
Making Faces

Brian Guentery Cindy Grimmy Daniel Woodz

Henrique Malvary Fredrick Pighinz
yMicrosoft Corporation zUniversity of Washington

ABSTRACT

We have created a system for capturing both the three-dimensional
geometry and color and shading information for human facial ex-
pressions. We use this data to reconstruct photorealistic, 3D ani-
mations of the captured expressions. The system uses a large set
of sampling points on the face to accurately track the three dimen-
sional deformations of the face. Simultaneously with the tracking
of the geometric data, we capture multiple high resolution, regis-
tered video images of the face. These images are used to create a
texture map sequence for a three dimensional polygonal face model
which can then be rendered on standard 3D graphics hardware. The
resulting facial animation is surprisingly life-like and looks very
much like the original live performance. Separating the capture of
the geometry from the texture images eliminates much of the vari-
ance in the image data due to motion, which increases compression
ratios. Although the primary emphasis of our work is not compres-
sion we have investigated the use of a novel method to compress
the geometric data based on principal components analysis. The
texture sequence is compressed using an MPEG4 video codec. An-
imations reconstructed from 512x512 pixel textures look good at
data rates as low as 240 Kbits per second.

CR Categories: I.3.7 [Computer Graphics]: Three Dimen-
sional Graphics and Realism: Animation; I.3.5 [Computer Graph-
ics]: Computational Geometry and Object Modeling

1 Introduction

One of the most elusive goals in computer animation has been the
realistic animation of the human face. Possessed of many degrees
of freedom and capable of deforming in many ways the face has
been difficult to simulate accurately enough to convince the average
person that a piece of computer animation is actually an image of a
real person.

We have created a system for capturing human facial expres-
sion and replaying it as a highly realistic 3D “talking head” con-
sisting of a deformable 3D polygonal face model with a changing
texture map. The process begins with video of a live actor’s face,
recorded from multiple camera positions simultaneously. Fluores-
cent colored 1/8” circular paper fiducials are glued on the actor’s
face and their 3D position reconstructed over time as the actor talks
and emotes. The 3D fiducial positions are used to distort a 3D
polygonal face model in mimicry of the distortions of the real face.
The fiducials are removed using image processing techniques and
the video streams from the multiple cameras are merged into a sin-
gle texture map. When the resulting fiducial-free texture map is ap-
plied to the 3D reconstructed face mesh the result is a remarkably

life-like 3D animation of facial expression. Both the time varying
texture created from the video streams and the accurate reproduc-
tion of the 3D face structure contribute to the believability of the
resulting animation.

Our system differs from much previous work in facial anima-
tion, such as that of Lee [10], Waters [14], and Cassel [3], in that
we are not synthesizing animations using a physical or procedu-
ral model of the face. Instead, we capture facial movements in
three dimensions and then replay them. The systems of [10], [14]
are designed to make it relatively easy to animate facial expression
manually. The system of [3] is designed to automatically create
a dialog rather than faithfully reconstruct a particular person’s fa-
cial expression. The work of Williams [15] is most similar to ours
except that he used a single static texture image of a real person’s
face and tracked points only in 2D. The work of Bregler et al [2]
is somewhat less related. They use speech recognition to locate
visemes1 in a video of a person talking and then synthesize new
video, based on the original video sequence, for the mouth and jaw
region of the face to correspond with synthetic utterances. They do
not create a three dimensional face model nor do they vary the ex-
pression on the remainder of the face. Since we are only concerned
with capturing and reconstructing facial performances out work is
unlike that of [5] which attempts to recognize expressions or that
of [4] which can track only a limited set of facial expressions.

An obvious application of this new method is the creation of
believable virtual characters for movies and television. Another
application is the construction of a flexible type of video compres-
sion. Facial expression can be captured in a studio, delivered via
CDROM or the internet to a user, and then reconstructed in real
time on a user’s computer in a virtual 3D environment. The user
can select any arbitrary position for the face, any virtual camera
viewpoint, and render the result at any size.

One might think the second application would be difficult to
achieve because of the huge amount of video data required for the
time varying texture map. However, since our system generates ac-
curate 3D deformation information, the texture image data is pre-
cisely registered from frame to frame. This reduces most of the
variation in image intensity due to geometric motion, leaving pri-
marily shading and self shadowing effects. These effects tend to
be of low spatial frequency and can be compressed very efficiently.
The compressed animation looks good at data rates of 240 kbits
per second for texture image sizes of 512x512 pixels, updating at
30 frames per second.

The main contributions of the paper are a method for robustly
capturing both a 3D deformation model and a registered texture im-
age sequence from video data. The resulting geometric and texture
data can be compressed, with little loss of fidelity, so that storage

1Visemes are the visual analog of phonemes.

Figure 1: The six camera views of our actress’ face.

requirements are reasonable for many applications.
Section 2 of the paper explains the data capture stage of the

process. Section 3 describes the fiducial correspondence algorithm.
In Section 4 we discuss capturing and moving the mesh. Sections 5
and 6 describe the process for making the texture maps. Section 7
of the paper describes the algorithm for compressing the geometric
data.

2 Data Capture

We used six studio quality video cameras arranged in the pattern
shown in Plate 1 to capture the video data. The cameras were syn-
chronized and the data saved digitally. Each of the six cameras
was individually calibrated to determine its intrinsic and extrinsic
parameters and to correct for lens distortion. The details of the
calibration process are not germane to this paper but the interested
reader can find a good overview of the topic in [6] as well as an
extensive bibliography.

We glued 182 dots of six different colors onto the actress’ face.
The dots were arranged so that dots of the same color were as far
apart as possible from each other and followed the contours of the
face. This made the task of determining frame to frame dot corre-
spondence (described in Section 3.3) much easier. The dot pattern
was chosen to follow the contours of the face (i.e., outlining the
eyes, lips, and nasio-labial furrows), although the manual applica-
tion of the dots made it difficult to follow the pattern exactly.

The actress’ head was kept relatively immobile using a padded
foam box; this reduced rigid body motions and ensured that the
actress’ face stayed centered in the video images. Note that rigid
body motions can be captured later using a 3D motion tracker, if
desired.

The actress was illuminated with a combination of visible and
near UV light. Because the dots were painted with fluorescent pig-
ments the UV illumination increased the brightness of the dots sig-
nificantly and moved them further away in color space from the
colors of the face than they would ordinarily be. This made them
easier to track reliably. Before the video shoot the actress’ face was
digitized using a cyberware scanner. This scan was used to create
the base 3D face mesh which was then distorted using the positions
of the tracked dots.

3 Dot Labeling

The fiducials are used to generate a set of 3D points which act as
control points to warp the cyberware scan mesh of the actress’ head.
They are also used to establish a stable mapping for the textures
generated from each of the six camera views. This requires that
each dot have a unique and consistent label over time so that it is
associated with a consistent set of mesh vertices.

Cyber ware scan
of actress’ head

Video capture
of actress
6 cameras

Make color class
images from
frame zero

Mark pixels
by color

Triangulate to
find 3D

frame dots

Automatic
alignment

with frame 0
3Ddots

Match
reference dots
to frame dots

Select dots
on mesh

Cyber
dots Color

classifier

3D dot
movements
over time

Create color
classifier

Reference
dots

Hand align
with frame 0

3D dots

Combine marked
pixels to find

2D dots

Done once

Done once

Done for all frames

Manual step
done only once

Automatic
step

Output
data

Data capture

Six images, all frames

Frame zero

3D data, all frames

Data

Legend

Figure 2: The sequence of operations needed to produce the labeled
3D dot movements over time.

The dot labeling begins by first locating (for each camera view)
connected components of pixels which correspond to the fiducials.
The 2D location for each dot is computed by finding the two dimen-
sional centroid of each connected component. Correspondence be-
tween 2D dots in different camera views is established and potential
3D locations of dots reconstructed by triangulation. We construct
a reference set of dots and pair up this reference set with the 3D
locations in each frame. This gives a unique labeling for the dots
that is maintained throughout the video sequence.

A flowchart of the dot labeling process is shown in Figure 2.
The left side of the flowchart is described in Section 3.3.1, the
middle in Sections 3.1, 3.2, and 3.3.2, and the right side in Sec-
tion 3.1.1.

3.1 Two-dimensional dot location

For each camera view the 2D coordinates of the centroid of each
colored fiducial must be computed. There are three steps to this
process: color classification, connected color component genera-
tion, and centroid computation.

First, each pixel is classified as belonging to one of the six dot
colors or to the background. Then depth first search is used to lo-
cate connected blobs of similarly colored pixels. Each connected
colored blob is grown by one pixel to create a mask used to mark
those pixels to be included in the centroid computation. This pro-
cess is illustrated in Figure 4.

The classifier requires the manual marking of the fiducials for
one frame for each of the six cameras. From this data a robust color
classifier is created (exact details are discussed in Section 3.1.1).
Although the training set was created using a single frame of a 3330
frame sequence, the fiducial colors are reliably labeled throughout
the sequence. False positives are quite rare, with one major ex-
ception, and are almost always isolated pixels or two pixel clusters.
The majority of exceptions arise because the highlights on the teeth
and mouth match the color of the white fiducial training set. Fortu-
nately, the incorrect white fiducial labelings occur at consistent 3D
locations and are easily eliminated in the 3D dot processing stage.

The classifier generalizes well so that even fairly dramatic changes

in fiducial color over time do not result in incorrect classification.
For example, Figure 5(b) shows the same green fiducial in two dif-
ferent frames. This fiducial is correctly classified as green in both
frames.

The next step, finding connected color components, is com-
plicated by the fact that the video is interlaced. There is signif-
icant field to field movement, especially around the lips and jaw,
sometimes great enough so that there is no spatial overlap at all
between the pixels of a fiducial in one field and the pixels of the
same fiducial in the next field. If the two fields are treated as a sin-
gle frame then a single fiducial can be fragmented, sometimes into
many pieces.

One could just find connected color components in each field
and use these to compute the 2D dot locations. Unfortunately,
this does not work well because the fiducials often deform and
are sometimes partially occluded. Therefore, the threshold for the
number of pixels needed to classify a group of pixels as a fiducial
has to be set very low. In our implementation any connected com-
ponent which has more than three pixels is classified as a fiducial
rather than noise. If just the connected pixels in a single field are
counted then the threshold would have to be reduced to one pixel.
This would cause many false fiducial classifications because there
are typically a few 1 pixel false color classifications per frame and
2 or 3 pixel false clusters occur occasionally. Instead, we find con-
nected components and generate lists of potential 2D dots in each
field. Each potential 2D dot in field one is then paired with the
closest 2D potential dot in field two. Because fiducials of the same
color are spaced far apart, and because the field to field movement
is not very large, the closest potential 2D dot is virtually guaran-
teed to be the correct match. If the sum of the pixels in the two
potential 2D dots is greater than three pixels then the connected
components of the two 2D potential dots are merged, and the re-
sulting connected component is marked as a 2D dot.

The next step is to find the centroid of the connected compo-
nents marked as 2D dots in the previous step. A two dimensional
gradient magnitude image is computed by passing a one dimen-
sional first derivative of Gaussian along thex andy directions and
then taking the magnitude of these two values at each pixel. The
centroid of the colored blob is computed by taking a weighted sum
of positions of the pixel(x; y) coordinates which lie inside the gra-
dient mask, where the weights are equal to the gradient magnitude.

3.1.1 Training the color classifier

We create one color classifier for each of the camera views, since
the lighting can vary greatly between cameras. In the following
discussion we build the classifier for a single camera.

The data for the color classifier is created by manually marking
the pixels of frame zero that belong to a particular fiducial color.
This is repeated for each of the six colors. The marked data is
stored as 6color class images, each of which is created from the
original camera image by setting all of the pixelsnotmarked as the
given color to black (we use black as an out-of-class label because
pure black never occurred in any of our images). A typical color
class image for the yellow dots is shown in Figure 3. We generated
the color class images using the “magic wand” tool available in
many image editing programs.

A seventh color class image is automatically created for the
background color (e.g., skin and hair) by labeling as out-of-class
any pixel in the image which was previously marked as a fiducial
in any of the fiducial color class images. This produces an image
of the face with black holes where the fiducials were.

The color classifier is a discrete approximation to a nearest
neighbor classifier [12]. In a nearest neighbor classifier the item

Figure 3: An image of the actress’s face. A typical training set for
the yellow dots, selected from the image on the left.

to be classified is given the label of the closest item in the training
set, which in our case is the color data contained in the color class
images. Because we have 3 dimensional data we can approximate
the nearest neighbor classifier by subdividing the RGB cube uni-
formly into voxels, and assigning class labels to each RGB voxel.
To classify a new color you quantize its RGB values and then index
into the cube to extract the label.

To create the color classifier we use the color class images to
assign color classes to each voxel. Assume that the color class
image for color classCi hasn distinct colors,c1:::cn. Each of
the voxels corresponding to the colorcj is labeled with the color
classCi. Once the voxels for all of the known colors are labeled,
the remaining unlabeled voxels are assigned labels by searching
through all of the colors in each color classCi and finding the color
closest top in RGB space. The colorp is given the label of the
color class containing the nearest color. Nearness in our case is the
Euclidean distance between the two points in RGB space.

If colors from different color classes map to the same sub-cube,
we label that sub-cube with the background label since it is more
important to avoid incorrect dot labeling than it is to try to label
every dot pixel. For the results shown in this paper we quantized
the RGB color cube into a 32x32x32 lattice.

3.2 Camera to camera dot correspondence and
3D reconstruction

In order to capture good images of both the front and the sides of
the face the cameras were spaced far apart. Because there are such
extreme changes in perspective between the different camera views,
the projected images of the colored fiducials are very different. Fig-
ure 5 shows some examples of the changes in fiducial shape and
color between camera views. Establishing fiducial correspondence
between camera views by using image matching techniques such as
optical flow or template matching would be difficult and likely to
generate incorrect matches. In addition, most of the camera views
will only see a fraction of the fiducials so the correspondence has to
be robust enough to cope with occlusion of fiducials in some of the
camera views. With the large number of fiducials we have placed
on the face false matches are also quite likely and these must be
detected and removed. We used ray tracing in combination with
a RANSAC [7] like algorithm to establish fiducial correspondence
and to compute accurate 3D dot positions. This algorithm is robust
to occlusion and to false matches as well.

First, all potential point correspondences between cameras are
generated. If there arek cameras, andn 2D dots in each camera

view then
�

k

2

�
n2 point correspondences will be tested. Each

correspondence gives rise to a 3D candidate point defined as the
closest point of intersection of rays cast from the 2D dots in the

Image

Classified
pixels

Field 1

Field 2 Connected components
in fields 1 & 2

Merging with
closet neighbor

Figure 4: Finding the 2D dots in the images.

two camera views. The 3D candidate point is projected into each
of the two camera views used to generate it. If the projection is
further than a user-defined epsilon, in our case two pixels, from the
centroid of either 2D point then the point is discarded as a potential
3D point candidate. All the 3D candidate points which remain are
added to the 3D point list.

Each of the points in the 3D point list is projected into a refer-
ence camera view which is the camera with the best view of all the
fiducials on the face. If the projected point lies within two pixels of
the centroid of a 2D dot visible in the reference camera view then
it is added to the list of potential 3D candidate positions for that 2D
dot. This is the list of potential 3D matches for a given 2D dot.

For each 3D point in the potential 3D match list,
�

n

3

�
possi-

ble combinations of three points in the 3D point list are computed
and the combination with the smallest variance is chosen as the true
3D position. Then all 3D points which lie within a user defined
distance, in our case the sphere subtended by a cone two pixels
in radius at the distance of the 3D point, are averaged to generate
the final 3D dot position. This 3D dot position is assigned to the
corresponding 2D dot in the reference camera view.

This algorithm could clearly be made more efficient because
many more 3D candidate points are generated then necessary. One
could search for potential camera to camera correspondences only
along the epipolar lines and use a variety of space subdivision tech-
niques to find 3D candidate points to test for a given 2D point.
However, because the number of fiducials in each color set is small
(never more than40) both steps of this simple and robust algorithm
are reasonably fast, taking less than a second to generate the 2D dot
correspondences and 3D dot positions for six camera views. The
2D dot correspondence calculation is dominated by the time taken
to read in the images of the six camera views and to locate the 2D
dots in each view. Consequently, the extra complexity of more ef-
ficient stereo matching algorithms does not appear to be justified.

3.3 Frame to frame dot correspondence and la-
beling

We now have a set of unlabeled 3D dot locations for each frame.
We need to assign, across the entire sequence, consistent labels to
the 3D dot locations. We do this by defining a reference set of
dotsD and matching this set to the 3D dot locations given for each
frame. We can then describe how the reference dots move over time
as follows: Letdj 2 D be the neutral location for the reference dot
j. We define the position ofdj at framei by an offset, i.e.,

d
i
j = dj + ~v

i
j (1)

Because there are thousands of frames and 182 dots in our data

Figure 5: Dot variation. Left: Two dots seen from three different
cameras (the purple dot is occluded in one camera’s view). Right:
A single dot seen from a single camera but in two different frames.

set we would like the correspondence computation to be automatic
and quite efficient. To simplify the matching we used a fiducial
pattern that separates fiducials of a given color as much as possi-
ble so that only a small subset of the unlabeled 3D dots need be
checked for a best match. Unfortunately, simple nearest neighbor
matching fails for several reasons: some fiducials occasionally dis-
appear, some 3D dots may move more than the average distance
between 3D dots of the same color, and occasionally extraneous 3D
dots appear, caused by highlights in the eyes or teeth. Fortunately,
neighboring fiducials move similarly and we can exploit this fact,
modifying the nearest neighbor matching algorithm so that it is still
efficient but also robust.

For each framei we first move the reference dots to the loca-
tions found in the previous frame. Next, we find a (possibly incom-
plete) match between the reference dots and the 3D dot locations
for framei. We then move each matched reference dot to the loca-
tion of its corresponding 3D dot. If a reference dot does not have
a match we “guess” a new location for it by moving it in the same
direction as its neighbors. We then perform a final matching step.

3.3.1 Acquiring the reference set of dots

The cyberware scan was taken with the dots glued onto the face.
Since the dots are visible in both the geometric and color informa-
tion of the scan, we can place the reference dots on the cyberware
model by manually clicking on the model. We next need to align
the reference dots and the model with the 3D dot locations found in
frame zero. The coordinate system for the cyberware scan differs
from the one used for the 3D dot locations, but only by a rigid body
motion plus a uniform scale. We find this transform as follows: we
first hand-align the 3D dots from frame zero with the reference dots
acquired from the scan, then call the matching routine described in
Section 3.3.2 below to find the correspondence between the 3D dot
locations,fi, and the reference dots,di. We use the method de-
scribed in [9] to find the exact transform,T , between the two sets
of dots. Finally, we replace the temporary locations of the reference
dots withdi = fi.
and useT�1 to transform the cyberware model into the coordinate
system of the video 3D dot locations.

3.3.2 The matching routine

The matching routine is run twice per frame. We first perform a
conservative match, move the reference dots (as described below in
Section 3.3.3), then perform a second, less conservative, match. By
moving the reference dots between matches we reduce the problem
of large 3D dot position displacements.

0

1

3

2

Reference dot

3D dot

a

b

c

d

Connected components
of edge graph

Sort and pair

0

1

3

2

1

3

2

0

a

b

c

d

a

b

c

d

Figure 6: Matching dots.

Missing 3D dot

Big
epsilon

Small
epsilon

Extra 3D dotReference dot

3D dot

Big
epsilon

Small
epsilon

Big
epsilon

Small
epsilon

Figure 7: Examples of extra and missing dots and the effect of
different values for�.

The matching routine can be thought of as a graph problem
where an edge between a reference dot and a frame dot indicates
that the dots are potentially paired (see Figure 6). The matching
routine proceeds in several steps; first, for each reference dot we
add an edge for every 3D dot of the same color that is within a given
distance�. We then search for connected components in the graph
that have an equal number of 3D and reference dots (most con-
nected components will have exactly two dots, one of each type).
We sort the dots in the vertical dimension of the plane of the face
and use the resulting ordering to pair up the reference dots with the
3D dot locations (see Figure 6).

In the video sequences we captured, the difference in the 3D dot
positions from frame to frame varied from zero to about1:5 times
the average distance separating closest dots. To adjust for this, we
run the matching routine with several values of� and pick the run
that generates the most matches. Different choices of� produce
different results (see Figure 7): if� is too small we may not find
matches for 3D dots that have moved a lot. If� is too large then
the connected components in the graph will expand to include too
many 3D dots. We try approximately five distances ranging from
0:5 to 1:5 of the average distance between closest reference dots.

If we are doing the second match for the frame we add an ad-
ditional step to locate matches where a dot may be missing (or ex-
tra). We take those dots which have not been matched and run the
matching routine on them with smaller and smaller� values. This
resolves situations such as the one shown on the right of Figure 7.

3.3.3 Moving the dots

We move all of the matched reference dots to their new locations
then interpolate the locations for the remaining, unmatched refer-
ence dots by using their nearest, matched neighbors. For each ref-
erence dot we define a valid set of neighbors using the routine in
Section 4.2.1, ignoring the blending values returned by the routine.

To move an unmatched dotdk we use a combination of the
offsets of all of its valid neighbors (refer to Equation 1). Letnk �
D be the set of neighbor dots for dotdk. Let n̂k be the set of
neighbors that have a match for the current framei. Provided̂nk 6=
;, the offset vector for dotdik is calculated as follows: let~vij =

dij � dj be the offset of dotj (recall thatdj is the initial position
for the reference dotj).

~v
i
k =

1

jjn̂kjj

X
di
j
2n̂k

~v
i
j

If the dot has no matched neighbors we repeat as necessary, treating
the moved, unmatched reference dots as matched dots. Eventually,
the movements will propagate through all of the reference dots.

4 Mesh construction and deformation

4.1 Constructing the mesh

To construct a mesh we begin with a cyberware scan of the head.
Because we later need to align the scan with the 3D video dot data,
we scanned the head with the fiducials glued on. The resulting scan
suffers from four problems:

� The fluorescent fiducials caused “bumps” on the mesh.

� Several parts of the mesh were not adequately scanned, namely,
the ears, one side of the nose, the eyes, and under the chin.
These were manually corrected.

� The mesh does not have an opening for the mouth.

� The scan has too many polygons.

The bumps caused by the fluorescent fiducials were removed by
selecting the vertices which were out of place (approximately 10-30
surrounding each dot) and automatically finding new locations for
them by blending between four correct neighbors. Since the scan
produces a rectangular grid of vertices we can pick the neighbors
to blend between in(u; v) space, i.e., the nearest valid neighbors in
the positive and negativeu andv direction.

The polygons at the mouth were split and then filled with six
rows of polygons located slightly behind the lips. We map the teeth
and tongue onto these polygons when the mouth is open.

We reduced the number of polygons in the mesh from approxi-
mately460; 000 to 4800 using Hoppe’s simplification method [8].

4.2 Moving the mesh

The vertices are moved by a linear combination of the offsets of
the nearest dots (refer to Equation 1). The linear combination for
each vertexvj is expressed as a set of blend coefficients,�

j
k, one

for each dot, such that
P

dk2D
�jk = 1 (most of the�jks will be

zero). The new locationpij of the vertexvj at framei is then

p
i
j = pj +

X
k

�
j
kjjd

i
k � dkjj

wherepj is the initial location of the vertexvj .
For most of the vertices the�jks are a weighted average of the

closest dots. The vertices in the eyes, mouth, behind the mouth,
and outside of the facial area are treated slightly differently since,
for example, we do not want the dots on the lower lip influencing
vertices on the upper part of the lip. Also, although we tried to keep
the head as still as possible, there is still some residual rigid body
motion. We need to compensate for this for those vertices that are
not directly influenced by a dot (e.g., the back of the head).

We use a two-step process to assign the blend coefficients to
the vertices. We first find blend coefficients for a grid of points
evenly distributed across the face, then use this grid of points to

Figure 8: Left: The original dots plus the extra dots (in white). The
labeling curves are shown in light green. Right: The grid of dots.
Outline dots are green or blue.

assign blend coefficients to the vertices. This two-step process is
helpful because both the fluorescent fiducials and the mesh vertices
are unevenly distributed across the face, making it difficult to get
smoothly changing blend coefficients.

The grid consists of roughly1400 points, evenly distributed and
placed by hand to follow the contours of the face (see Figure 8).
The points along the nasolabial furrows, nostrils, eyes, and lips are
treated slightly differently than the other points to avoid blending
across features such as the lips.

Because we want the mesh movement to go to zero outside of
the face, we add another set of unmoving dots to the reference set.
These new dots form a ring around the face (see Figure 8) enclosing
all of the reference dots. For each frame we determine the rigid
body motion of the head (if any) using a subset of those reference
dots which are relatively stable. This rigid body transformation is
then applied to the new dots.

We label the dots, grid points, and vertices as beingabove, be-
low, or neither with respect to each of the eyes and the mouth.
Dots which areabovea given feature can not be combined with
dots which arebelowthat same feature (or vice-versa). Labeling is
accomplished using three curves, one for each of the eyes and one
for the mouth. Dots directly above (or below) a curve are labeled
asabove(or below) that curve. Otherwise, they are labeledneither.

4.2.1 Assigning blends to the grid points

The algorithm for assigning blends to the grid points first finds the
closest dots, assigns blends, then filters to more evenly distribute
the blends.

Finding the ideal set of reference dots to influence a grid point
is complicated because the reference dots are not evenly distributed
across the face. The algorithm attempts to find two or more dots
distributed in a rough circle around the given grid point. To do
this we both compensate for the dot density, by setting the search
distance using the two closest dots, and by checking for dots which
will both “pull” in the same direction.

To find the closest dots to the grid pointpwe first find�1 and�2,
the distance to the closest and second closest dot, respectively. Let
Dn � D be the set of dots within1:8 �1+�2

2
distance ofp whose

labels do not conflict withp’s label. Next, we check for pairs of
dots that are more or less in the same direction fromp and remove
the furthest one. More precisely, letv̂i be the normalized vector
from p to the dotdi 2 Dn and letv̂j be the normalized vector from
p to the dotdj 2 Dn. If v̂1 � v̂2 > 0:8 then remove the furthest of
di anddj from the setDn.

We assign blend values based on the distance of the dots from
p. If the dot is not inDn then its corresponding� value is0. For

Figure 9: Masks surrounding important facial features. The gradi-
ent of a blurred version of this mask is used to orient the low-pass
filters used in the dot removal process.

the dots inDn let li = 1:0
jjdi�pjj

. Then the corresponding�’s are

�i =
li

(
P

di2Dn
li)

We next filter the blend coefficients for the grid points. For each
grid point we find the closest grid points – since the grid points
are distributed in a rough grid there will usually be4 neighboring
points – using the above routine (replacing the dots with the grid
points). We special case the outlining grid points; they are only
blended with other outlining grid points. The new blend coeffi-
cients are found by taking0:75 of the grid point’s blend coefficients
and0:25 of the average of the neighboring grid point’s coefficients.
More formally, letgi = [�0; : : : ; �n] be the vector of blend co-
efficients for the grid pointi. Then the new vectorg0i is found as
follows, whereNi is the set of neighboring grid points for the grid
point i:

g
0
i = 0:75gi +

0:25

jjNijj

X
j2Ni

gj

We apply this filter twice to simulate a wide low pass filter.
To find the blend coefficients for the vertices of the mesh we

find the closest grid point with the same label as the vertex and copy
the blend coefficients. The only exception to this is the vertices for
the polygons inside of the mouth. For these vertices we take� of
the closest grid point on the top lip and1:0 � � of the closest grid
point on the bottom lip. The� values are0:8, 0:6, 0:4, 0:25, and
0:1 from top to bottom of the mouth polygons.

5 Dot removal

Before we create the textures, the dots and their associated illumi-
nation effects have to be removed from the camera images. Inter-
reflection effects are surprisingly noticeable because some parts of
the face fold dramatically, bringing the reflective surface of some
dots into close proximity with the skin. This is a big problem along
the naso-labial furrow where diffuse interreflection from the col-
ored dots onto the face significantly alters the skin color.

First, the dot colors are removed from each of the six camera
image sequences by substituting skin texture for pixels which are
covered by colored dots. Next, diffuse interreflection effects and
any remaining color casts from stray pixels that have not been prop-
erly substituted are removed.

The skin texture substitution begins by finding the pixels which
correspond to colored dots. The nearest neighbor color classifier

Figure 10: Standard cylindrical texture map. Warped texture map
that focuses on the face, and particularly on the eyes and mouth.
The warp is defined by the line pairs shown in white.

described in Section 3.1.1 is used to mark all pixels which have
any of the dot colors. A special training set is used since in this
case false positives are much less detrimental than they are for the
dot tracking case. Also, there is no need to distinguish between dot
colors, only between dot colors and the background colors. The
training set is created to capture as much of the dot color and the
boundary region between dots and the background colors as possi-
ble.

A dot mask is generated by applying the classifier to each pixel
in the image. The mask is grown by a few pixels to account for any
remaining pixels which might be contaminated by the dot color.
The dot mask marks all pixels which must have skin texture substi-
tuted.

The skin texture is broken into low spatial frequency and high
frequency components. The low frequency components of the skin
texture are interpolated by using a directional low pass filter ori-
ented parallel to features that might introduce intensity discontinu-
ities. This prevents bleeding of colors across sharp intensity bound-
aries such as the boundary between the lips and the lighter colored
regions around the mouth. The directionality of the filter is con-
trolled by a two dimensional mask which is the projection into the
image plane of a three dimensional polygon mask lying on the 3D
face model. Because the polygon mask is fixed on the 3D mesh,
the 2D projection of the polygon mask stays in registration with
the texture map as the face deforms.

All of the important intensity gradients have their own polygon
mask: the eyes, the eyebrows, the lips, and the naso-labial furrows
(see 9). The 2D polygon masks are filled with white and the re-
gion of the image outside the masks is filled with black to create an
image. This image is low-pass filtered. The intensity of the result-
ing image is used to control how directional the filter is. The filter
is circularly symmetric where the image is black, i.e., far from in-
tensity discontinuities, and it is very directional where the image
is white. The directional filter is oriented so that its long axis is
orthogonal to the gradient of this image.

The high frequency skin texture is created from a rectangular
sample of skin texture taken from a part of the face that is free
of dots. The skin sample is highpass filtered to eliminate low fre-
quency components. At each dot mask pixel location the highpass
filtered skin texture is first registered to the center of the 2D bound-
ing box of the connected dot region and then added to the low fre-
quency interpolated skin texture.

The remaining diffuse interreflection effects are removed by
clamping the hue of the skin color to a narrow range determined
from the actual skin colors. First the pixel values are converted
from RGB to HSV space and then any hue outside the legal range
is clamped to the extremes of the range. Pixels in the eyes and

mouth, found using the eye and lip masks shown in Figure 9, are
left unchanged.

Some temporal variation remains in the substituted skin texture
due to imperfect registration of the high frequency texture from
frame to frame. A low pass temporal filter is applied to the dot mask
regions in the texture images, because in the texture map space
the dots are relatively motionless. This temporal filter effectively
eliminates the temporal texture substitution artifacts.

6 Creating the texture maps

Figure 11 is a flowchart of the texture creation process. We create
texture maps for every frame of our animation in a four-step pro-
cess. The first two steps are performed only once per mesh. First
we define a parameterization of the mesh. Second, using this pa-
rameterization, we create ageometry mapcontaining a location on
the mesh for each texel. Third, for every frame, we create six pre-
liminary texture maps, one from each camera image, along with
weight maps. The weight maps indicate the relative quality of the
data from the different cameras. Fourth, we take a weighted aver-
age of these texture maps to make our final texture map.

We create an initial set of texture coordinates for the head by
tilting the mesh back 10 degrees to expose the nostrils and pro-
jecting the mesh vertices onto a cylinder. A texture map generated
using this parametrization is shown on the left of Figure 10. We
specify a set of line pairs and warp the texture coordinates using
the technique described by Beier and Neely[1]. This parametriza-
tion results in the texture map shown on the right of Figure 10.
Only the front of the head is textured with data from the six video
streams.

Next we create the geometry map containing a mesh location
for each texel. A mesh location is a triple(k; �1; �2) specifying
a trianglek and barycentric coordinates in the triangle (�1, �2,
1 � �1 � �2). To find the triangle identifierk for texel (u; v) we
exhaustively search through the mesh’s triangles to find the one that
contains the texture coordinates(u; v). We then set the�is to be
the barycentric coordinates of the point(u; v) in the texture coordi-
nates of the trianglek. When finding the mesh location for a pixel
we already know in which triangles its neighbors above and to the
left lie. Therefore, we speed our search by first searching through
these triangles and their neighbors. However, the time required for
this task is not critical as the geometry map need only be created
once.

Next we create preliminary texture maps for framef one for
each camera. This is a modified version of the technique described
in [11]. To create the texture map for camerac, we begin by de-
forming the mesh into its framef position. Then, for each texel,
we get its mesh location,(k; �1; �2), from the geometry map. With
the 3D coordinates of trianglek’s vertices and the barycentric coor-
dinates�i, we compute the texel’s 3D locationt. We transformt by
camerac’s projection matrix to obtain a location,(x; y), on camera
c’s image plane. We then color the texel with the color from cam-
erac’s image at(x; y). We set the texel’s weight to the dot product
of the mesh normal att, n̂, with the direction back to the camera,
d̂ (see Figure 12). Negative values are clamped to zero. Hence,
weights are low where the camera’s view is glancing. However,
this weight map is not smooth at triangle boundaries, so we smooth
it by convolving it with a Gaussian kernel.

Last, we merge the six preliminary texture maps. As they do
not align perfectly, averaging them blurs the texture and loses de-
tail. Therefore, we use only the texture map of our bottom, center
camera for the center 46 % of the final texture map. We smoothly
transition (over 23 pixels) to using a weighted average of each pre-
liminary texture map at the sides.

Color
classifier

Cyber ware scan
of actress’ head

Video capture
of actress
6 cameras

Draw mask
curves

Adjust
texture map

Reduce mesh

Cylindrical
projection
of mesh

Remove dots
from images

Project images
onto deformed

meshDeform mesh

Combine
images into
texture map

Clean up mesh
Split mouth Mask

curves

Deform
mask curves and

project

3D dot
movements
over time

Texture
coordinates;

Geometry map

Texture
maps for

each frame

Mesh

Done once

Manual step
done only once

Automatic
step

Output
data

Data capture

Six images, all frames

3D data, all frames

Frame zero

Data

Legend

Video capture of
calibration pattern

6 cameras

Mark corners

Calibrate
cameras

Camera
parameters

Done once

Figure 11: Creating the texture maps.

We texture the parts of the head not covered by the aforemen-
tioned texture maps with the captured reflectance data from our Cy-
berware scan, modified in two ways. First, because we replaced the
mesh’s ears with ears from a stock mesh (Section 4.1), we moved
the ears in the texture to achieve better registration. Second, we
set the alpha channel to zero (with a soft edge) in the region of the
texture for the front of the head. Then we render in two passes to
create an image of the head with both texture maps applied.

7 Compression

7.1 Principal Components Analysis

The geometric and texture map data have different statistical char-
acteristics and are best compressed in different ways. There is sig-
nificant long-term temporal correlation in the geometric data since
similar facial expressions occur throughout the sequence. The short
term correlation of the texture data is significantly increased over
that of the raw video footage because in the texture image space
the fiducials are essentially motionless. This eliminates most of the
intensity changes associated with movement and leaves primarily
shading changes. Shading changes tend to have low spatial fre-
quencies and are highly compressible. Compression schemes such
as MPEG, which can take advantage of short term temporal corre-
lation, can exploit this increase in short term correlation.

For the geometric data, one way to exploit the long term corre-
lation is to use principal component analysis. If we represent our
data set as a matrixA, where framei of the data maps columni of
A, then the first principal component ofA is

max
u

(AT
u)T (AT

u) (2)

Theu which maximizes Equation 2 is the eigenvector associated
with the largest eigenvalue ofAAT , which is also the value of the
maximum. Succeeding principal components are defined similarly,
except that they are required to be orthogonal to all preceding prin-
cipal components, i.e.,uTi uj = 0 for j 6= i. The principal com-
ponents form an orthonormal basis set represented by the matrixU
where the columns ofU are the principal components ofA ordered
by eigenvalue size with the most significant principal component in
the first column ofU .

The data in theA matrix can be projected onto the principal
component basis as follows:

W = U
T
A

Rowi of W is the projection of columnAi onto the basis vectorui.
More precisely, thejth element in rowi of W corresponds to the
projection of framej of the original data onto theith basis vector.
We will call the elements of theW matrix projectioncoefficients.

Similarly,A can be reconstructed exactly fromW by multipli-
cation by the basis set, i.e.,A = UW .
The most important property of the principal components for our
purposes is that they are the best linear basis set for reconstruction
in thel2 norm sense. For any given matrixUk, wherek is the num-
ber of columns of the matrix andk < rank(A), the reconstruction
error

e = jjA� UkU
T
k Ajj

2

F (3)

wherejjBjj2F is the Frobenius norm defined to be

jjBjj2F =

mX
i=1

nX
j=1

b
2
ij (4)

will be minimized ifUk is the matrix containing thek most signif-
icant principal components ofA.

We can compress a data setA by quantizing the elements of its
correspondingW andU matrices and entropy coding them. Since
the compressed data cannot be reconstructed without the principal
component basis vectors both theW andU matrices have to be
compressed. The basis vectors add overhead that is not present
with basis sets that can be computed independent of the original
data set, such as the DCT basis.

For data sequences that have no particular structure the extra
overhead of the basis vectors would probably out-weigh any gain in
compression efficiency. However, for data sets with regular frame
to frame structure the residual error for reconstruction with the
principal component basis vectors can be much smaller than for
other bases. This reduction in residual error can be great enough to
compensate for the overhead bits of the basis vectors.

The principal components can be computed using the singular
value decomposition (SVD) [13]. Efficient implementations of this
algorithm are widely available. The SVD of a matrixA is

Figure 12: Creating the preliminary texture map.

A = U�V T (5)

where the columns ofU are the eigenvectors ofAAT , the singular
values,�i, along the diagonal matrix� are the square roots of the
eigenvalues ofAAT , and the columns ofV are the eigenvectors
of ATA. The ith column ofU is the ith principal component of
A. Computing the firstk left singular vectors ofA is equivalent to
computing the firstk principal components.

7.2 Geometric Data

The geometric data has the long term temporal coherence proper-
ties mentioned above since the motion of the face is highly struc-
tured. The overhead of the basis vectors for the geometric data is
fixed because there are only182 fiducials on the face. The maxi-
mum number of basis vectors is182 � 3 since there are three num-
bers,x, y, andz, associated with each fiducial. Consequently, the
basis vector overhead steadily diminishes as the length of the ani-
mation sequence increases.

The geometric data is mapped to matrix form by taking the 3D
offset data for theith frame and mapping it theith column of the
data matrixAg. The firstk principal components,Ug , of Ag are
computed andAg is projected into theUg basis to give the projec-
tion coefficientsWg.

There is significant correlation between the columns of projec-
tion coefficients because the motion of the dots is relatively smooth
over time. We can reduce the entropy of the quantized projection
coefficients by temporally predicting the projection coefficients in
columni from columni�1, i.e.,ci = ci�1+�i where we encode
�i.

For our data set, only the projection coefficients associated with
the first 45 principal components, corresponding to the first 45 rows
of Wg, have significant temporal correlation so only the first 45
rows are temporally predicted. The remaining rows are entropy
coded directly. After the temporal prediction the entropy is reduced
by about 20 percent (Figure 13).

The basis vectors are compressed by choosing a peak error rate
and then varying the number of quantization levels allocated to each
vector based on the standard deviation of the projection coefficients
for each vector.

We visually examined animation sequences withWg andUg
compressed at a variety of peak error rates and chose a level which
resulted in undetectable geometric jitter in reconstructed animation.
The entropy ofWg for this error level is 26 Kbits per second and
the entropy ofUg is 13 kbits per second for a total of 40 kbits per
second for all the geometric data. These values were computed for
our 3330 frame animation sequence.

8 Results

Figure 16 shows some typical frames from a reconstructed sequence
of 3D facial expressions. These frames are taken from a 3330 frame

0 20 40 60 80 100 120 140 160 180 200
0

1

2

3

4

5

6

7

8

Coefficient index

E
nt

ro
py

, b
its

/s
am

pl
e

Without prediction

With prediction

Figure 13: Reduction in entropy after temporal prediction.

animation in which the actress makes random expressions while
reading from a script2.

The facial expressions look remarkably life-like. The anima-
tion sequence is similarly striking. Virtually all evidence of the
colored fiducials and diffuse interreflection artifacts is gone, which
is surprising considering that in some regions of the face, especially
around the lips, there is very little of the actress’ skin visible – most
of the area is covered by colored fiducials.

Both the accurate 3D geometry and the accurate face texture
contribute to the believability of the reconstructed expressions. Oc-
clusion contours look correct and the subtle details of face geom-
etry that are very difficult to capture as geometric data show up
well in the texture images. Important examples of this occur at
the nasolabial furrow which runs from just above the nares down
to slightly below the lips, eyebrows, and eyes. Forehead furrows
and wrinkles also are captured. To recreate these features using
geometric data rather than texture data would require an extremely
detailed 3D capture of the face geometry and a resulting high poly-
gon count in the 3D model. In addition, shading these details prop-
erly if they were represented as geometry would be difficult since it
would require computing shadows and possibly even diffuse inter-
reflection effects in order to look correct. Subtle shading changes
on the smooth parts of the skin, most prominent at the cheekbones,
are also captured well in the texture images.

There are still visible artifacts in the animation, some of which
are polygonization or shading artifacts, others of which arise be-
cause of limitations in our current implementation.

Some polygonization of the face surface is visible, especially
along the chin contour, because the front surface of the head con-
tains only4500 polygons. This is not a limitation of the algorithm –
we chose this number of polygons because we wanted to verify that
believable facial animation could be done at polygon resolutions
low enough to potentially be displayed in real time on inexpensive
($200) 3D graphics cards3. For film or television work, where real
time rendering is not an issue, the polygon count can be made much
higher and the polygonization artifacts will disappear. As graphics
hardware becomes faster the differential in quality between offline
and online rendered face images will diminish.

Several artifacts are simply the result of our current implemen-
tation. For example, occasionally the edge of the face, the tips
of the nares, and the eyebrows appear to jitter. This usually oc-
curs when dots are lost, either by falling below the minimum size
threshold or by not being visible to three or more cameras. When
a dot is lost the algorithm synthesizes dot position data which is

2The rubber cap on the actress’ head was used to keep her hair out of her face.
3 In this paper we have not addressed the issue of real time texture decompression

and rendering of the face model, but we plan to do so in future work

usually incorrect enough that it is visible as jitter. More cameras,
or better placement of the cameras, would eliminate this problem.
However, overall the image is extremely stable.

In retrospect, a mesh constructed by hand with the correct ge-
ometry and then fit to the cyberware data [10] would be much sim-
pler and possibly reduce some of the polygonization artifacts.

Another implementation artifact that becomes most visible when
the head is viewed near profile is that the teeth and tongue appear
slightly distorted. This is because we do not use correct 3D models
to represent them. Instead, the texture map of the teeth and tongue
is projected onto a sheet of polygons stretching between the lips. It
is possible that the teeth and tongue could be tracked using more
sophisticated computer vision techniques and then more correct ge-
ometric models could be used.

Shading artifacts represent an intrinsic limitation of the algo-
rithm. The highlights on the eyes and skin remain in fixed positions
regardless of point of view, and shadowing is fixed at the time the
video is captured. However, for many applications this should not
be a limitation because these artifacts are surprisingly subtle. Most
people do not notice that the shading is incorrect until it is pointed
out to them, and even then frequently do not find it particularly ob-
jectionable. The highlights on the eyes can probably be corrected
by building a 3D eye model and creating synthetic highlights ap-
propriate for the viewing situation. Correcting the skin shading and
self shadowing artifacts is more difficult. The former will require
very realistic and efficient skin reflectance models while the lat-
ter will require significant improvements in rendering performance,
especially if the shadowing effect of area light sources is to be ade-
quately modeled. When both these problems are solved then it will
no longer be necessary to capture the live video sequence – only the
3D geometric data and skin reflectance properties will be needed.

The compression numbers are quite good. Figure 14 shows
a single frame from the original sequence, the same frame com-
pressed by the MPEG4 codec at 460 Kbps and at 260 KBps. All
of the images look quite good. The animated sequences also look
good, with the 260 KBps sequence just beginning to show notice-
able compression artifacts. The 260 KBps video is well within the
bandwidth of single speed CDROM drives. This data rate is proba-
bly low enough that decompression could be performed in real time
in software on the fastest personal computers so there is the poten-
tial for real time display of the resulting animations. We intend to
investigate this possibility in future work.

There is still room for significant improvement in our compres-
sion. A better mesh parameterization would significantly reduce
the number of bits needed to encode the eyes, which distort signif-
icantly over time in the texture map space. Also the teeth, inner
edges of the lips, and the tongue could potentially be tracked over
time and at least partially stabilized, resulting in a significant re-
duction in bit rate for the mouth region. Since these two regions
account for the majority of the bit budget, the potential for further
reduction in bit rate is large.

9 Conclusion

The system produces remarkably lifelike reconstructions of facial
expressions recorded from live actors’ performances. The accurate
3D tracking of a large number of points on the face results in an
accurate 3D model of facial expression. The texture map sequence
captured simultaneously with the 3D deformation data captures de-
tails of expression that would be difficult to capture any other way.
By using the 3D deformation information to register the texture
maps from frame to frame the variance of the texture map sequence
is significantly reduced which increases its compressibility. Image
quality of 30 frame per second animations, reconstructed at approx-

imately 300 by 400 pixels, is still good at data rates as low as 240
Kbits per second, and there is significant potential for lowering this
bit rate even further. Because the bit overhead for the geometric
data is low in comparison to the texture data one can get a 3D talk-
ing head, with all the attendant flexibility, for little more than the
cost of a conventional video sequence. With the true 3D model of
facial expression, the animation can be viewed from any angle and
placed in a 3D virtual environment, making it much more flexible
than conventional video.

References

[1] BEIER, T., AND NEELY, S. Feature-based image metamor-
phosis. InComputer Graphics (SIGGRAPH ’92 Proceedings)
(July 1992), E. E. Catmull, Ed., vol. 26, pp. 35–42.

[2] BREGLER, C., COVELL, M., AND SLANEY, M. Video
rewrite: Driving visual speech with audio.Computer Graph-
ics 31, 2 (Aug. 1997), 353–361.

[3] CASSELL, J., PELACHAUD, C., BADLER, N., STEEDMAN,
M., ACHORN, B., BECKET, T., DOUVILLE , B., PREVOST,
S., AND STONE, M. Animated conversation: Rule-based
generation of facial expression, gesture and spoken intona-
tion for multiple conversational agents.Computer Graphics
28, 2 (Aug. 1994), 413–420.

[4] DECARLO, D., AND METAXAS, D. The integration of op-
tical flow and deformable models with applications to human
face shape and motion estimation.Proceedings CVPR(1996),
231–238.

[5] ESSA, I., AND PENTLAND, A. Coding, analysis, interpreta-
tion and recognition of facial expressions.IEEE Transactions
on Pattern Analysis and Machine Intelligence 19, 7 (1997),
757–763.

[6] FAUGERAS, O. Three-dimensional computer vision. MIT
Press, Cambridge, MA, 1993.

[7] FISCHLER, M. A., AND BOOLES, R. C. Random sample
consensus: A paradigm for model fitting with applications to
image analysis and automated cartography.Communications
of the ACM 24, 6 (Aug. 1981), 381–395.

[8] HOPPE, H. Progressive meshes. InSIGGRAPH 96 Con-
ference Proceedings(Aug. 1996), H. Rushmeier, Ed., An-
nual Conference Series, ACM SIGGRAPH, Addison Wesley,
pp. 99–108. held in New Orleans, Louisiana, 04-09 August
1996.

[9] HORN, B. K. P. Closed-form solution of absolute orienta-
tion using unit quaternions.Journal of the Optical Society of
America 4, 4 (Apr. 1987).

[10] LEE, Y., TERZOPOULOS, D., AND WATERS, K. Realistic
modeling for facial animation.Computer Graphics 29, 2 (July
1995), 55–62.

[11] PIGHIN, F., AUSLANDER, J., LISHINSKI, D., SZELISKI , R.,
AND SALESIN, D. Realistic facial animation using image
based 3d morphing. Tech. Report TR-97-01-03, Department
of Computer Science and Engineering, University of Wash-
ington, Seattle, Wa, 1997.

[12] SCHÜRMANN, J. Pattern Classification: A Unified View of
Statistical and Neural Approaches. John Wiley and Sons, Inc.,
New York, 1996.

Figure 14: Left to Right: Mesh with uncompressed textures, compressed to 400 kbits/sec, and compressed to 200 kbits/sec

[13] STRANG. Linear Algebra and its Application. HBJ, 1988.

[14] WATERS, K. A muscle model for animating three-
dimensional facial expression. InComputer Graphics (SIG-
GRAPH ’87 Proceedings)(July 1987), M. C. Stone, Ed.,
vol. 21, pp. 17–24.

[15] WILLIAMS , L. Performance-driven facial animation.Com-
puter Graphics 24, 2 (Aug. 1990), 235–242.

Figure 15: Face before and after dot removal, with details showing the steps in the dot removal process. From left to right, top to bottom:
Face with dots, dots replaced with low frequency skin texture, high frequency skin texture added, hue clamped.

Figure 16: Sequence of rendered images of textured mesh.

