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Abstract—The ability to identify similarities between shapes size of the region. We then define a similarity function that
is important for applications such as medical diagnosis, object compares two curvature maps.
registration and alignment, and shape retrieval. In this paper
we present a method, theCurvature Map that uses surface I
curvature properties in a region around a point to create a B. Contribution

unique signature for that point. These signatures can then be | this paper we develop the curvature map and comparison

compared to determine the similarity of one point to another. To ¢, inns for local shape similarity. Curvature maps are robust
gather curvature information around a point we explore two

techniques, rings (which use the local topology of the mesh) with respect to grid resolution and mesh regularity. Both the
and Geodesic Fans (which trace geodesics along the mesh froml-D and 2-D comparison functions yield a high degree of
the point). We explore a variety of comparison functions and discrimination for local shapes, compared to the 0-D methods
provide experimental evidence for which ones provide the best which have been used previously. Curvature calculation on

discriminatory power. We show that Curvature Maps are both i rete meshes is often noisy [1] and not always accurate [2].
more robust and provide better discrimination than simply

comparing the curvature at individual points. Becagse curvature maps complne curvature information over
a region, they are less susceptible to these issues.
I. INTRODUCTION Section Il discusses previous work. In Section |1l we define

In this paper we address the problem of local surface sipfurvature maps, including how we calculate curvature, define a

larity, i.e.,is a region of a surface the same “shape” as anot 8PES‘I reigmnl\c;n the surflaci:, iﬂd dlffe_zrent s_lm_lllar_lty measures.
region? This information is useful for a variety of application n section 1V, we evaluaté the various sim arity measures
ing both a test shape with known curvature, and several

For example, identifying corresponding regions between Wi : . .
similar surfaces is a necessary first step toward alignmecé}mmon meshes. .Sectlon V summarizes the conclusions of
and registration of those surfaces. Previous approachest 5 study and outlines possible areas for future work.
local surface matching have either focused on man-made
objects, where features are easy to find, or required some
type of user interaction to select features. Manual selectionSimilarity measures based on distances between sets of
of corresponding features and subjective determination of tpeints, feature vectors, histograms, signatures, and graph
difference between objects are both time consuming procesggsresentations can be found in object recognition, three-
requiring a high level of expertise. Our approach automatgifnensional model matching, computer vision, feature detec-
this process, while still providing the user with control ovefion, correspondence, registration, and pose estimation. These
what aspects of the surface match are important. methods are primarily global rather than local in nature,
they match entire surfaces. A few of these techniques have
been applied to local surface matching; we discuss these in
Our approach uses curvature, which is an intrinsic propemyore detail.
of the surface, as a base metric. Because curvature is a poirshum et al. [3] use thé&,, distance between local curvature
metric, it does not provide information about the region arourfdnctions mapped to a semi-regular triangulation of the unit
the point. To incorporate local shape information, we defirgphere as a local measure; unfortunately, this technique is only
a curvature maparound a given vertex. This curvature map applicable to closed surfaces which are topologically spheri-
accumulates curvature information from a region around cal. A number of segmentation methods also use curvature,
and can take one of two forms: A one-dimensional (1-Djarticularly the sign of the curvature [4] [5], isosurfaces and
map, which only considers the distance framor a two- extreme curvatures [6], or watersheds of a curvature func-
dimensional (2-D) map that uses both the distance and ti@n [7] [8] [9]. Watershed algorithms show sensitivity to noise
orientation information. Note that using just the curvature aind to the user-specified watershed depth threshold. Splitting
v is the 0-D form of the curvature map function. the surface into regions still gives only coarse information
We investigate various methods of building curvature majpdout the differences between local regions, and small changes
from both mean and Gaussian curvature, and the effect of thethe shape can make large changes in the segmentation.

Il. PREVIOUS WORK

A. Approach



There have been a few attempts to create local signatures.

Planitz et al. [10] propose a signature based on a local region Test surface with rings marked
around select vertices. However, the use of distances anc'
angles between normals for points in a local support region

makes this method sensitive to point distributions. Shape
contexts [11] represent the shape of an object, with respec

to a particular point on the object, as a 2-D histogram of the

relative coordinates of other points sampled from the surface.
The sampling of points limits this method for detailed shape

matching.

These similarity measures are applicable to coarse shap
matching for shape retrieval, but generally provide limited
discrimination between similar shapes. Moreover, in general,
methods based on distances between points, such as Hausdo
distance, multi-resolution Reeb graphs [12], shape distribu-
tions [13] [14], and spin images [15], are sensitive to the
distribution of the points.
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IIl. COMPARING LOCAL SURFACE SHAPE

This section describes the Curvature Map, and how it is
used to identify regions of similar shape. We first define twigg. 1. Test surface with Vertices A and B highlighted. The first nine rings
. . defined around Vertex A are color coded. The mesh is fairly uniform except
methods for creating samples around the p0|_nt, one _basedfﬁvglending between sections. Note that the ring structure is still well-defined
the mesh topology and one based on geodesic sampling. Nexépite of the skewness near its right edge.
we describe how we calculate curvature on the mesh. Finally,

we define the comparison function itself.

A. Defining Rings of a Mesh coordinates are used to interpolate curvature values defined on
the mesh to the fan point. This forms a uniform sampling of

Es!ven”a specified vertex of _the mesh_, we can define a vature data around each vertex. As the sampling increases,
of “rings” around the vertex using the existing mesh StrUCtUrg, ore overhead is required to store the fan data

Thei*" ring around Vertex, is defined as the set of vertices The regularity of geodesic fans can break down as the

v e _V.S““fh ;hat th_lgrr]e EXIStSf a shortgst< p;thdf:cp@snto;i distance from the point increases, due to a) stretching of
containingi edges. The set of ring&;, i < efines the e circumferential spacing while the radial spacing remains

N-Rlng nmgﬂborho;:dfgbou{o. , q | q uniform, and b) issues in constructing geodesics over longer
Figure 1 shows the first nine rings around a selected vertgitionces As a result, the fan resolution may be locally finer,

OT the mesh. The ring structure can be extgnded an arbitr%@arser, or both, when compared to the mesh resolution. If
dr:star;ce fro]rcn hany_ point, hgwever, as thel distance INCreasfrs, sampling is coarser than the mesh triangle size, then the
the shape of the ring may become irregular. geodesic fan will not incorporate all of the curvature data

B. Geodesic Fans available.

Geodesic fans [16] represent a local surface resampling that Estimating Curvature

prOVideS a uniform neighborhOOd structure around a vertex. |nGatzke and Grimm [2] evaluate various curvature estimation
particular, a geodesic fan consists of a set of spokes, and afigthods for triangular meshes. Based on their results, we
of samples on each spoke. The spokes are geodesics marggfhse an algorithm that fits a 2-Ring neighborhood using a
out across the surface from the neighborhood center, equalbtural parameterization of the input mesh [19]. This method
spaced in the conformal plane of the neighborhood's 1-ring, reasonably robust with respect to noise as well as mesh
With the samples equally spaced along each spoke, they fafpRagularity, and provides consistent accuracy of the curvature
a local geodesic polar map around the vertex. Each set\@fues. Gaussian curvature and mean curvature are plotted as

points equi-distant from the neighborhood center is treated &lar properties on the surface of the test shape in Figure 3.
a ring. Following Zelinka and Garland, we use interpolated

normal geodesics [17] where possible, reverting to straightédt 1-D Curvature Maps

geodesics [18] if the smoothness criterion for interpolated The 1-D form of the curvature map is defined ovef

normal geodesics is not met. rings, where the rings come from either the mesh structure
We use this procedure to generate fans at each vertex of thiethe geodesic fan structure. Each pojintin the map is

mesh. Sample fans at two vertices are shown in Figure 2. Eamdnstructed from data accumulated along the ridg The

fan point is defined in terms of the Barycentric coordinates joint p; can have one or more data values; this allows us

some triangular face in the original mesh. These Barycenttiw compare, for example, both the Gaussian and the mean



Geodesic Fans for vertices A and B . .
(20 spokes, 11 points per spoke) Bmap = {f7iri = Rpogjan, 0<i<M (1)
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where A; the area of thé-Ring neighborhood. The functions
/7 can be applied to Gaussiafy or means,,, curvaturer; is
used to normalize the parameterization of ffiecurves with
respect to the area covered by the region.

Fig. 2. Geodesic fans at two vertices. The first spoke of each fan is

highlighted and used to track the relative orientation for 2-D fan comparisons. 127 — Gaussi
Fan parameters include the number and length of spokes, and the number of 1.0 A aussian
points per spoke. 08 —/*; Mean
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the Gaussian curvature curve, which is the product of the principal curvatures

. . . gs = k1k2), compared to the mean curvature, which is an average £
Fig. 3. Gaussian curvature (left) and mean curvature (right). Note that t egﬂz)_

Gaussian curvature ranges oyer, 6], while the mean curvature ranges over 2
[-1.5,1.5].
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To compare the shape at two points, such as those shown
in Figure 1, we compare the corresponding curvature map
curvature simultaneously (see Figure 4). Each element; Offuncnon_s (see Figure 5). The fsha_\p_e similarkiyis a function

. . - of the difference between the individual curves. lfgtbe the
generates a curve as a function of the ring distance .
. . ._.set of curves for one point, anfl the curves for the second

Because the Gaussian curvature is a product of the princi gknt
curvatures and the mean curvature is an average, the Gaussian
curvature magnitudes will be roughly proportional to the R
square of the mean curvatures. A square root function applied S = Z/ (1(FD)a(r) = (F)p(r)]) dr (7)
to the Gaussian curvatures gives a more equal weighting. 5 Jo

Similarly, we use a logarithmic function to reduce th? effect Note that the difference we compute is actually a dissimilar-
?f (Ijarg(_a v?rlatlons in the .E’f?k curvatur(ta values, Y\t/h('jCh t?l%% measure, with zero indicating high similarity and positive
0 dominate over areas with lower curvature magnitudes. lues indicating the relative difference between shapes. The
empha5|s_here IS f[o match the shape of curves rather than U%Sér can also specify the radial distance over which the
the magnitude of its peaks. curvature maps are compared. This provides a parameter to

More formally, the curvature map,.., at a vertexv is & control the size of the region used to compute similarity
set of N piecewise linear functions defined over the rifgs penween points.

E. 2-D Curvature Maps

1The curvature map is formulated for a discrete mesh, but the same conce he 2-D t . imilar to the 1-D t
can be applied to an analytic surface, where the curve values for discrete! N€ <-D curvaturé map Is similar 1o the 1-D map, excep

increments would be replaced by a continuous function on the surface. that we maintain the angulafy) information and accumulate
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distance from the selected vertex. The ring-based and fan-based curves for a

particular point start out at the same value and initially have similar shape, ) .
but diverge due to a) non-uniformity of the rings, and b) fans sampling onfyid- 6. Two views of the test surface used for shape comparison. The left

a subset of the data, as the distance from the center increases. In this (@ right lobes in the front view are the same except for the addition of a
the fans cover a smaller area than the rings. dent (concave region) in the end of the left lobe.

data only along a single spokieg(, there is onef’ per spoke). to the average of the mean curvature. As expected, the number
Let N, be the number of spokes: of similar points decreases as we increase the dimension of
the curvature map.
_ j The ring and fan-based 1-D methods are similar in discrim-
fimap = {(Ji)}o<s<nocrann} (8) inatory power, but differ slightly in which points they mark as

The comparison metric sums up the curve differences alogighilar. Small differences may be due to differences in the size
each spoke. There a¥, possible alignments between twoand shape of the regions covered by the rings and fans. We
fans; we calculateS2 for each alignment and chose theflso varied the size of the region covered by the fans, keeping
the same number of spokes and number of points along each
spoke. The results remained similar as long as we adjusted the
R number of rings to match the approximate region sizes.
2 = Y N / (||( )alr) —( f,g)B(r)n)dr (9) 1) Choice of Comparison Functionsthe visualization of

i k70 similarity as a scalar function plotted on the surface of the ob-
It is important that the fans are generated with the same nulfict gives an indication of the improved ability to differentiate
ber of spokes. By checking all possible relative orientations BS€d 0n shape, but is not as useful in determining which of
the fans, the 2-D form can also provide information about tH/f 1-D curvature map functions, and associated comparison
relative orientation of the points. As with the 1-D curvaturnctions works best. To test these options, we identify groups
map, the user can chose the size of the region to compare g¥eP0ints that we expect to be similar, based on our intuition.
by selectingR. The similarity for each pair of points is used to form a distance

grid. Distance grids for 0-D, 1-D ring-based, 1-D fan-based,

IV. DISCUSSION and 2-D methods are shown in Figure 10. We chose eight

To evaluate our metrics we created a test shape with kno@®ups, where each group contains three vertices. Group A is
curvature properties (see Figure 6). Because this maniféf§ated in the concave region of one lobe. Groups B, C, and D
surface is defined parametrically, we can easily generateéd® in three saddle regions occurring between pairs of lobes.
range of cases for testing that cover curvatures found ®@foup E is in the crease along the rounded back of the main
realistic applications. We also applied the curvature map B@dy. Groups F, G, and H are on convex regions of the body
standard meshes such as the Stanford Bunny mesh. and two lobes respectively.

We first look at the discrimination power of the 0,1, and Comparing the distance grids allows us to evaluate various
2-D curvature maps, using the “besf? functions for each combinations of comparison functions. The comparison func-
case. Next, we describe our study to determine whjéh tion having the most similarity between points of the same

functions have the best discrimination power. Finally, we lookroup (darkess x 3 boxes along the diagonal), with much less
at evaluation times for each of the techniques. similarity (lighter) for dissimilar groups, was deemed best. The
first five groups include concave regions, while the last three

A. Comparing 0-,1-, and 2-D Curvature Maps are primarily convex, so similarity between certain groups is
We compare the 0-, 1-, and 2-D curvature maps for our tegtpected.

shape and the bunny. The top (Vertex A) and bottom (VertexAverage mean curvature with the square root function

B) rows of images in Figure 7 show which points on thapplied to the average Gaussian curvature gave the best

surface are most similar to the selected vertex. For all of thediscrimination in our tests. The logarithmic function has a

images, we apply the square root and logarithmic functions less significant effect, but this importance may depend on

the average Gaussian curvature, and the logarithmic functitwe nature of the curvature peaks. We varied the number of

smallest value.
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Fig. 7. Top: Similarity measure relative to Vertex A plotted on the test surface. Bottom: Vertex B. The color scale ranges from blue (high similarity to the
selected point) to magenta (most dissimilar). Nine rings were used in the ring-based calculation. 20 spokes, 11 samples per spoke, were used in the 1- anc
2-D fan-based calculation; the surface area is approximately the same as the ring version. Note that the 0-D measure (far left) is very noisy compared to the
1-D ring-based (center left) and fan-based (center right) measures. The 2-D measure (far right) shows few points with similarity to the selected vertex.

Bunny Similarity Relative to Tip of Ear

Ear Tip Vertex L east
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Fig. 8. Similarity measure relative to a vertex on the tip of the ear of the Stanford Bunny. The color scale ranges from blue (high similarity to the selected
point) to magenta (most dissimilar). The 0-D similarity has significant noise, while the 1-D methods isolates the tips of the ears much more cleanly. The 2-D
method is even more discriminating, with similarity limited to the tip of the other ear.

rings over a wide range, but for our test case, there was lithgerage over the ring, performed poorly. Using a vector of

change after about eight rings. Using fewer rings caused md@th the minimum and maximum curvature in a ring did much

degradation as we approach the 0-D curvature map. Usibetter, but was not quite as effective as the average.

the minimum curvature or maximum curvature, instead of the The 1-D ring-based method generates the highest degree of
self-similarity within the groups. The 1-D fan-based method



Selected Vertex Bull Mesh Similarity
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Fig. 9. Similarity measure for the Bull mesh. The color scale ranges from blue (high similarity to the selected point) to magenta (most dissimilar). The view
on the left shows that the ring structure is very non-symmetric about the selected vertex, due to the irregularity of the bull mesh. Even so, the ring-based and
fan-based 1-D methods provide comparable similarity measures.

. - . TABLE |
does not do quite as well within groups, but is good at
.. . . PREPROCESSINGI IMES (PERVERTEX) FOR1.7 GHz PENTIUM M
distinguishing between the groups. The 0-D method does not
. . PROCESSOR
differentiate between Groups A and B, and has poor self-
similarity for Groups C through E. All three methods have just Preprocessing Times - msec/vertex
subtle differences for the last three groups. Overall, the ring- Test Shape Bunny
based 1-D method most consistency indicates more similarity | Sombute Cuvature 1.5 16
ASE y Y | Ring-based Map 1.8 30.0
withing the group than between groups. Fan-based Map 3.4 10 10.4 5.2 t0 26.%
1 Time is proportional to the physical length of fan spokes

B. Applying Curvature Maps to Other Objects
To test how our new similarity measure works in practice,

we apply it to a mesh of the Stanford Bunny. The bunn . : .
. : . .. pre-processing times for computing curvature on the mesh,
has a much more irregular surface, with regions of similar = " . .
: . o creating a ring-based curvature map, and creating a fan-based
curvature, but quite a bit of local curvature variation. AS : o
Curvature map. All times are per mesh vertex. Identifying

Figure 8 (far left) shows, the 0-D (point curvature) Slmllarltthe ring structure around each vertex is included in the ring-

is very noisy due to these local curvature variations. T%eased map times, and fan generation time is added to the map

1-D ring-based S|m|lar_|ty measure (s_econd from left) Wacsr?ation time for the fan-based maps. Table 2 shows the times
generated from Gaussian curvature with log and square reg

. . . ._for computing the similarity of each point of the mesh relative
functions and mean (_:urvature with a log _functlon _applle 0_a selected point, normalized by the number of vertices.
compared over eight rings. The same functions applied to e 1.D and 2-D r,nethods were timed for four, eight, and
1-D similarity based on eleven fan points and 2-D similarit}éI ' §

are shown in the second from the right and far right imag&s. " rings/points. All times were computed on a 1.7 GHz
9 9 9%%ntium M processor. Some inaccuracy in the smaller times

of Figure 8 respectively. The results are consistent with OPBI‘r the test shape is due to approaching the resolution of our

test surface, i.e., the 0-D method is extremely noisy, both 1-D . ) : X
: . : timing algorithm. The comparison functions are much faster
methods identify much smaller and more consistent regiops

of similarity. The 2-D method has even more differentiatioF an the pre-processing step, with the 0-D and 1-D methods a
. ) . . .few orders of magnitude faster than the 2-D comparisons.
between ear tip points and points not on the ear tip, Wlﬁ

similarity indicated only for the tip of the other ear. I .
. M for F
We also apply curvature maps to the mesh of a bull. Th'% Curvature Maps for Finding Unique Features

mesh is highly irregular, causing the ring structure to be In order to look for key features in the mesh, we look for
asymmetric about the selected vertex, as shown in Figuretige groups of points that are least similar to the remaining
However, the ring-based and fan-based 1-D methods sfipints. For each point, we compute its similarity to all other

provide similar results. points, and then sort these by decreasing similarity. A Gaussian
o ] function is applied to the sorted similarity curves, and the re-
C. Efficiency Comparison sulting contribution, which represents a non-parametric kernel

We also made comparisons of the speed of the methatbnsity estimate, quantifies how many other points the given
for the test shape and the bunny mesh. Table 1 contapnt is similar to. The smallest values indicate the points most



Test Surface Similarity Comparisons for Vertex Groups (3 Vertices per Group)
0-D Measure 1-D Ring-Based Measure (8 rings)  1-D Fan-Based Measure (11 points) 2-D Fan-Based Measure (11 points)

A B C D E F G H A B C D E FGH A B CDE FGH A B C D E F G H

Group A — Concave region at end of a lobe Group E — Crease along edge of rounded back
Group B, C, D — Saddle regions between pairs of lobes Group F, G, H — Convex regions of the back and two lobes

Fig. 10. Distance grids for select points. The similarity within groups, indicated by the darkestboxes along the diagonal, and dissimilarity between
groups, based on lighter off-diagonal squares, was most consistent for the 1-D ring-based measure.

TABLE I
COMPARISONTIMES (PERVERTEX) FOR1.7 GHz PENTIUM M Similarity curves ——Least unique
PROCESSOR ——Most unique
Comparison Times psec/vertex

Comparison Method Test Shape| Bunny 03

0-D (Point curvature) 2.9 11

1-D Ring-based Map (4 pts) 6.4 46 0.25 1

1-D Ring-based Map (8 pts) 10.1 8.6 0.2 4

1-D Ring-based Map (11 pts 12.1 12.1 R4

1-D Fan-based Map (4 pts) 7.5 4.4 '

1-D Fan-based Map (8 pts) 11.0 8.5 0.1 4

1-D Fan-based Map (11 pts) 12.4 115 0.05 1

2-D Map (4 pts) 672 671

2-D Map (8 pts) 1283 1287 0 ‘ ‘ ‘ ; i

2-D Map (11 pts) 1584 1597 g A o & 80 400 420

Fig. 11. The similarity curves for the most and least similar vertices.

different from the general population. The sorted similarity

curves for the highest and lowest similarity density are shown

in Figure 11 (the kernel value was set to be 0.05 at the 100thin summary, it is preferable to use the ring-based 1-D
point). The three-hundred most unique points are highlightsaethod for comparing larger local regions, as long as the mesh
for the 0-D (left) and 1-D (right) methods in Figure 12. Thejuality is reasonable. The slower 2-D methods can be reserved
1-D mehtod picks up more consistent point groupings than tf@ the final stage when exact matching is required.

0-D method. This is apparent in both the neck region and on

the tail. V. CONCLUSIONS ANDFUTURE WORK

We have presented the curvature map, a new method for
comparing local shape based on surface curvature. It has been

The ring-based and fan-based 1-D methods are comparaplied as a 1-D method on N-ring neighborhoods and as a
in ability to discriminate, comparison times, and setup time$:D or 2-D method on Geodesic fans. Point curvature (0-
Ring-based methods are more appropriate for larger regioB3, methods do a poor job of distinguishing between local
provided the mesh is fairly uniform. If storage space is not argions. Curvature maps demonstrate improved capability to
issue, the fan-based 1-D method provides a more consistdiscriminate shape as compared to these 0-D methods.
comparison for smaller local regions. Determining how far out to go when comparing local shape

The 1-D ring-based method can also be used to pre-processtill an open issue, and is likely case dependent. Assessing
a mesh to identify regions that are similar. The more expensiwvehich comparison settings consistently produce good results
but more exact, 2-D method can then be applied just to théee a wide range of shapes is another area that could benefit
regions. from further research, but the methods used here have a

E. Recommendations



Bull Mesh
Most Unique Points

0-D Similarity 1-D Similarity (5 rings)

Fig. 12. The three-hundred most unique points based on similarity to to all other points. The 0-D method (left) picks up most of the peak curvatures, but
finds a lot of isolated points in the neck and face region. The 1-D method (right) finds consistent groups of points reflecting key features in the mesh.
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