
Polygonizing Extremal Surfaces with Manifold Guarantees

Ruosi Li, Lu Liu, Ly Phan, Sasakthi Abeysinghe, Cindy Grimm, Tao Ju
Washington University, St. Louis, MO 63132 USA

ABSTRACT
Extremal surfaces are a class of implicit surfaces that have
been found useful in a variety of geometry reconstruction
applications. Compared to iso-surfaces, extremal surfaces
are particularly challenging to construct in part due to the
presence of boundaries and the lack of a consistent orienta-
tion. We present a novel, grid-based algorithm for construct-
ing polygonal approximations of extremal surfaces that may
be open or unorientable. The algorithm is simple to im-
plement and applicable to both uniform and adaptive grid
structures. More importantly, the resulting discrete surface
preserves the structural property of the extremal surface in
a grid-independent manner. The algorithm is applied to ex-
tract ridge surfaces from intensity volumes and reconstruct
surfaces from point sets with unoriented normals.

1. INTRODUCTION
Extremal surfaces (ES) are a type of implicit surfaces de-

fined at the extremity of a scalar field restricted to a direc-
tion field [6]. Specific examples of ES include ridge surfaces
of intensity volumes and point set surfaces, which are of
great interest in practical applications. Unlike iso-surfaces,
which are closed and orientable implicit surfaces, ES may
contain open boundaries and can be un-orientable, which
makes ES challenging to compute. In this paper we develop
a sound approach for computing discrete approximations of
ES. Our grid-based algorithm is simple to implement, appli-
cable to both uniform and adaptive grids, and preserves key
structural properties (e.g., manifoldness) of ES.

1.1 Definition
Let s : R

d → R and n : R
d → RP

d−1 (the real projective
space consisting of all lines passing through the origin in R

d)
be respectively a scalar function and an unoriented vector
function. Both functions are defined over some domain D ∈
R

d. ES are then defined as [6]:

S =
{
x

∣∣x ∈ arglocalminy∈l(x,n(x))s(y)
}

(1)

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SPM ’10 Haifa, Israel
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$10.00.

where l(x, n(x)) denotes the line through x with direction
n(x). Intuitively, S consists of all points x at which the
scalar function is minimum along the direction at x. A 2D
example is shown in Figure 1 (d), where s is plotted in gray
scale (larger values are lighter), n as short lines, and S as
the red curve. By choosing appropriate s and n, different
surface definitions can be formulated as ES:

Height ridges: The classical “height ridges” in a scalar
function L [4] are the loci where L(x) is maximum along the
direction where the second derivative is negative and having
greatest magnitude. Such ridges can be defined by Equation
1 with the scalar field s(x) = −L(x) and the vector field n(x)
as the eigenvector of the Hessian matrix of L at x with the
smallest negative eigenvalue.

Surface ridges: Ridge lines on surfaces in 3D can also
be formulated as extremal surfaces in 1D (that is, extremal
curves). For example, the definitions in [12] and [8] can be
expressed by Equation 1 using the sign-inverted maximum
curvature (or apparent maximum curvature) as the scalar
function and the corresponding curvature direction as the
vector function.

Point set surfaces: Amenta and Kil pointed out that the
Moving Least Squares (MLS) surface proposed by Levin [10]
can be re-formulated as an ES where the scalar function
s(x) is extended to a two-parameter function e(x, v) that
also depends on a direction v [1], and also proposed several
variants of these functions [2].

1.2 The structure of ES
One of the key properties that make ES appealing is its

continuous structure. We start by considering the critical
surface (CS) made up of all critical points of s (where the
derivative is zero) restricted to the line l(x, n(x)). Note that
these critical points can be local minima (in which case they
are on the ES), local maxima, or inflection points of s along
that line. As a result, the ES is a subset of the CS.

It was observed [6, 1] that the CS is generally a manifold
as long as s is smooth and n is continuous. Here, continuity
of an unoriented function n at a point x means that n(x)
is well-defined and that the variation in the directions rep-
resented by n becomes arbitrarily small given a sufficiently
small neighborhood around x. To understand the manifold
property, take a small neighborhood of x where n is con-
tinuous and form a continuous oriented vector function �n.
Let �s(x) be the gradient vector of s. Then the CS is the
zero-set of the following scalar function:

g(x) = �n(x) · �s(x) (2)

(a) (b) (c) (d)

Figure 1: The flow of the algorithm in 2D. From left to right: Given a scalar (gray level in (a)), an unoriented
vector function (short lines in (a)), and a spatial grid (the quadtree in (b)), the algorithm first identifies grid
edges intersected by all critical curves (blue and red edges in (b)), a subset of which are intersected by the
extremal curves (red edges). Next, the algorithm constructs a polyline that crosses those grid edges (c). (d)
shows the final curves in the original vector field.

Note that g(x) would be undefined wherever n is discontin-
uous, hence the CS would exhibit an open boundary there.

Furthermore, assuming s is a smooth function with con-
tinuous second derivatives, the ES is bounded on the CS
by inflection points of s restricted to lines l(x, n(x)). These
inflection points generally form a manifold at a lower dimen-
sion than ES (e.g., curves in 3D), as they are the intersection
of the CS and the zero-set surface of the second derivative
of s restricted to n.

To summarize, the ES is a (d − 1)-manifold with open
boundaries given a smooth scalar function s in R

d. The
boundaries lie either at the discontinuity of n, or at the
inflection points of s restricted to lines l(x, n(x)).

1.3 Previous construction methods
To compute ES as explicit surface meshes, most exist-

ing works (such as [6, 5, 13, 9, 15]) assume that a global,
continuous orientation exists for the input vector function
n, in which case the ES can be extracted as a subset of the
iso-surface of g(x) (Equation 2) using techniques like March-
ing Cubes [11]. However, unorientable vectors functions are
quite common in practice, such as in the scenario of height
ridges [14]. A 2D example is shown in Figure 1 (a), where
n is not orientable along the highlighted loop (the vectors
twist for a total of 180◦).

Methods that can handle unoriented vector functions are
scarce and are mostly proposed for 2D domains [12, 3, 8],
with the exception of a recent work by Schultz et al. [14].
Given a spatial grid over the domain, these methods iden-
tify grid edges that are intersected by the ES, and connect
the intersection points to form curves (in a 2D domain) or
surfaces (in a 3D domain).

There are a number of limitations of these algorithms that
we aim to address in this work. First, as we shall detail in
Section 2.1, the typical criterium used for identifying grid
edges intersected by the ES in these methods is highly sensi-
tive to the sampling resolution of the grid. Next, connecting
intersection points in 3D to form polygonal pieces is a non-
trivial task, especially near the boundary of the ES. The
method in [14] involves ad-hoc polygonization rules which
are complex and restricted to a uniform cubic grid. More
importantly, these methods do not guarantee to preserve the
structural properties of the ES (e.g., those stated in Section

1.2). Their results may contain open boundaries or non-
manifold features due to insufficient grid resolution, rather
than due to the presence of singular features in the input
scalar and vector functions.

1.4 Our contribution
We present a novel, grid-based algorithm for extracting

a discrete extremal surface in 3D. The method handles un-
oriented vector functions, and makes several improvements
over previous works such as [14]:

1. We adopt a robust criteria for identifying grid edges
crossed by the ES.

2. We propose a simple polygonization routine that is
generally applicable to any grid types.

3. We show that our algorithm preserves the structural
property of the ES in a grid-independent manner. In
particular, non-manifold features of the resulting polyg-
onal surface appear only in the vicinity of the singular
features of the input scalar and vector functions.

2. THE ALGORITHM
The input to our algorithm is a pair of scalar and un-

oriented vector functions, as well as a spatial grid over the
domain. Note that the choice of the functions depends on
the specific input data and the type of surface to be ex-
tracted. Likewise, the choice of grid structure also depends
on the desired application. We discuss specific choices in
Section 3; the algorithm presented here is applicable to any
set of choices.

Our algorithm to compute a polygonal approximation of
an ES proceeds in two steps, illustrated in 2D in Figure 1 for
the input scalar and vector function in (a) and the quadtree
grid in (b). First, we identify those grid edges that are
crossed by the critical surface (CS). We call these edges crit-
ical edges, which are highlighted in red and blue in (b). The
subset of critical edges intersected by the ES, called extremal
edges, are the ones colored red. Next, we create a polygonal
critical (extremal) surface that crosses the identified critical
(extremal) edges (thick curves in (c)). We will first detail
each step, then provide an analysis of the structure of the
resulting surfaces.

2.1 Identifying grid edges

2.1.1 Identifying critical edges
As discussed in Section 1.2, critical points of s restricted

to n are the loci where g(x) (Equation 2) evaluates to zero,
assuming the vector function n can be continuously oriented.
If the continuous-orientation assumption holds, a sufficient
condition for a grid edge to be critical is that the value of
g(x) at the grid ends have different signs, meaning that g(x)
became zero somewhere along the line.

We make a key observation here that n is, in general,
orientable along any grid edge. To see this, we first note that
a continuous n along the edge is always orientable: starting
with an arbitrary orientation of n at one end of the edge,
we can continuously assign an orientation to every other
point by walking along the edge to the other end (a more
general statement is proved in the Appendix). Next, we
note that the discontinuity of n tends to stay away from the
grid edges in most applications (e.g., ridges and point set
surfaces), where n is defined as the principle eigenvectors of
a tensor field. This is because such discontinuities generally
form d − 2-dimensional structures [16], which do not have
stable intersections with 1-D edges. This leads to our test:

Proposition 1. An edge with end points {x1, x2} is crit-
ical if g(x1)g(x2) < 0, where g is defined in Equation 2 and
�n is an orientation of n along the edge.

We compare this test in Figure 2 with that used in previ-
ous methods [12, 3, 8, 14]. In these methods, a critical edge
is identified as one with a negative dot product �v(x1) ·�v(x2)
where �v(x) = g(x)�n(x). Intuitively, �v(x) is the gradient of
the scalar function s(x) along the line n(x), and this test
checks if s at the two ends of the edge fall off in opposite
directions. Note that the value of �v is independent of the
choice of orientation �n, hence this test does not require ori-
enting n along the edge. The dot-product test performs
well in the example of Figure 2 (a): �v(x1), �v(x2) (pink ar-
rows) point away from each other, indicating a critical point
(green) where g(x) = 0. However, it fails in the example of
(b), where n twists significantly along the edge: �v(x1), �v(x2)
still point away from each other, but there is no critical
point. In contrast, our test requires the knowledge of the
orientation of n along the edge (in order to compute g),
therefore is able to give accurate prediction. In these two
examples, g(x1)g(x2) is negative in (a) while positive in (b).

In our implementation, we discretely transport the orien-
tation from one end of the edge to the other over intervals
where the vectors n at the two ends of the interval are suf-
ficiently similar. For efficiency, the intervals are found by a
top-down binary search. Starting with the entire edge, we
divide an interval {x1, x2} into two halves if the acute angle
between n(x1), n(x2) is larger than some user-chosen thresh-
old ε. The search is guaranteed to stop if n(x) is continuous
on the edge. Note that this discrete implementation yields
a correctly oriented pair �n(x1), �n(x2) if n(x) twists no more
than (180◦ − ε) within each interval.

2.1.2 Identifying extremal edges
Extremal edges are identified as those critical edges whose

critical points are local minimum of s restricted to n. Follow-
ing the strategy in previous works [12, 3, 8, 14], we compute
the location of critical point by linear interpolation along the
critical edge {x1, x2} using the magnitude of g(x1), g(x2). A

1x
2x

)(xn

)(1xv
v

)(xs∇

1x
2x

)(xn

(a)

(b)

)(1xn
v

)(2xn
v

)(1xn
v

)(2xn
v

)(2xv
v

)(1xv
v

)(2xv
v

Figure 2: Where the dot-product test fails: Both (a)
and (b) have the same �v at their end points, whose
dot product is negative. Yet only (a) contains a
critical point of s(x) (with a constant gradient shown
on the right) restricted to n(x) (the gray lines).

critical point x is considered a local minimum if the sec-
ond derivative of s along l(x, n(x)) is positive. Figure 1 (b)
shows an example of extremal edges (red) and non-extremal
critical edges (blue) identified using our method, along with
the locations of critical points.

2.2 Polygonization
After identifying the extremal edges, we next generate a

polygonal surface crossing the extremal edges while approxi-
mating the locations of the critical points along those edges.
Note that we can build the non-extremal part of the CS in
a similar manner by considering the non-extremal critical
edges instead.

Our polygonization method is simple to implement and
applicable to non-uniform grids in adaptive sampling (e.g.,
octrees). This is achieved by adapting an iso-surfacing algo-
rithm, Dual Contouring (DC) [7]. DC places vertices within
grid cells that exhibit a sign change, and constructs poly-
gons that cross the grid edges with a sign change. To ex-
tract extremal surfaces, we create a vertex within any grid
cell that contains an extremal edge, and create a polygon
for each extremal edge by connecting the vertices within the
cells sharing that edge. To determine the location of the
vertex within a grid cell, we take the centroid of the criti-
cal points computed previously on all of the cell’s extremal
edges, then project this point onto the ES using the projec-
tion strategy in [1]. A 2D example of the polygonized ES
is shown in Figure 1 (c). Note that the algorithm naturally
handles boundaries and the adaptive grid structure.

2.3 Analysis
As shown in Section 1.2, an ES is a subset of a manifold

that is only bounded by singular features of the input func-
tions, such as discontinuities of n or inflection points of s
restricted to n. As our main result, we will show that the
polygonal ES generated by our algorithm possesses a similar
structure that is governed by the topology of the input func-
tions rather than the structure of the grid. Let the valence
of e be the number of polygons incident to e:

Proposition 2. An edge e on the polygonal ES has an
odd valence only if the dual grid face of e contains either a
discontinuity of n or an inflection point of s restricted to n.

(a) (b) (c) (d) (e)

Figure 3: (a) Input scalar and vector functions, where green dots highlight the discontinuities in the vector
function. (b-d) Critical curves (with extremal curves colored red) computed on various grid types and
resolutions, where shaded squares are the dual faces to odd-valence vertices on the critical curves.

where the dual grid face of a polygonal ES edge e = {v1, v2}
is the grid face shared by the two grid cells containing the
vertices v1 and v2 respectively. Note that the grid face dual
to the odd-valence edge may contain multiple discontinuities
of n or inflection points of s. The proof is provided in the
Appendix.

Intuitively, an odd-valence edge represents a non-manifold
surface feature, since the local surface there cannot be topo-
logically decomposed into manifold pieces. The above prop-
erty ensures that each non-manifold feature on our polygonal
surfaces lies in the vicinity of some singular features of the
input functions. In this sense, our discrete approximation of
ES is always as manifold as the actual ES.

To illustrate this property, consider again the 2D example
in Figure 1 (a). Note that the vector function has a num-
ber of discontinuities, highlighted as green dots in Figure
3 (a). Figures 3 (b-d) show the polygonal extremal curves
(red) and the non-extremal part of the critical curves (blue)
computed on various grid types. In these pictures, the dual
faces of odd-valence vertices on the computed curves are
highlighted. Note that each dual face, regardless of the grid
type and resolution, contains a discontinuity of the vector
function in (a). Figure 4 (a) shows another example where
the vector function in Figure 3 (a) is replaced with a con-
stant field without discontinuity. Note that the extremal
curve in the middle meets the non-extremal critical curve at
two valence-one vertices, whose dual faces (colored green in
(b)) intersect with the zero-set curve (dotted) of the second
derivative of s restricted to n.

(a) (b)

Figure 4: Critical curves (with extremal curves col-
ored red) computed on a constant vector field. The
dotted curve is the zero-set of the second derivative
of s restricted to n, and the green grid faces are dual
to the odd-valence vertices on the extremal curve.

3. RESULTS AND APPLICATIONS
Here we present some results of our algorithm in 3D. We

consider two specific kinds of extremal surfaces: ridges from
intensity volumes and point set surfaces. In each scenario,
we will discuss our choice of scalar and vector functions, as
well as the type of spatial grid (e.g., uniform or adaptive) on
which the algorithm is applied. In all examples, the thresh-
old used for orienting vectors along a grid edge, which is the
only parameter in our algorithm, is set to be ε = 10◦.

Ridge surfaces: We consider a variation of the classical
height ridges of intensity images [4]. In the height ridge
definition, the direction along which the height maxima is
sought is the one that maximizes second derivative magni-
tude, which can be unstable for near-linear intensity dis-
tributions (e.g., distance functions). Instead, we use the
direction where the intensity varies most, which relies only
on first order derivatives. Specifically, given a discrete im-
age I consisting of pixels V , we compute a discrete structure
tensor T at a pixel p as

T(p) =
∑

q∈V

θ(‖p − q‖)〈∇I(q),∇I(q)T 〉

where θ(r) = e−r2/h2
is a Gaussian kernel, ∇ is the gra-

dient operator, and 〈, 〉 is the outer product operator. The
eigenvector of T(q) with the largest eigenvalue represents the
direction with greatest intensity variation around q. Letting
T be the bi-cubic interpolation of T, we set n(x) at an arbi-
trary space location to be the dominant eigenvector of T (x).
Following the height ridge definition, we set s(x) = −L(x)
where L is the bi-cubic interpolation of a smoothed image
L whose value at a pixel p is

L(p) =
∑

q∈V

θ(‖p − q‖)I(q)

Figure 5 shows two examples of ridge extraction of 3D
density volumes, where the algorithm ran on a uniform grid
at the same dimension of the input. These data (show on
the left) are volumetric reconstructions from 2D micrographs
obtained by cryo-electron microscopy (cryo-EM), which cap-
ture the electron density around the atoms that make up
proteins (shown on the right). Note that our algorithm is
able to extract a contiguous ES (shown in the middle) de-
spite its highly non-manifold structure. Also note that the
ridge surfaces closely resemble the protein shape, making
them a potential starting point for automatic recognition of
protein structures from the input volumes. In this exam-
ple, we color the surfaces by the ratio λ1/(λ1 + λ2) (higher

Figure 5: Ridge surfaces of cryo-EM density vol-
umes of proteins.

ratios are redder), where λ1, λ2 are the largest and second
largest eigenvalues of the structure tensor T (x). A higher
ratio indicates a more plate-like density distribution.

Point set surfaces We consider surface reconstruction from
a point cloud associated with unoriented normals. As sug-
gested by Amenta and Kil [1], we construct n by blending
the point normals. Given point and normal pairs {pi, ni},
they formulate n(x) at any space location x as the eigenvec-
tor of the following tensor with the greatest eigenvalue

G(x) =
∑

pi

θ(‖x − pi‖)〈ni, n
T
i 〉

To construct s, we consider a recent formulation by Suss-
muth et. al. [15] as the sum of (sign-inverted) Gaussian
weights:

s(x) = −
∑

pi

θ(‖x − pi‖)

This function reaches local minima around the data points
and increases smoothly away from the data (which avoids
the narrow-domain problem of the weighted least-square for-
mulation in [1]).

For point sets, we ran our algorithm on an octree grid to
achieve adapted sampling. Starting from the bounding box
of the data as the root cell, we recursively subdivide a cell if
it contains more than one data point, if any two vectors n(x)
at the cell corners differ by more than ε (the same threshold
as we used for orienting vectors along a grid edge), or if the
second derivative of s along the lines l(x, n(x)) at the cell
corners exhibit different signs. The first criteria ensures the
grid has sufficient resolution around the data points, while
the next two criteria are used to detect possible variation
of the ES within the cell. The subdivision terminates at a
user-specified maximum depth (10 in our examples).

We show some examples of point set surfaces in Figure 6.
Observe that the octree structure captures well the highly
curved surface features (e.g., the tip of the bunny ear) using
cells at fine resolutions, and the algorithm results in contin-
uous and smooth surfaces on this adaptive grid. Also note
that the algorithms can create unorientable surfaces (e.g.,
the Möbius strip), as it does not require orienting the in-

Figure 6: Point set surfaces computed on adaptive
octrees for the ear of the Stanford Bunny (top) and
a Möbius strip.

Figure 7: Reconstruction from points with noise.

put vectors n(x). We further demonstrate the stability of
our algorithm on input functions with fluctuations in Fig-
ure 7, where the input points were synthetically perturbed.
Note that the algorithm results in continuous surfaces even
though the underlying ES is highly undulating. The jagged
boundary in these examples is caused by our implementa-
tion restricting the surface computation to the vicinity of
the data points, as the ES defined above would otherwise
extend to infinity. A better choice of functions resulting in
ES within a domain bounded by the data points is an inter-
esting question to pursue in the future.

Performance The most time consuming part of the algo-
rithm is evaluating the input functions s, n, which is par-
ticularly frequent during grid subdivision (in the point set
surface application) and when orienting vectors along the
grid edges for identifying extremal edges. On the larger
tests (e.g., Figure 6 (a)), grid subdivision and identifying
extremal edges took around 20 minutes, while the polygo-
nization step took no more than 2 seconds.

4. CONCLUSION
In this paper, we present a simple, grid-based algorithm

for extracting extremal surfaces that does not require ori-
enting the input vectors. A key property of our algorithm
is that it preserves the manifold structure of the extremal
surface in a grid-independent manner. The algorithm can
be applied to reconstruct various types of extremal surfaces,
such as ridge surfaces and point set surfaces. In the future,
we would like to explore heuristics for generating adaptive
spatial grids that can accurately capture the topology and
geometry of the ES, in addition to its manifold structure.

Also, we would like to investigate better scalar and vector
functions to define extremal surfaces in specific applications.

Acknowledgement This work is supported in part by NSF
grants IIS-0705538, IIS-0846072, CCF-0702662 and DBI-
0743691. We thank Matt Baker and Stanford 3D Scanning
Repository for providing the density and point set data.

5. REFERENCES
[1] N. Amenta and Y. J. Kil. Defining point-set surfaces.

ACM Trans. Graph., 23(3):264–270, 2004.

[2] N. Amenta and Y. J. Kil. The domain of a point set
surfaces. In Eurographics Symposium on Point-based
Graphics, pages 139–147, 2004.

[3] F. Cazals and M. Pouget. Topology driven algorithms
for ridge extraction on meshes. Research Report
RR-5526, INRIA, 2005.

[4] D. Eberly, R. Gardner, B. Morse, S. Pizer, and
C. Scharlach. Ridges for image analysis. J. Math.
Imaging and Vision, 4:353–373, 1994.

[5] J. D. Furst and S. M. Pizer. Marching ridges. In Signal
and Image Processing (SIP 2001), pages 22–26, 2001.

[6] G. Guy and G. Medioni. Inference of surfaces, 3D
curves, and junctions from sparse, noisy, 3D data.
IEEE Trans. Pattern Anal. Mach. Intell.,
19(11):1265–1277, 1997.

[7] T. Ju, F. Losasso, S. Schaefer, and J. Warren. Dual
contouring of hermite data. In SIGGRAPH ’02:
Proceedings of the 29th annual conference on
Computer graphics and interactive techniques, pages
339–346, New York, NY, USA, 2002. ACM Press.

[8] T. Judd, F. Durand, and E. Adelson. Apparent ridges
for line drawing. ACM Trans. Graph., 26(3):19, 2007.

[9] G. Kindlmann, X. Tricoche, and C.-F. Westin.
Delineating white matter structure in diffusion tensor
MRI with anisotropy creases. Medical Image Analysis,
11(5):492–502, October 2007.

[10] D. Levin. Mesh-independent surface interpolation. In
G. Brunnett, B. Hamann, K. Mueller, and L. Linsen,
editors, Geometric Modeling for Scientific
Visualization. Springer-Verlag, 2003.

[11] W. E. Lorensen and H. E. Cline. Marching cubes: A
high resolution 3D surface construction algorithm.
SIGGRAPH Comput. Graph., 21(4):163–169, 1987.

[12] Y. Ohtake, A. Belyaev, and H.-P. Seidel. Ridge-valley
lines on meshes via implicit surface fitting. In
SIGGRAPH ’04: ACM SIGGRAPH 2004 Papers,
pages 609–612, New York, NY, USA, 2004. ACM.

[13] F. Sadlo and R. Peikert. Efficient visualization of
lagrangian coherent structures by filtered amr ridge
extraction. IEEE Transactions on Visualization and
Computer Graphics, 13(6):1456–1463, 2007.

[14] T. Schultz, H. Theisel, and H.-P. Seidel. Crease
surfaces: From theory to extraction and application to
diffusion tensor mri. IEEE Transactions on
Visualization and Computer Graphics, 16:109–119,
2010.

[15] J. Sussmuth and G. Greiner. Ridge based curve and
surface reconstruction. In SGP ’07: Proceedings of the
fifth Eurographics symposium on Geometry processing,
pages 243–251, Aire-la-Ville, Switzerland, Switzerland,
2007. Eurographics Association.

[16] X. Zheng and A. Pang. Topological lines in 3D tensor
fields. In VIS ’04: Proceedings of the conference on
Visualization ’04, pages 313–320, Washington, DC,
USA, 2004. IEEE Computer Society.

APPENDIX

A. PROOF OF PROPOSITION 2
Before we present the proof, we first make the following

observation about the orientability of a continuous, unori-
ented vector function:

Lemma 1. Let D be a k-manifold in R
d where k ≤ d, and

n : R
d → RP

d−1 be an unoriented vector function continu-
ously defined over D. If D is homeomorphic to a k-disk,
than n is orientable.

Proof: When k = 1 (or D is a line segment), the argu-
ment obviously holds as we can orient n along the line in a
continuous manner from end to the other. We can do the
same for k > 1, by traversing all points in D in an order such
that, at every point x ∈ D, an orientation �n(x) can be picked
that is continuous with those already picked in the neighbor-
hood of x. Specifically, due to homeomorphism to a disk, D
can be parameterized by k parameters {t1, t2, . . . , tk} where
ti ∈ [0, 1]. We visit points in D in increasing values of each
parameter (e.g., from {0, 0, . . . , 0} to {0.5, 0, . . . , 0}, then to
{1, 0, . . . , 0}, then to {0, 0.5, . . . , 0}, then to {0.5, 0.5, . . . , 0},
then to {1, 0.5, . . . , 0}, etc.), each time assigning an orienta-
tion for �n(x) that is continuous with all orientated vectors
�n(y) where y is in an infinitesimal neighborhood of x and has
already been visited. Note that such assignment is always
possible, as the set of all such y forms a connected (open)
set around x due to the visiting order, and the angle formed
by �n(y) and any assignment of �n(x) would approach 0 or π
simultaneously for all y in this set. �

Now we present the proof of Proposition 2:

Proof: (Proposition 2): Due to our polygonization proce-
dure, the valence of an edge e on our polygonal ES is the
same as the number of extremal edges contained by the dual
face f of e. Therefore the odd-valence of e means that there
are odd number of extremal edges on grid face f , which
implies one (or both) of the following two cases:

Case 1: f has both types (extremal or non-extremal) of
critical edges. If so, f contains an inflection point of s re-
stricted to n. This is because we distinguish extremal and
non-extremal edges by the sign of the second derivatives at
the critical points. The presence of both types of edges im-
plies that f intersects with the zero set of the second deriva-
tives.

Case 2: f has an odd number of critical edges. If so, f
contains a discontinuity of n. Otherwise, assuming n is con-
tinuous along f , than n is orientable along the border of f
by Lemma 1 (assuming f has a disk-like topology, which is
the case for most spatial partitioning schemes). Adopting
this orientation, the function g(x) (Equation 2) is a continu-
ous scalar function over the border of f , and hence changes
signs for an even number of times. As a result, the number
of critical edges satisfying our criterium in Proposition 1 is
even along the border of f , contradicting our assumption.�

