, eyebrows, and eyes. Forehead furrows
offset data for theth frame and mapping it thith column of the  anq wrinkles also are captured. To recreate these features using
data matrixA,. The firstk principal componentd/,, of A, are geometric data rather than texture data would require an extremely
computed andi, is projected into thé/, basis to give the projec-  detailed 3D capture of the face geometry and a resulting high poly-
tion coefficientsiV. _ _gon count in the 3D model. In addition, shading these details prop-
__There is significant correlation between the columns of projec- gyjy if they were represented as geometry would be difficult since it
tion coefficients because the motion of the dots is relatively smooth 5,14 require computing shadows and possibly even diffuse inter-
over time. We can reduce the entropy of the quantized projection yefiection effects in order to look correct. Subtle shading changes
coefficients by temporally predicting the projection coefficients in 5, the smooth parts of the skin, most prominent at the cheekbones,
columns from columni — 1, i.e.,c; = ¢;—1 + A; where we encode are also captured well in the texture images.

Ai. N - . . There are still visible artifacts in the animation, some of which

For our data set, only the projection coefficients associated with gre polygonization or shading artifacts, others of which arise be-

the first 45 principal components, corresponding to the first 45 rows .5,,se of limitations in our current implementation.

of W, have significant te_mporal correlathn_ so only the first 45 Some polygonization of the face surface is visible, especially

rows are temporally predicted. The remaining rows are entropy 4j0nq the chin contour, because the front surface of the head con-

coded directly. After the temporal prediction the entropy is reduced 5;4 only4500 polygons. This is not a limitation of the algorithm —

by about 20 percent (Figure 13). _ we chose this number of polygons because we wanted to verify that
The basis vectors are compressed by choosing a peak error ratggjievaple facial animation could be done at polygon resolutions

and then varying the number of qlJ_antization Ievel_s aII_ocated to _each low enough to potentially be displayed in real time on inexpensive
vector based on the standard deviation of the projection coefﬂuents( $200) 3D graphics cardsFor film or television work, where real

for each vector. time rendering is not an issue, the polygon count can be made much

We visually examined animation sequences With and U, higher and the polygonization artifacts will disappear. As graphics

compressed at a variety of peak error rates and chose a level which,5rq\ware becomes faster the differential in quality between offline
resulted in undetectable geometric jitter in reconstructed animation. 54 online rendered face images will diminish.

The entropy ofi¥, for this error level is 26 Kbits per second and Several artifacts are simply the result of our current implemen-
the entropy ofU is 13 kbits per second for a total of 40 kbits per  ta4i0n,  For example, occasionally the edge of the face, the tips
second for all the geometric data. These values were computed forot the pares, and the eyebrows appear to jitter. This usually oc-
our 3330 frame animation sequence. curs when dots are lost, either by falling below the minimum size

threshold or by not being visible to three or more cameras. When
8 Results a dot is lost the algorithm synthesizes dot position data which is

i . 2The rubber cap on the actress’ head was used to keep her hair out of her face.
Figure 16 shows some typical frames from areconstructed sequence 3in this paper we have not addressed the issue of real time texture decompression

of 3D facial expressions. These frames are taken from a 3330 frameand rendering of the face model, but we plan to do so in future work



usually incorrect enough that it is visible as jitter. More cameras, imately 300 by 400 pixels, is still good at data rates as low as 240
or better placement of the cameras, would eliminate this problem. Kbits per second, and there is significant potential for lowering this
However, overall the image is extremely stable. bit rate even further. Because the bit overhead for the geometric

In retrospect, a mesh constructed by hand with the correct ge-data is low in comparison to the texture data one can get a 3D talk-
ometry and then fit to the cyberware data [10] would be much sim- ing head, with all the attendant flexibility, for little more than the
pler and possibly reduce some of the polygonization artifacts. cost of a conventional video sequence. With the true 3D model of

Another implementation artifact that becomes most visible when facial expression, the animation can be viewed from any angle and
the head is viewed near profile is that the teeth and tongue appeaplaced in a 3D virtual environment, making it much more flexible
slightly distorted. This is because we do not use correct 3D models than conventional video.

to represent them. Instead, the texture map of the teeth and tongue
is projected onto a sheet of polygons stretching between the lips. It

is possible that the teeth and tongue could be tracked using moreReferences

sophisticated computer vision techniques and then more correct ge-
ometric models could be used. (1]

Shading artifacts represent an intrinsic limitation of the algo-
rithm. The highlights on the eyes and skin remain in fixed positions
regardless of point of view, and shadowing is fixed at the time the 2]
video is captured. However, for many applications this should not
be a limitation because these artifacts are surprisingly subtle. Most
people do not notice that the shading is incorrect until it is pointed
out to them, and even then frequently do not find it particularly ob-  [3]
jectionable. The highlights on the eyes can probably be corrected
by building a 3D eye model and creating synthetic highlights ap-
propriate for the viewing situation. Correcting the skin shading and
self shadowing artifacts is more difficult. The former will require
very realistic and efficient skin reflectance models while the lat-
ter will require significant improvements in rendering performance,
especially if the shadowing effect of area light sources is to be ade- [
quately modeled. When both these problems are solved then it will
no longer be necessary to capture the live video sequence — only the
3D geometric data and skin reflectance properties will be needed.

The compression numbers are quite good. Figure 14 shows 5]
a single frame from the original sequence, the same frame com-
pressed by the MPEG4 codec at 460 Kbps and at 260 KBps. All
of the images look quite good. The animated sequences also look
good, with the 260 KBps sequence just beginning to show notice-
able compression artifacts. The 260 KBps video is well within the  [6]
bandwidth of single speed CDROM drives. This data rate is proba-
bly low enough that decompression could be performed in real time
in software on the fastest personal computers so there is the poten- [7]
tial for real time display of the resulting animations. We intend to
investigate this possibility in future work.

There is still room for significant improvement in our compres-
sion. A better mesh parameterization would significantly reduce 18]
the number of bits needed to encode the eyes, which distort signif-
icantly over time in the texture map space. Also the teeth, inner
edges of the lips, and the tongue could potentially be tracked over
time and at least partially stabilized, resulting in a significant re-
duction in bit rate for the mouth region. Since these two regions
account for the majority of the bit budget, the potential for further  [9]
reduction in bit rate is large.

4]

9 Conclusion [10]

The system produces remarkably lifelike reconstructions of facial
expressions recorded from live actors’ performances. The accurate
3D tracking of a large number of points on the face results in an [11]
accurate 3D model of facial expression. The texture map sequence
captured simultaneously with the 3D deformation data captures de-
tails of expression that would be difficult to capture any other way.

By using the 3D deformation information to register the texture
maps from frame to frame the variance of the texture map sequencey1 2]
is significantly reduced which increases its compressibility. Image
quality of 30 frame per second animations, reconstructed at approx-
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Figure 14: Left to Right: Mesh with uncompressed textures, compressed to 400 kbits/sec, and compressed to 200 kbits/sec
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Figure 15: Face before and after dot removal, with details showing the steps in the dot removal process. From left to right, top to bottom:
Face with dots, dots replaced with low frequency skin texture, high frequency skin texture added, hue clamped.

Figure 16: Sequence of rendered images of textured mesh.



