
Simple Manifolds for Surface Modeling and Parameterization

Cindy M. Grimm
cmg@cs.wustl.edu

Abstract

We present a surface modeling technique using mani-
folds. Our approach uses a single, simple parameterization
for all surfaces of a given genus. This differs from previous
approaches which build a parameterization based on the el-
ements of a mesh. The simple parameterization is more ap-
propriate for applications that do complex operations in pa-
rameter space or on the mesh surface. We define a manifold
and a corresponding embedding function for three genera
(plane, sphere, and torus). The manifold can be used simply
as a parameterization tool or as a smooth surface approx-
imating the original mesh. We demonstrate how to build a
correspondence between the mesh and the manifold, then
how to build an embedding that approximates the mesh.

CR Categories: I.3.5 [Computer Graphics]: Computa-
tional Geometry and Object Modeling, Curve, Surface,
Solid, and Object Representations, Splines, texture map-
ping

1 Introduction

Manifolds are a technique for analyzing (or building) a
surface by describing it as a collection of overlapping, sim-
ple surfaces. One key difference between manifolds and
spline surfaces is that the simple surfacesoverlap, instead
of abutting, which makes it easier to move across the sur-
face. One interesting aspect of manifolds is that the domain
is specified separately from the embedding. This means we
can create a manifold for an existing mesh and use it as a
texture map without explicitly building an embedded sur-
face.

Manifolds are a powerful technique for analysing sur-
faces [13][8] but their use as a modeling tool [5][10][11] has
been limited. This is partly because the manifold surface
constructions are somewhat unwieldy, lacking the simplic-
ity of a technique such as subdivision surfaces. However,
manifolds are increasingly useful in the problem of parame-
terization, in particular, texture mapping [9][12]. Here they

are a natural, formal method for mapping rectangles of tex-
ture to a surface without introducing obvious seams. This
paper describes a manifold with a simple structure, making
it a useful tool for applications that need to perform compli-
cated operations in parameter space or across a mesh sur-
face.

The manifold can also be used as a surface model, which
we demonstrate by fitting an embedded manifold to sev-
eral different meshes. The manifold definition is, however,
designed to simplify parameter space operations. The sub-
surfaces are few and simple (maps from uniform squares)
and the transition functions between the sub-surfaces are
easy to compute. To produce interesting surfaces we rely on
a more complex embedding function built along the lines
of hierarchical B-Splines [3]. We build one manifold per
genus type, and use the same manifold for all surfaces of
that genus. Geometric differences are created by using a
different embedding for each surface.

We first discuss related work (Section 2). We then give
the general format for defining manifolds, and the specific
manifold definitions for a plane, sphere, and torus. In Sec-
tion 4 we define an embedding function for the manifold
that produces a surface based on splines. Section 5 de-
scribes how to establish a correspondence between a mani-
fold and a mesh. Finally, we close with a discussion.

2 Previous work

There are three papers which describe a surface construc-
tion technique using manifolds [5][10][11]. Grimm’s ap-
proach [5] begins with a mesh and builds a manifold with
one chart per mesh element. The approach in Navau and
Garcia’s first paper [11] builds a manifold for a planar mesh
by mapping the boundary of the mesh to the unit square.
Charts and embedding functions can then be built on the
unit square. We adopt this approach for planar meshes. For
arbitrary topology meshes Navau and Garcia extend this ap-
proach [10] by first subdividing the mesh to isolate extraor-
dinary vertices. They embed sections of the mesh so that
the overlap regions are rectangular and blend together in
the middle in aCk fashion. Subdividing the mesh to isolate
the extraordinary vertices can result in a large number of

patches; however, the patches themselves are simpler than
the ones in Grimm.

Texture mapping on non-planar surfaces requires a struc-
ture similar to manifolds, even if a manifold is not built ex-
plicitly. Several papers [15][16][14] build an ad-hoc struc-
ture that resembles a manifold but lacks a manifold’s formal
qualities. Two texture mapping papers [9][12] have explic-
itly built C0 manifolds. Manifolds have also been used for
for smoothing subdivision surfaces [1].

3 Manifold definition

The original definition of a manifold can be found in the
topology literature [13] [8]. The basic idea is to analyze
a complicated surface by defining maps1 from the surface
to R2. Each of these maps takes an open disk of the sur-
face down to an open disk in the plane, with no pinching or
folding, and is called achart. The collection of chart do-
mains must completely cover the surface,i.e., every point
on the surface must be in the domain of one or more charts.
The collection of charts is called theatlas. We can also de-
fine transition functionsthat take points between overlap-
ping charts (see Figure 1).

The real-world analogy to a manifold is an atlas of the
world. Each of the pages represent a mapping from the earth
(a sphere) down to the plane. The pages overlap so that you
can navigate from one page to an overlapping one (although
in general the overlaps do not line up perfectly).

In Grimm [5] this definition was inverted in order to pro-
duce a manifold from a set of charts and transition func-
tions. The essential part of this theorem is that the transi-
tion functions be reflexive, associative and transitive. The
continuity of the manifold is the continuity of the transition
functions. One thing to note here is that theembeddingof
the manifold is separate from the manifold definition itself;
to embed the manifold each chart is embedded individually
and the result blended together using a smooth partition of
unity defined over the manifold.

In this paper we use a hybrid approach, combining the
above two approaches to create an embedded manifold. We
first create a manifold to serve as the domain of our surface
by taking a canonical surface (e.g.,a sphere) and defining
a small set of overlapping charts on it. The transition func-
tions are then defined by mapping to and from the proto-
type surface. To define the final embedded surface, how-
ever, we use a version of the embedding function described
by Grimm [5]. This approach creates a surface by embed-
ding each chart and blending the results. This embedding
function is described in Section 4.

We now introduce some definitions:

1Manifold theory is valid for a surface of dimensionn embedded in a
dimensionm > n.

Figure 1. A surface S and three charts. Each
chart maps a portion of the surface down toR2. Transition
function take points in charts to points in other charts. They
must be consistent,i.e.,ψ02 = ψ12 ◦ ψ01.

• S is our canonical surface (one for each genus).

• A finite set, A, of maps fromS to the unit square
((0, 1) × (0, 1)). A is called anatlas. Each element
αc ∈ A is called achart. The co-domain of each chart
we label asc. Chartcan also refer to the co-domain.

• A set of subsets,Uij ⊂ ci, whereαci
andαcj

are
charts inA and whereUii = ci. These are the overlap
regions.

• A set of functionsΨ called transition functions. A
transition function,ψij ∈ Ψ, is a mapψij : Uij → Uji

whereUij ⊂ ci andUji ⊂ cj . Note thatUij andUji

may well be empty. We build ourΨ functions, using
the canonical surface, by definingψij to beαi ◦ α−1

j .

• A point on the manifold can be defined in two ways.
The first is as a pointp ∈ S ⊂ R3. We can also express
p as a tuple of chart points, one tuple for each chart
that contains the pointp. A chart point is written as
[αc ∈ A, (x, y) ∈ c].

To build our manifolds we need to define theαc func-
tions. If these functions (and their inverses) areCk then
our manifold will beCk. The structure is a manifold by the
original definition [13]. We will now give the construction
of the manifolds for each genus.

3.1 Plane

The plane manifold consists of a single chart defined on
the uniform square.

3.2 Sphere

We use six copies of the standard sphere equation for our
six charts, one at each pole (see Figure 2). Each chart covers

2

Figure 2. Building charts for the sphere.

almost a half of the sphere.

θ = uπ, φ = v
3π

4
− 3π

8

α−1
0 (u, v) =

(
cos(θ) cos(φ), sin(θ) cos(φ), sin(φ)

)
α−1

1 (u, v) =
(
cos(θ + π) cos(φ), sin(θ + π) cos(φ), sin(φ)

)
α−1

2 (u, v) =
(
sin(θ) cos(φ), sin(φ), cos(θ) cos(φ)

)
α−1

3 (u, v) =
(
sin(θ + π) cos(φ), sin(φ), cos(θ + π) cos(φ)

)
α−1

4 (u, v) =
(
sin(φ), cos(θ) cos(φ), sin(θ) cos(φ)

)
α−1

5 (u, v) =
(
sin(φ), cos(θ + π) cos(φ), sin(θ + π) cos(φ)

)

The inverse of these functions can be calculated using the
appropriatearctan functions. We give the functions in
pseudo C code (atan2 returns the arc tangent in the range
±π for the input(y, x)).

α0(x, y, z) =
(atan2(y, x)

π
, (arcsin(z) +

3π

8
)

4

3π

)
α1(x, y, z) =

(1 + atan2(y, x)
π

, (arcsin(z) +
3π

8
)

4

3π

)

The transition functionsψ0,1, ψ2,3, ψ4,5 and their in-
verses are empty.

3.3 Torus

We use the standard embedding of the torus that takes
the squareθ ∈ [0, 2π], φ ∈ [0, 2π] to the torus using the
equation:

Figure 3. Building charts for the torus.

T (θ, φ) =
(
(1.5+cos(θ)) cos(φ), (1.5+sin(θ)) cos(φ), sin(θ)

)
We use nine charts, each of which overlaps two-thirds of the
torus function’s domain. Numbering with chart zero in the
lower left corner and two in the lower right corner we have:

α−1
c (s, t) = T

(
((c mod 3)/3 + s)2π, ((c/3)/3 + t)2π

)
The inverse of this function is straightforward but requires
some care with the bounds. We give the definition in pseudo
C code:

radius = ||(x, y)|| − 1.5

θ = atan2(z, radius)

φ = atan2(y, x)

u =

{
θ/(2π) θ

2π
< 0

θ/(2π) + 1 otherwise

v =

{
φ/(2π) φ

2π
< 0

φ/(2π) + 1 otherwise

s =

{
(u+ 1 − (c mod 3)

3
) (c mod 3) = 2, u < .5

(u− (c mod 3)
3

) otherwise

t =

{
(v + 1 − (c/3)

3
) (c/3) = 2, u < .5

(u− (c/3)
3

) otherwise

The torus transition functions are all translations by
±1/3.

4 Embedding

The manifold described in the previous section serves as
thedomainfor either a mesh (if we are just parameterizing

3

an existing mesh) or for a final surface (if we are using man-
ifolds for surface modeling). The manifold is embedded by
specifying an embedding for each chart, then blending the
results together. To blend, we create a partition of unity on
the manifold that says how much to take of each chart em-
bedding at every point. The blend function is essentially a
“bump” on each chart. LetEc : c → R3 be theCk em-
bedding function for a chart (typically a spline patch). Let
bc : M → R be a function on the manifoldM which is
Ck continuous, and zero everywhere except over the chart
c. The embedding equation is then:

E(p) : M → R3 =
∑

c

bc(p)Ec(αc(p))

This equation is valid sincebc will be zero wheneverEc is
undefined.

To build thebc functions we use proto-functions defined
on the chart, then promote them to functions on the mani-
fold by defining them to be zero elsewhere. Letb̂c : c→ R
be a function which isCk continuous, positive over the
chart, goes to zero by the boundary of the chart, and has all
k derivatives zero at the boundary as well. (We use a single
spline basis function whose support is the chart.) Since the
derivatives go to zero by the boundary of the chart, when
we promote the function to a function on the chart it will
still beCk. The blend functions are then:

bc(p) : M → R =
b̂c(αc(p))∑

c b̂c(αcp)

whereb̂c is defined to be zero whenαc is invalid. By di-
viding by the sum we produce a partition of unity, provided
the denominator is never zero. By definition ourb̂ functions
have positive support over the entire chart so we easily en-
sure the denominator is never zero.

All of our charts are defined to be the uniform square
((0, 1) × (0, 1)). The embedding function for a given chart
is based loosely on hierarchical B-splines [3]. Because we
are using so few charts, the embedding function for a given
chart may need to be fairly complicated. We use a single
B-spline that covers the entire chart, plus subsequent spline
surfaces that act as offsets.

Ec(u, v) = S0(u, v) +
n∑
1

Si(u, v)

We differ from hierarchical B-splines in one respect; instead
of constraining the derivatives of theSi patch to ensure con-
tinuity, we simply evaluateSi on all of the uniform square,
not just the traditional support area where the basis func-
tions sum to one. We discuss fitting to a mesh in Section 5.6.

Figure 4. Splitting a triangle. If the face or all of
its neighbors need to be split, we split into four triangles. If
two of the faces neighbors need to be split we produce three
triangles. If only one neighbor is splitting we produce two
triangles.

4.1 Tessellation

To tessellate the surface we first tessellate the interior of
each chart, sharing edges and vertices according to the over-
lap information. We then further split poorly fitting faces
into four smaller triangles (see Figure 4) until each face has
at mostn mesh vertices mapping to it, for some smalln.
This produces an adaptive triangulation.

The interior region is chosen so that the union of the re-
gions exactly covers the surface and none of the regions
overlap (refer to Figures 2 and 3). For the plane this is just
a tessellation of the single chart. For the sphere this is ap-
proximately the region given by[0.25, 0.75] × [0.25, 0.75].
For the torus this is exactly[0.25, 0.75]× [0.25, 0.75].

For the sphere the interior boundaries do not lie along
straight lines. We chose the interior boundary points by
averaging between two straight lines (ats or t = 0.25 or
0.75), one in each chart. We map both boundary points to
the sphere, average their location on the sphere, then map
back into one of the two charts. This produces the interior
region shown in Figure 2.

5 Fitting to a mesh

Once we have defined our canonical manifolds we next
need to establish a correspondence between the appropri-
ate genus manifold and an input mesh. After establishing
this correspondence we can construct an embedding for the
manifold that approximates the mesh.

This section is broken into the following subsections: A
definition of the correspondence, general mesh operations
used in building the correspondence, a specific algorithm
for each genus, and finally, constructing an embedding that
approximates the mesh.

5.1 Mesh to manifold correspondence

Let M be the manifold and{V,E, F} be the vertices,
edges, and faces of the mesh. We wish to define a func-

4

tionM : M → mesh which is one-to-one, and an inverse
one-to-one function which takes the mesh to the manifold.
We defineM by first defining it at the vertices, then ex-
tending it to the faces using barycentric coordinates2. We
construct a mapping for the vertices such that there exists at
least one chart which contains all of the mapped vertices for
each face. This creates a mapping that takes each face of the
mesh to a triangle in one or more charts. Using barycentric
coordinates we can define a 1-1 and onto correspondence
between the mesh face and the corresponding chart triangle.
Note that the triangles in different charts may encompass a
different subset of the manifold if the transition function is
not affine.

We first define some terminology. Letvf
i be the vertices

of a facef . Any point inf can be defined using barycentric
coordinates,i.e.,p =

∑
βiv

f
i where theβi are positive and

sum to one. To define a corresponding triangle in a chart
c we use the three pointsvfc

i = M−1(vf
i). A point in the

chart triangle can also be defined using barycentric coordi-
natesβc

i . This gives us a 1-1 and onto function from a chart
to a subset of the mesh faces:

Mc((u, v) ∈ fc) =
∑

βc
iM(vfc

i)

M−1
c (p ∈ f) =

∑
βiM−1(vf

i)

If the transition functions are affine (as in the case for
the torus and plane) then this function can be extended to
the entire manifold by just picking a chart for each face.
If not then we chose a chart based on which chart has the
projected face closest to the center of the chart. This will
produce minor inconsistencies betweenM and its inverse
along boundaries between faces that have different default
charts.

For the above approach to work we need to define a ver-
tex correspondence such that every face in the mesh has a
chart it maps into. In addition, we require the following:

• The number of vertices assigned to each chart is ap-
proximately equal.

• There exists a chart such thatM(v) andM(v∗) (the
star ofv, i.e., all ofv’s neighbors) lie in that chart.

• The polygon formed by mappingv∗ into a chart con-
tains the mapped point forv.

• Ideally, the above polygon should be convex.

Our general approach is to partition the mesh inton disk
regions, assigning each of these disks to the interior of a
chart. This produces an initial projection of the vertices of

2If the mesh’s faces are not triangular then we first triangulate.

Figure 5. A disk with its current boundary.
All faces that share a boundary edge are potential faces to
add. We do not add faces whose boundary is not contigu-
ous along the disk boundary. When the disk is finished we
can optionally remove “fins” and “chinks” by removing or
adding the marked face.

the mesh to the charts, which we then refine to meet the
above criteria. Partitioning requires several basic mesh op-
erations, which we describe below.

The method described here is appropriate for meshes of
400 to 3,000 vertices. If the mesh is too small there is not
enough space to run the partition boundary edges; in this
case we can apply subdivision to introduce new vertices. If
the mesh is too big, we can apply progressive meshes, fit
the smaller mesh, then add the vertices back in [6][7].

5.2 General partitioning tools

We describe several (standard) mesh algorithms needed
for partitioning the mesh. In the remainder of this section
distancerefers to distance on the mesh,i.e., the number of
edges traversed, not Euclidean distance.

Grow disk Takes a disk in the mesh and expands it by
adding faces adjacent to the boundary edges. To ensure that
the result is still a disk we only add a face if the boundary
edges and vertices the face contains are continuous in the
current boundary list. When the disk is the appropriate size
we run an additional routine that takes out any chinks or
“fins” in the boundary (see Figure 5).

Shortest pathGiven two vertices, find the shortest path
(in number of edges) between the two vertices. We may
mark a subset of the vertices as not accessible.

Project Given a disk in the mesh, and locations in the
chart for the boundary vertices, find locations for the inte-
rior disk vertices. We use Floater’s algorithm [2] which pro-
vides a least-squares solution. There is one linear equation
for each boundary vertex (M−1(v) = (u, v)) and one equa-
tion for each interior vertex (M−1(v) = 1/n

∑
M−1(v∗))

that places each vertex at the centroid of its neighbors.
Reproject GivenM−1(v) for all vertices, reproject the

vertices of a chart. First, find the largest disk in the mesh
that contains only vertices that map into that chart. Second,

5

move the locations of the boundary vertices in towards (or
out from) the center(0.5, 0.5) of the chart by an amount
proportional to the number of faces in this chart divided by
the average number of faces per chart. Call theProject rou-
tine.

Adjust centroids GivenM−1(v) for all vertices, move
each vertex towards the centroid of its neighbors.

5.3 Plane

We use theGrow disk routine to find the boundary of
the disk. We then evenly space the boundary vertices along
the edges of the uniform chart, making sure there is a vertex
that maps to each corner. We then use theProject routine
to find vertex locations for the interior vertices.

5.4 Sphere

Fitting the sphere takes two steps. We first partition the
mesh into six disk regions, each with four boundary edges
(see Figure 2). We project these disks onto the interior of
each chart, placing the vertices from the boundary edges
along the interior edges defined in Section 4.1. We then it-
erate, reprojecting and adjusting centroids, until the criteria
given above are met.

To make the six regions we first make the two end cap re-
gions, then join them together with four boundary paths to
create the other four boundary regions. The caps are made
by running twoGrow disk routines at the same time, alter-
nately adding rings. TheGrow disk routine is seeded with
two faces that are far apart in the mesh.

The four boundary paths are made by joining four ver-
tices spaced evenly around the boundaries of both disks.
We runShortest pathbetween these four pairs to create the
boundary paths. To make sure these paths do not cross each
other, we mark the path vertices as inaccessible as the paths
are created. Picking the evenly spaced boundary points can
be difficult because not all of the vertices on the boundary
are accessible. We limit our search for the four boundary
vertices to those that are accessible.

Once we have the boundary paths we flood fill the re-
gions between them to produce our remaining four disks.
The boundary paths form the interior boundaries for the
Project call.

We now iterate, reprojecting the interior of each chart us-
ing theReproject routine, and adjusting centroids. We find
reprojecting the smallest, then the largest, then all of the
charts, followed by 30 or so iterations of adjusting the cen-
troids works best. If all vertices lie in the polygon formed
by their neighbors and the maximum variance in number of
faces is less than0.2, stop.

We have no proof that this method converges, or that
there even exists a solution that meets all of the criteria

given above, for all meshes. If the surface that the mesh
approximates is topologically a sphere then there must be
six disks (of possibly unequal size) that adjoin correctly.
However, the surface may not be sampled sufficiently (i.e.,
there may not be enough vertices) for the vertices to lie flat
in the charts. In particular, if a mesh has a skinny tube, like
Gumby’s arms (see Figure 6), and there are not enough ver-
tices around the arm to be able to “flatten” the arm nicely
into a disk, then this will fail.

5.5 Torus

For the torus we need to find six rings, three that loop
one way around the torus, and three that loop perpendicu-
lar to the first three rings (see Figure 3). This will parti-
tion the mesh into nine correctly adjacent disks. Then, like
the sphere, we can iterate, reprojecting, until the projection
meets the desired criteria.

The first ring must be a loop that cannot be contracted
into a single vertex [8]. To produce this loop we grow four
disks, each of which is seeded with a face that is as far as
possible from the other three faces. We then look for two
disks that meet in exactly two disjoint boundary segments
(Figure 3 shows an example torus with four example disks).
We require that one half of the loop go through one disk
and the second half go through the other disk, meeting at a
mutually shared vertex from each of the disjoint boundary
segments.

Once we have a single loop we can create the other two
using theGrow disk routine. We seed oneGrow disk rou-
tine with faces from the loop oriented one way, and one with
the loop oriented the opposite way. This actually grows two
annuli which will meet in another loop. To get a loop that is
one third of the way around, we grow one annulus at twice
the speed of the other. Once we have the second loop, we
again grow two annuli from the two loops, creating the third
loop when they meet.

The parallel loops are made in a fashion similar to the
four boundary paths in the sphere. We find three triplets of
points, (three points per loop) and runShortest path three
times to create a single loop. Again, care must be taken to
only consider accessible boundary points.

5.6 Fitting the embedding

We first discuss error calculation, then how we decide
where to add more patches.

5.6.1 Error calculation

We calculate the error for a given point(u, v) in a chart by

∆(u, v) =
bc(u, v)

||(bc(0.5, 0.5)||
(
M(u, v)− Ec(u, v)

)
6

We scale by the blend function to avoid over-fitting at the
boundary of the chart where the contribution ofEc is small.
CalculatingM involves searching through all of the poly-
gons that cover the chart to find the one that encloses the
given point. To speed this up, we divide the chart into even-
sized bins and use a scan-conversion routine to determine
which polygons lie in which bins. This limits the number of
polygons we need to search.

5.6.2 Adding spline patches

Recall that the embedding for a given chart consists of one
base spline patch plusn spline patches which are treated as
offsets. Since we are blending the individual patch embed-
ding together for the final surface it suffices to fit each chart
individually. We also have a one-to-one correspondence be-
tween the manifold and the mesh. We use the least-squares
fitting technique [4] to fit the patches. This leaves us with
two questions; how many patches and what their supports
should be, and which pin-points to use for the least-squares
fit.

To determine the number of patches we alternate be-
tween fitting the current set and adding new patches where
the fit is bad. We search for the largest rectangle that covers
a connected bad spot and add a patch whose support cov-
ers that rectangle. We stop when the average and maximum
error for all vertices is below given thresholds.

To find the “bad” rectangle we divide the chart inton
by n bins, choosingn so that the bin size is less than four
times the smallest projected mesh edgei.e.,min ||M(ev0)−
M(ev1)||. To determine the fit of a bin we calculate∆ at
the center of the bin. In addition, we take each vertex and
measure∆(M(vp)), flagging the binv projects into as bad
if the fit is bad. We then grow connected areas of bad bins
and pick the largest.

To produce the pin points we use both the vertices of
the mesh and evenly spaced points in the domain (corre-
sponding points on the mesh can be found using theM−1

function). We need evenly spaced points to ensure that the
least-squares fitting of the spline patch is well-behaved.

6 Results

We demonstrate the algorithm on a number of spherical
and toroidal meshes. The meshes are colored by chart to
give an indication of how they were partitioned. For the
toroidal mesh and gumby we embedded the mesh using the
M function. For the fish and banana we created an embed-
ding withC2 spline patches with7× 7 control points. The
banana mesh had 504 vertices and required between 2 and
4 spline patches per chart. The fish had 1296 vertices and
required between 2 and 5 patches per chart (see Figure 6).

7 Conclusion

Manifolds are a promising technique for parameter-
space operations. We have described a simple manifold for
three basic genera and show that it can be used to parame-
terize several sample meshes. This is the first step towards
creating a general-purpose, easy to use tool for mesh pa-
rameterizing.

References

[1] Henning Biermann, Adi Levin, and Denis Zorin.
Piecewise smooth subdivision surfaces with normal
control.Proceedings of SIGGRAPH 2000, pages 113–
120, July 2000. ISBN 1-58113-208-5.

[2] Michael S. Floater. Parametrization and smooth
approximation of surface triangulations.Computer
Aided Geometric Design, 14(3):231–250, 1997. ISSN
0167-8396.

[3] D. Forsey and R. Bartels. Hierarchical b-spline refine-
ment.Computer Graphics, 22(2):205–212, July 1988.
Proceedings of SIGGRAPH ’88.

[4] B. Fowler and R. H. Bartels. Constraint based curve
manipulation.Siggraph course notes 25, July 1991.

[5] Cindy Grimm and John Hughes. Modeling surfaces of
arbitrary topology using manifolds.Computer Graph-
ics, 29(2), July 1995. Proceedings of SIGGRAPH ’95.

[6] Igor Guskov, Wim Sweldens, and Peter Schröder.
Multiresolution signal processing for meshes.Pro-
ceedings of SIGGRAPH 99, pages 325–334, August
1999. ISBN 0-20148-560-5. Held in Los Angeles,
California.

[7] Aaron W. F. Lee, Wim Sweldens, Peter Schröder,
Lawrence Cowsar, and David Dobkin. Maps: Mul-
tiresolution adaptive parameterization of surfaces.
Proceedings of SIGGRAPH 98, pages 95–104, July
1998. ISBN 0-89791-999-8. Held in Orlando, Florida.

[8] S. Lefschetz.Introduction to Topology. Princeton Uni-
versity Press, Princeton, New Jersey, 1949.

[9] Jérôme Maillot, Hussein Yahia, and Anne Verroust.
Interactive texture mapping. Proceedings of SIG-
GRAPH 93, pages 27–34, August 1993. ISBN 0-201-
58889-7. Held in Anaheim, California.

[10] J. Cotrina Navau and N. Pla Garcia. Modeling
surfaces from meshes of arbitrary topology.Com-
puter Aided Geometric Design, 17(7):643–671, Au-
gust 2000. ISSN 0167-8396.

7

Figure 6. Fitting results. Right is original mesh. Meshes are colored by their chart centers. In the
middle is the mapping of the fish mesh vertices to the charts.

[11] J. Cotrina Navau and N. Pla Garcia. Modelling sur-
faces from planar irregular meshes.Computer Aided
Geometric Design, 17(1):1–15, January 2000. ISSN
0167-8396.

[12] Emil Praun, Adam Finkelstein, and Hugues Hoppe.
Lapped textures.Proceedings of SIGGRAPH 2000,
pages 465–470, July 2000. ISBN 1-58113-208-5.

[13] I.M. Singer and J. A. Thorpe.Lecture Notes on El-
ementary Topology and Geometry. Scott, Foresman
and Company, Glenview, Illinois, 1967.

[14] Karan Singh and Evangelos Kokkevis. Skinning char-
acters using surface oriented free-form deformations.
Graphics Interface, pages 35–42, 2000. ISBN 1-
55860-632-7.

[15] Greg Turk. Texture synthesis on surfaces.Proceedings
of SIGGRAPH 2001, pages 347–354, August 2001.
ISBN 1-58113-292-1.

[16] Li-Yi Wei and Marc Levoy. Texture synthesis over ar-
bitrary manifold surfaces.Proceedings of SIGGRAPH
2001, pages 355–360, August 2001. ISBN 1-58113-
292-1.

8

