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Abstract— The ability to identify similarities between shapes
is important for applications such as medical diagnosis, object
registration and alignment, and shape retrieval. In this paper
we present a method, theCurvature Map, that uses surface
curvature properties in a region around a point to create a
unique signature for that point. These signatures can then be
compared to determine the similarity of one point to another. To
gather curvature information around a point we explore two
techniques, rings (which use the local topology of the mesh)
and Geodesic Fans (which trace geodesics along the mesh from
the point). We explore a variety of comparison functions and
provide experimental evidence for which ones provide the best
discriminatory power. We show that Curvature Maps are both
more robust and provide better discrimination than simply
comparing the curvature at individual points.

I. I NTRODUCTION

In this paper we address the problem of local surface simi-
larity, i.e., is a region of a surface the same “shape” as another
region? This information is useful for a variety of applications.
For example, identifying corresponding regions between two
similar surfaces is a necessary first step toward alignment
and registration of those surfaces. Previous approaches to
local surface matching have either focused on man-made
objects, where features are easy to find, or required some
type of user interaction to select features. Manual selection
of corresponding features and subjective determination of the
difference between objects are both time consuming processes
requiring a high level of expertise. Our approach automates
this process, while still providing the user with control over
what aspects of the surface match are important.

A. Approach

Our approach uses curvature, which is an intrinsic property
of the surface, as a base metric. Because curvature is a point
metric, it does not provide information about the region around
the point. To incorporate local shape information, we define
a curvature maparound a given vertexv. This curvature map
accumulates curvature information from a region aroundv,
and can take one of two forms: A one-dimensional (1-D)
map, which only considers the distance fromv, or a two-
dimensional (2-D) map that uses both the distance and the
orientation information. Note that using just the curvature at
v is the 0-D form of the curvature map function.

We investigate various methods of building curvature maps
from both mean and Gaussian curvature, and the effect of the

size of the region. We then define a similarity function that
compares two curvature maps.

B. Contribution

In this paper we develop the curvature map and comparison
functions for local shape similarity. Curvature maps are robust
with respect to grid resolution and mesh regularity. Both the
1-D and 2-D comparison functions yield a high degree of
discrimination for local shapes, compared to the 0-D methods
which have been used previously. Curvature calculation on
discrete meshes is often noisy [1] and not always accurate [2].
Because curvature maps combine curvature information over
a region, they are less susceptible to these issues.

Section II discusses previous work. In Section III we define
curvature maps, including how we calculate curvature, define a
local region on the surface, and different similarity measures.
In Section IV, we evaluate the various similarity measures
using both a test shape with known curvature, and several
common meshes. Section V summarizes the conclusions of
this study and outlines possible areas for future work.

II. PREVIOUS WORK

Similarity measures based on distances between sets of
points, feature vectors, histograms, signatures, and graph
representations can be found in object recognition, three-
dimensional model matching, computer vision, feature detec-
tion, correspondence, registration, and pose estimation. These
methods are primarily global rather than local in nature,i.e.,
they match entire surfaces. A few of these techniques have
been applied to local surface matching; we discuss these in
more detail.

Shum et al. [3] use theLp distance between local curvature
functions mapped to a semi-regular triangulation of the unit
sphere as a local measure; unfortunately, this technique is only
applicable to closed surfaces which are topologically spheri-
cal. A number of segmentation methods also use curvature,
particularly the sign of the curvature [4] [5], isosurfaces and
extreme curvatures [6], or watersheds of a curvature func-
tion [7] [8] [9]. Watershed algorithms show sensitivity to noise
and to the user-specified watershed depth threshold. Splitting
the surface into regions still gives only coarse information
about the differences between local regions, and small changes
to the shape can make large changes in the segmentation.



There have been a few attempts to create local signatures.
Planitz et al. [10] propose a signature based on a local region
around select vertices. However, the use of distances and
angles between normals for points in a local support region
makes this method sensitive to point distributions. Shape
contexts [11] represent the shape of an object, with respect
to a particular point on the object, as a 2-D histogram of the
relative coordinates of other points sampled from the surface.
The sampling of points limits this method for detailed shape
matching.

These similarity measures are applicable to coarse shape
matching for shape retrieval, but generally provide limited
discrimination between similar shapes. Moreover, in general,
methods based on distances between points, such as Hausdorff
distance, multi-resolution Reeb graphs [12], shape distribu-
tions [13] [14], and spin images [15], are sensitive to the
distribution of the points.

III. C OMPARING LOCAL SURFACE SHAPE

This section describes the Curvature Map, and how it is
used to identify regions of similar shape. We first define two
methods for creating samples around the point, one based on
the mesh topology and one based on geodesic sampling. Next,
we describe how we calculate curvature on the mesh. Finally,
we define the comparison function itself.

A. Defining Rings of a Mesh

Given a specified vertex of the mesh, we can define a set
of “rings” around the vertex using the existing mesh structure.
The ith ring around Vertexv0 is defined as the set of vertices
v ∈ V such that there exists a shortest path fromv0 to v
containing i edges. The set of ringsRi, i ≤ N defines the
N -Ring neighborhood aboutv0.

Figure 1 shows the first nine rings around a selected vertex
of the mesh. The ring structure can be extended an arbitrary
distance from any point; however, as the distance increases,
the shape of the ring may become irregular.

B. Geodesic Fans

Geodesic fans [16] represent a local surface resampling that
provides a uniform neighborhood structure around a vertex. In
particular, a geodesic fan consists of a set of spokes, and a set
of samples on each spoke. The spokes are geodesics marched
out across the surface from the neighborhood center, equally
spaced in the conformal plane of the neighborhood’s 1-ring.
With the samples equally spaced along each spoke, they form
a local geodesic polar map around the vertex. Each set of
points equi-distant from the neighborhood center is treated as
a ring. Following Zelinka and Garland, we use interpolated
normal geodesics [17] where possible, reverting to straightest
geodesics [18] if the smoothness criterion for interpolated
normal geodesics is not met.

We use this procedure to generate fans at each vertex of the
mesh. Sample fans at two vertices are shown in Figure 2. Each
fan point is defined in terms of the Barycentric coordinates in
some triangular face in the original mesh. These Barycentric
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Vertex B

Vertex A

Color coding 
for the first 9 
rings around 

Vertex A

Fig. 1. Test surface with Vertices A and B highlighted. The first nine rings
defined around Vertex A are color coded. The mesh is fairly uniform except
for blending between sections. Note that the ring structure is still well-defined
in spite of the skewness near its right edge.

coordinates are used to interpolate curvature values defined on
the mesh to the fan point. This forms a uniform sampling of
curvature data around each vertex. As the sampling increases,
more overhead is required to store the fan data.

The regularity of geodesic fans can break down as the
distance from the point increases, due to a) stretching of
the circumferential spacing while the radial spacing remains
uniform, and b) issues in constructing geodesics over longer
distances. As a result, the fan resolution may be locally finer,
coarser, or both, when compared to the mesh resolution. If
the sampling is coarser than the mesh triangle size, then the
geodesic fan will not incorporate all of the curvature data
available.

C. Estimating Curvature

Gatzke and Grimm [2] evaluate various curvature estimation
methods for triangular meshes. Based on their results, we
choose an algorithm that fits a 2-Ring neighborhood using a
natural parameterization of the input mesh [19]. This method
is reasonably robust with respect to noise as well as mesh
irregularity, and provides consistent accuracy of the curvature
values. Gaussian curvature and mean curvature are plotted as
scalar properties on the surface of the test shape in Figure 3.

D. 1-D Curvature Maps

The 1-D form of the curvature map is defined overM
rings, where the rings come from either the mesh structure
or the geodesic fan structure. Each pointpi in the map is
constructed from data accumulated along the ringRi. The
point pi can have one or more data values; this allows us
to compare, for example, both the Gaussian and the mean



Geodesic Fans for vertices A and B
(20 spokes, 11 points per spoke)
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Fig. 2. Geodesic fans at two vertices. The first spoke of each fan is
highlighted and used to track the relative orientation for 2-D fan comparisons.
Fan parameters include the number and length of spokes, and the number of
points per spoke.
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Fig. 3. Gaussian curvature (left) and mean curvature (right). Note that the
Gaussian curvature ranges over[−4, 6], while the mean curvature ranges over
[−1.5, 1.5].

curvature simultaneously (see Figure 4). Each element ofpi

generates a curve as a function of the ring distance1.
Because the Gaussian curvature is a product of the principal

curvatures and the mean curvature is an average, the Gaussian
curvature magnitudes will be roughly proportional to the
square of the mean curvatures. A square root function applied
to the Gaussian curvatures gives a more equal weighting.
Similarly, we use a logarithmic function to reduce the effect
of large variations in the peak curvature values, which tend
to dominate over areas with lower curvature magnitudes. The
emphasis here is to match the shape of curves rather than just
the magnitude of its peaks.

More formally, the curvature mapκmap at a vertexv is a
set ofN piecewise linear functions defined over the ringsRi:

1The curvature map is formulated for a discrete mesh, but the same concept
can be applied to an analytic surface, where the curve values for discrete
increments would be replaced by a continuous function on the surface.

κmap = {f j : ri → <}0<j<N , 0 < i < M (1)

ri =
√

Ai/π (2)

g(κ) =


1

Ni

∑
w∈Ri

κ(w) or

maxw∈Ri κ(w) or
minw∈Ri κ(w)

(3)

h1(x) =
{

x or
sign(x) sqrt‖x‖ (4)

h2(x) =
{

x or
sign(x) log (1 + ‖x‖) (5)

f j(κ) = h2 ◦ h1 ◦ g(κ) (6)

whereAi the area of thei-Ring neighborhood. The functions
f j can be applied to Gaussianκg or meanκm curvature.ri is
used to normalize the parameterization of thef j curves with
respect to the area covered by the region.
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Fig. 4. Maps of Gaussian Curvature and Mean Curvature as a function of
distance from the point. Peaks and valleys tend to be more pronounced for
the Gaussian curvature curve, which is the product of the principal curvatures
(κg = κ1κ2), compared to the mean curvature, which is an average (κm =
κ1+κ2

2
).

To compare the shape at two points, such as those shown
in Figure 1, we compare the corresponding curvature map
functions (see Figure 5). The shape similarity,S is a function
of the difference between the individual curves. LetfA be the
set of curves for one point, andfB the curves for the second
point.

S =
∑

j

∫ R

0

(
‖(f j)A(r)− (f j)B(r)‖

)
dr (7)

Note that the difference we compute is actually a dissimilar-
ity measure, with zero indicating high similarity and positive
values indicating the relative difference between shapes. The
user can also specify the radial distance over which the
curvature maps are compared. This provides a parameter to
control the size of the region used to compute similarity
between points.

E. 2-D Curvature Maps

The 2-D curvature map is similar to the 1-D map, except
that we maintain the angular (θk) information and accumulate
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Fig. 5. Map of Gaussian (left) and mean (right) curvature as a function of
distance from the selected vertex. The ring-based and fan-based curves for a
particular point start out at the same value and initially have similar shape,
but diverge due to a) non-uniformity of the rings, and b) fans sampling only
a subset of the data, as the distance from the center increases. In this case,
the fans cover a smaller area than the rings.

data only along a single spoke (i.e., there is onef j per spoke).
Let Ns be the number of spokes:

κmap = {(f j
k)}0<j<N,0<k<Ns)} (8)

The comparison metric sums up the curve differences along
each spoke. There areNs possible alignments between two
fans; we calculateS2 for each alignment and chose the
smallest value.

S2 =
∑

j

∑
k

∫ R

0

(
‖(f j

k)A(r)− (f j
k)B(r)‖

)
dr (9)

It is important that the fans are generated with the same num-
ber of spokes. By checking all possible relative orientations of
the fans, the 2-D form can also provide information about the
relative orientation of the points. As with the 1-D curvature
map, the user can chose the size of the region to compare over
by selectingR.

IV. D ISCUSSION

To evaluate our metrics we created a test shape with known
curvature properties (see Figure 6). Because this manifold
surface is defined parametrically, we can easily generate a
range of cases for testing that cover curvatures found in
realistic applications. We also applied the curvature map to
standard meshes such as the Stanford Bunny mesh.

We first look at the discrimination power of the 0,1, and
2-D curvature maps, using the “best”f j functions for each
case. Next, we describe our study to determine whichf j

functions have the best discrimination power. Finally, we look
at evaluation times for each of the techniques.

A. Comparing 0-,1-, and 2-D Curvature Maps

We compare the 0-, 1-, and 2-D curvature maps for our test
shape and the bunny. The top (Vertex A) and bottom (Vertex
B) rows of images in Figure 7 show which points on the
surface are most similar to the selected vertex. For all of these
images, we apply the square root and logarithmic functions to
the average Gaussian curvature, and the logarithmic function

Three-Lobed Manifold Test Surface

Front View Back View

Fig. 6. Two views of the test surface used for shape comparison. The left
and right lobes in the front view are the same except for the addition of a
dent (concave region) in the end of the left lobe.

to the average of the mean curvature. As expected, the number
of similar points decreases as we increase the dimension of
the curvature map.

The ring and fan-based 1-D methods are similar in discrim-
inatory power, but differ slightly in which points they mark as
similar. Small differences may be due to differences in the size
and shape of the regions covered by the rings and fans. We
also varied the size of the region covered by the fans, keeping
the same number of spokes and number of points along each
spoke. The results remained similar as long as we adjusted the
number of rings to match the approximate region sizes.

1) Choice of Comparison Functions:The visualization of
similarity as a scalar function plotted on the surface of the ob-
ject gives an indication of the improved ability to differentiate
based on shape, but is not as useful in determining which of
our 1-D curvature map functions, and associated comparison
functions works best. To test these options, we identify groups
of points that we expect to be similar, based on our intuition.
The similarity for each pair of points is used to form a distance
grid. Distance grids for 0-D, 1-D ring-based, 1-D fan-based,
and 2-D methods are shown in Figure 10. We chose eight
groups, where each group contains three vertices. Group A is
located in the concave region of one lobe. Groups B, C, and D
are in three saddle regions occurring between pairs of lobes.
Group E is in the crease along the rounded back of the main
body. Groups F, G, and H are on convex regions of the body
and two lobes respectively.

Comparing the distance grids allows us to evaluate various
combinations of comparison functions. The comparison func-
tion having the most similarity between points of the same
group (darkest3×3 boxes along the diagonal), with much less
similarity (lighter) for dissimilar groups, was deemed best. The
first five groups include concave regions, while the last three
are primarily convex, so similarity between certain groups is
expected.

Average mean curvature with the square root function
applied to the average Gaussian curvature gave the best
discrimination in our tests. The logarithmic function has a
less significant effect, but this importance may depend on
the nature of the curvature peaks. We varied the number of
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Fig. 7. Top: Similarity measure relative to Vertex A plotted on the test surface. Bottom: Vertex B. The color scale ranges from blue (high similarity to the
selected point) to magenta (most dissimilar). Nine rings were used in the ring-based calculation. 20 spokes, 11 samples per spoke, were used in the 1- and
2-D fan-based calculation; the surface area is approximately the same as the ring version. Note that the 0-D measure (far left) is very noisy compared to the
1-D ring-based (center left) and fan-based (center right) measures. The 2-D measure (far right) shows few points with similarity to the selected vertex.
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Fig. 8. Similarity measure relative to a vertex on the tip of the ear of the Stanford Bunny. The color scale ranges from blue (high similarity to the selected
point) to magenta (most dissimilar). The 0-D similarity has significant noise, while the 1-D methods isolates the tips of the ears much more cleanly. The 2-D
method is even more discriminating, with similarity limited to the tip of the other ear.

rings over a wide range, but for our test case, there was little
change after about eight rings. Using fewer rings caused more
degradation as we approach the 0-D curvature map. Using
the minimum curvature or maximum curvature, instead of the

average over the ring, performed poorly. Using a vector of
both the minimum and maximum curvature in a ring did much
better, but was not quite as effective as the average.

The 1-D ring-based method generates the highest degree of
self-similarity within the groups. The 1-D fan-based method
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Fig. 9. Similarity measure for the Bull mesh. The color scale ranges from blue (high similarity to the selected point) to magenta (most dissimilar). The view
on the left shows that the ring structure is very non-symmetric about the selected vertex, due to the irregularity of the bull mesh. Even so, the ring-based and
fan-based 1-D methods provide comparable similarity measures.

does not do quite as well within groups, but is good at
distinguishing between the groups. The 0-D method does not
differentiate between Groups A and B, and has poor self-
similarity for Groups C through E. All three methods have just
subtle differences for the last three groups. Overall, the ring-
based 1-D method most consistency indicates more similarity
withing the group than between groups.

B. Applying Curvature Maps to Other Objects

To test how our new similarity measure works in practice,
we apply it to a mesh of the Stanford Bunny. The bunny
has a much more irregular surface, with regions of similar
curvature, but quite a bit of local curvature variation. As
Figure 8 (far left) shows, the 0-D (point curvature) similarity
is very noisy due to these local curvature variations. The
1-D ring-based similarity measure (second from left) was
generated from Gaussian curvature with log and square root
functions and mean curvature with a log function applied,
compared over eight rings. The same functions applied to the
1-D similarity based on eleven fan points and 2-D similarity
are shown in the second from the right and far right images
of Figure 8 respectively. The results are consistent with our
test surface, i.e., the 0-D method is extremely noisy, both 1-D
methods identify much smaller and more consistent regions
of similarity. The 2-D method has even more differentiation
between ear tip points and points not on the ear tip, with
similarity indicated only for the tip of the other ear.

We also apply curvature maps to the mesh of a bull. This
mesh is highly irregular, causing the ring structure to be
asymmetric about the selected vertex, as shown in Figure 9.
However, the ring-based and fan-based 1-D methods still
provide similar results.

C. Efficiency Comparison

We also made comparisons of the speed of the methods
for the test shape and the bunny mesh. Table 1 contains

TABLE I

PREPROCESSINGTIMES (PERVERTEX) FOR 1.7 GHZ PENTIUM M

PROCESSOR

Preprocessing Times - msec/vertex
Test Shape Bunny

Compute Curvature 1.5 1.6
Ring-based Map 1.8 30.0
Fan-based Map 3.4 to 10.4† 5.2 to 26.1†
† Time is proportional to the physical length of fan spokes

pre-processing times for computing curvature on the mesh,
creating a ring-based curvature map, and creating a fan-based
curvature map. All times are per mesh vertex. Identifying
the ring structure around each vertex is included in the ring-
based map times, and fan generation time is added to the map
creation time for the fan-based maps. Table 2 shows the times
for computing the similarity of each point of the mesh relative
to a selected point, normalized by the number of vertices.
The 1-D and 2-D methods were timed for four, eight, and
eleven rings/points. All times were computed on a 1.7 GHz
Pentium M processor. Some inaccuracy in the smaller times
for the test shape is due to approaching the resolution of our
timing algorithm. The comparison functions are much faster
than the pre-processing step, with the 0-D and 1-D methods a
few orders of magnitude faster than the 2-D comparisons.

D. Curvature Maps for Finding Unique Features

In order to look for key features in the mesh, we look for
the groups of points that are least similar to the remaining
points. For each point, we compute its similarity to all other
points, and then sort these by decreasing similarity. A Gaussian
function is applied to the sorted similarity curves, and the re-
sulting contribution, which represents a non-parametric kernel
density estimate, quantifies how many other points the given
point is similar to. The smallest values indicate the points most
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Fig. 10. Distance grids for select points. The similarity within groups, indicated by the darkest3× 3 boxes along the diagonal, and dissimilarity between
groups, based on lighter off-diagonal squares, was most consistent for the 1-D ring-based measure.

TABLE II

COMPARISONTIMES (PERVERTEX) FOR 1.7 GHZ PENTIUM M

PROCESSOR

Comparison Times -µsec/vertex
Comparison Method Test Shape Bunny
0-D (Point curvature) 2.9 1.1
1-D Ring-based Map (4 pts) 6.4 4.6
1-D Ring-based Map (8 pts) 10.1 8.6
1-D Ring-based Map (11 pts) 12.1 12.1
1-D Fan-based Map (4 pts) 7.5 4.4
1-D Fan-based Map (8 pts) 11.0 8.5
1-D Fan-based Map (11 pts) 12.4 11.5
2-D Map (4 pts) 672 671
2-D Map (8 pts) 1283 1287
2-D Map (11 pts) 1584 1597

different from the general population. The sorted similarity
curves for the highest and lowest similarity density are shown
in Figure 11 (the kernel value was set to be 0.05 at the 100th
point). The three-hundred most unique points are highlighted
for the 0-D (left) and 1-D (right) methods in Figure 12. The
1-D mehtod picks up more consistent point groupings than the
0-D method. This is apparent in both the neck region and on
the tail.

E. Recommendations

The ring-based and fan-based 1-D methods are comparable
in ability to discriminate, comparison times, and setup times.
Ring-based methods are more appropriate for larger regions,
provided the mesh is fairly uniform. If storage space is not an
issue, the fan-based 1-D method provides a more consistent
comparison for smaller local regions.

The 1-D ring-based method can also be used to pre-process
a mesh to identify regions that are similar. The more expensive,
but more exact, 2-D method can then be applied just to these
regions.

Similarity curves
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Fig. 11. The similarity curves for the most and least similar vertices.

In summary, it is preferable to use the ring-based 1-D
method for comparing larger local regions, as long as the mesh
quality is reasonable. The slower 2-D methods can be reserved
for the final stage when exact matching is required.

V. CONCLUSIONS ANDFUTURE WORK

We have presented the curvature map, a new method for
comparing local shape based on surface curvature. It has been
applied as a 1-D method on N-ring neighborhoods and as a
1-D or 2-D method on Geodesic fans. Point curvature (0-
D) methods do a poor job of distinguishing between local
regions. Curvature maps demonstrate improved capability to
discriminate shape as compared to these 0-D methods.

Determining how far out to go when comparing local shape
is still an open issue, and is likely case dependent. Assessing
which comparison settings consistently produce good results
for a wide range of shapes is another area that could benefit
from further research, but the methods used here have a
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Fig. 12. The three-hundred most unique points based on similarity to to all other points. The 0-D method (left) picks up most of the peak curvatures, but
finds a lot of isolated points in the neck and face region. The 1-D method (right) finds consistent groups of points reflecting key features in the mesh.

reasonable grounding in intuition, and appear to be a good
place to start.

Curvature maps offer a valuable capability to differentiate
local shapes. These methods will be applied to the shape
matching problem to identify corresponding points based on
shape similarity. Additional work will extend the comparison
methods to account for shape similarity when objects or
portions of objects are scaled differently.
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