
1

CubeCam: A screen-space camera manipulation tool
Nisha Sudarsanam, Cindy Grimm, Karan Singh

Abstract— We present CubeCam, an image-space cam-
era manipulation widget that supports visualization of
the relationship of the camera with respect to the scene.
The shape of the widget presents the user with natural
affordances for camera manipulation. The widget supports
ghosting of the scene which helps novice users remember
the functions associated with different parts of the widget.
Pie-menus provide a natural interface for presenting the
different non-camera actions to the user. Finally, we
provide a novel method for visualizing camera bookmarks.

Index Terms— Camera control, Projection, Perspective

I. INTRODUCTION

A. Motivation
Virtual 3D environments are becoming larger and

increasingly realistic. Manipulating a virtual camera
in such 3D environments is a crucial concern.
Unfortunately, effective camera manipulation
techniques have been difficult to develop. In order
to completely specify a camera, 11 distinct degrees
of freedom need to be specified : six for positioning
and orienting the camera and five for controlling
the projection of the image. Standard mouse-based
techniques can control only a subset of this large
11-dimensional space. In order to map the whole
camera space to the 2D space of the mouse, current
techniques use an array of menu options, shortcut
keys and key modifiers. This mapping is not always
transparent to the user. Given the myriad of tools
available to manipulate the camera, it is hard for
the user to know which tool to use in order to
obtain their desired view.

Another problem with current 3D applications is
the method used to represent “camera bookmarks”,
or previously saved camera views. Current
techniques represent camera bookmarks as a textual
list that users can organize. However, a textual
representation of a bookmark conveys no visual
information about the view point corresponding

email:nsudarsa@cs.wustl.edu
email:cmg@cse.wustl.edu
email:karan@dgp.toronto.edu

Fig. 1. Geometric primitives are used by artists for simplifying
objects

to that bookmark. There is also no way to find
bookmarks close to the current viewpoint.

This paper presents a camera manipulation
interface that moves away from the menu-driven
approach of current techniques. We present the
user with an interface that encapsulates camera
operations within intuitive controls: the user
specifies a camera operation in terms of the change
they want to see in the projected image. In contrase
to previous approaches, our system provides visual
selection aids to select different camera operations.
Finally, we visualize camera bookmarks and the
relationship between a camera bookmark and the
current view-point.

B. Background

In linear perspective, the perspective effects
depends on the relative position of the camera with
respect to the 3D scene. Artists explicitly visualize
this relationship using geometric proxies which
are used to reduce objects to sets of points, lines
and curves (Figure 1). Thus, geometric proxies
visually reflect the artist’s perception of the 3D
scene. We borrow this idea by presenting the user
with camera primitives which not only serve
as geometric proxies for visualizing the current
camera but also can modify the projection of
the scene. These camera primitives allow camera
operations to be defined with respect to any point

2

in the scene and also provide visual feedback with
regard to how specific camera operations affect
the projected image. Thus, our system explicitly
visualizes the camera-scene relationship in the
image plane.

C. Novel features of the interface

The camera is visualized through the projection
of a cube in the scene. The cube can be viewed
in three different perspective views, namely 1-pt
perspective, 2-pt perspective and 3-pt perspective
(Figure 2). We collectively label the three
perspective views of the cube as CubeCam.

Each camera primitive encapsulates a subset
of all possible camera operations. This subset is
selected based on the operations that map naturally
to the shape of the cube in that particular view.
This allows camera operations to be defined in
terms of the change the user want to see in the
camera primitive. For example, when the cube is in
1-pt perspective making the the cube bigger results
in the camera being zoomed in or out This is
analogous to saying “perform the camera operation
that makes the cube appear bigger”. In this case,
the camera operation is a camera zoom.

Object-Centric CubeCam: CubeCam can either
be centered in a scene or centered on a particular
object in the scene(scene v/s obj picture). If it is
centered on an object, all camera operations are
defined with respect to that object. For example,
we can rotate the camera with respect to any point
in or on an object or around any of the principal
axes of the object.

Ghosting: To help users find out which
operations are associated each primitive, we
provide “ghosting”. When ghosting is active, users
interact with CubeCam as they would normally.
However, instead of changing the scene camera,
the user changes a “ghost camera”. The ghost
camera is used to render a ghosted projection of
the scene on top of the current scene (Figure 14).
Ghosting allows new users to get acquainted with
the interface. It also allows users to test out possible
camera changes before actually making them.

Focus-depth: CubeCam allows users to visualize
and change the “focus-distance” (depth of focus).
Specifying the focus-distance helps users indirectly
specify which objects need to stay the same size

(Figure 6) or stay at the same spot on the screen
(Figure 9) when changing the perspective distortion
of the scene. The focus-distance is visualized
through a semi-transparent plane (focus plane)
drawn at a distance equal to the focus-distance
along the view-direction of the camera. Users can
slide this plane through the scene thereby changing
the focus-distance.

Camera bookmarks: Camera bookmarks
are displayed in our system. Each bookmark is
represented as an icon whose image is the scene
viewed from the saved viewpoint. Mousing over
the icon renders a ghosted version of the scene
over the current scene. In addition to visualizing
the bookmarks themselves we also visualize the
relationship between a bookmarked viewpoint and
the current viewpoint. Bookmarks are arranged in
a circle in a clockwise manner at the center of the
image. The closer an icon is to the 12:00 position,
the “closer” a bookmarked viewpoint is to the
current viewpoint. As the current view changes,
so does the position of a given bookmark. The
metric used to measure the distance between two
view-points depends on the currently active view of
CubeCam (Figure 15, 16). In addition to automatic
placement, we also allow the user to manually
place the bookmark icons anywhere on the screen.
In this case, the position of the bookmarks remain
fixed even if the current view changes.

Selection: Dividing camera operations among
the three views of the cube simplifies the interface
of a given camera primitive, but requires the user to
switch between them. CubeCam also allows users
to turn ghosting on and off, bookmark a view and
view all of the bookmarks. Mapping these options
to different shortcut keys increases the amount
of information users have to remember about the
interface. We incorporate these options into a
pie-menu [1]. We provide a button (which we will
refer to as the pie-menu button) for invoking the
pie-menu. The pie-menu button is located in the
top-right corner of the screen (Figure 2). Crossing
the pie-menu button pops up a circular menu of
options (Figure 4). Releasing the mouse over one
of these options, selects that particular option.
User studies [1] have shown that once users grow
accustomed to the location of the menu-options on
a pie-menu, the time taken to select a pie-menu
option is less than the time taken to select an
option on a traditional menu.

3

• Pan

• Zoom

• Zoom & Dolly

• Focal plane change

• Center of projection
change

• Dolly

• Focal plane change

• Constrained
rotation

• Virtual trackball
• Rotation

point change

Fig. 2. The three perspective views of a cube form CubeCam. Each primitive is associated with a set of camera operations, listed underneath
it. The red icon in the top right corner is the pie-menu button which when crossed pops up a pie-menu of options shown in the box.

Camera rotation: In the 3-pt perspective view of
the cube, the user can perform two types of camera
rotation: constrained rotation and a virtual trackball
rotation. Crossing a single edge allows the user to
perform constrained rotation about the axis parallel
to the selected edge (Figure 11). Crossing multiple
edges, allows for virtual trackball (Figure 12).
Thus, both these options can be specified naturally
in the CubeCam interface without introducing
additional menu-options.

Rotation planes: Analogous to visualizing the
focal plane of the camera, CubeCam explicitly
visualizes the point about which the camera is
rotated as the intersection of three rotation planes
(Figure 13). The rotation planes are aligned along
the principal axes of the cube. Users can change
the pivot point by changing any of the rotation
planes.

The rationale for choosing a cube: We chose
a cube as the basic shape of our camera primitives
since the different perspective views of the cube are
easily recognized and familiar to all users. Artists
frequently use the cube as a geometric proxy to
specify their viewpoint for this reason. Finally, each
of the perspective views lend themselves naturally
to being associated with camera operations.

D. Contributions

CubeCam is a simple, intuitive camera manip-
ulation interface. CubeCam can visualize both the
relationship of the camera with the scene and the
state of the camera itself, while staying in the
2D image plane. Specifically, CubeCam explicitly
visualizes important aspects of any camera manipu-
lation interface such as the camera’s focal plane and
pivot point about which camera rotations take place.
CubeCam provides an intuitive interface because it
allows users to define camera operations in terms of
the change they want to see in the projected image.

Visual aids such as ghosting of the scene help
novice users learn the different functions of Cube-
Cam and also allows advanced users to experiment
with possible camera changes before actually mak-
ing them. Finally, CubeCam allows users to find and
visualize nearby camera bookmarks.

E. Overview

The paper has the following structure: Section II
places this paper in context with previous work
in this area. Section III describes the features of
the interface while Section IV discusses ghosting.
Section V describes camera bookmarks while Sec-
tion VI discusses some implementation details of
CubeCam. Section IX provides the conclusion.

4

II. RELATED WORK

For mouse-based systems, camera control
paradigms fall roughly into two categories, camera-
centric and object-centric. In the camera-centric
paradigm, operations are applied to the camera as
if it were a real object in the scene. This mirrors
camera placement in the real world, and many
of the camera operations (dolly, pan, and roll)
reflect that. The external parameters, position and
orientation, can be specified either “through the
lens”, or by manipulating a pictorial representation
of the camera in a second window. The internal
camera parameters, with the exception of focal
length, are changed through textual input.

In the object-centric paradigm, the camera is
centered on an object and the viewpoint is rotated
relative to the object (as if there were a virtual
trackball around the object [2], [3]). The camera
can also be zoomed in and out. This paradigm is
useful when there is a single object in the scene (or
one object of importance) and the user is simply
choosing a direction from which to view it.

Three or six degrees of freedom devices permit
other interesting navigation techniques [4], such
as the palm-top world [5], the “grab and pull”
approach [6] and virtual fly-throughs [7]. The lat-
ter can also be used in mouse or keyboard-based
systems if the camera’s movement is restricted to a
well-defined floor plane (most first-person shooters
use this approach).

An alternative approach to directly specifying the
camera is to use image-space constraints [8], [9]. In
this approach, points in the scene are constrained
to appear at particular locations, or to move in a
specified direction, and the system solves for the
camera parameters that meet those constraints.

Pie-menus [1] are an alternative to linear menus.
Pie-menus display a set of menu options in a
circle on the screen. User studies [1] have shown
that pie-menus are a faster way to selecting menu
items.Using pie-menus we allow users to switch be-
tween different views of CubeCam without resorting
to linear menus or key modifiers for performing the
same task.

A. CubeCam versus IBar

The recently-introduced IBar [10] is, in some
sense, a specialization of the constraint approach,
where the points are the points of the edge of a cube.

Fig. 3. (a) 2-Point perspective view of CubeCam.(b) IBar placed in
the scene.

Like CubeCam, the IBar is a screen-space widget
where changing the widget changes one or two
camera parameters. The IBar and CubeCam have
similar goals; both systems move beyond current
menu-based camera manipulation techniques to a
unified screen-space camera primitive. The under-
lying mathematical framework of the two systems
are similar. Thus, both systems support the same set
of camera operations. However, CubeCam improves
and extends the interface presented to the user.
• (improved) Rendering: The IBar is a camera

primitive representing an edge on two point
perspective rendering of the cube. It is made
up of the projected edges of a cube thus
giving perspective but no depth information
(Figure 3).

• (improved) Camera primitive Interface: In
the IBar interface, all of the camera operations
that can be performed are associated with a
single camera primitive. Each part of the wid-
get performs different functions depending on
where the user has clicked. This tends to be
confusing for a novice user.

• (improved) Rotation: CubeCam improves the
camera rotation operation by allowing a camera
rotation around an arbitrary 3D point and about
an arbitrary axis in the scene.

• New Features: Ghosting, visualizing the focal
plane and the rotation point(through the rota-
tion planes) are features unique to CubeCam.
Finally, visualizing camera bookmarks is an en-
tirely novel feature of CubeCam. Classification
of bookmarks in CubeCam is made easier due
to the different perspective views.

III. THE CUBECAM INTERFACE

A. Pie-Menu
All camera operations are associated with the

camera primitives. The non-camera actions namely

5

Toggles ghosting

Toggles
display of all
bookmarks

3-Pt

Bookmark
current view

Switch to 2-pt
perspective

Switch to 1-pt
perspective

Switch between
object-centric and
screen-centric
CubeCam

Ghosting
On

Scene
Widget

Save
View

2-Pt

1-Pt

All
Views
On

CubeCam
Off

Toggles
display of the
cube

Static

Switches the
bookmark
placement
algorithm

Fig. 4. The pie-menu encapsulates the various non-camera options.

switching between the bookmark placement algo-
rithms, turning bookmarks on or off, switching
between object-centric and scene-centric CubeCam,
turning ghosting on or off, bookmarking the current
view and switching between the different camera
primitives can be invoked through a pie-menu (Fig-
ure 4). We designate a button located near the top-
right corner of the screen as the pie-menu button
(Figure 2). When this button is crossed, the cur-
rent camera primitive disappears and a pie-menu
appears. Releasing the mouse over an option selects
it. Once an option is selected, the pie-menu dis-
appears and the camera primitive reappears. Thus,
pie-menus allow us to naturally integrate different
menu-options into our interface.

B. 1-Point Perspective
1-pt perspective allows for camera zooming,

camera panning and perspective manipulation
(Figure 5).

Perspective Distortion
Perspective distortion is a function of the distance
of the camera eye point to the object in question.
Unfortunately, changing the camera distance also
changes the size of the object in the scene. To
counter-act this, the camera is zoomed out simulta-
neously to keep the object the same size [11] [10].
Thus, objects at a specific distance d along the
look vector remain the same size in the image
plane. This distance is visualized by a plane drawn

Zoom & Dolly in-out

PanZoom in-out

Change of focal
plane

Pie-menu button

Fig. 5. The above figure shows the camera operations associated
with the 1-pt perspective view. The camera is zoomed in or out by
dragging the outer edges of the cube outward or inward. Perspective
distortion is achieved by dragging the inner edges. The camera is
panned by moving the whole cube. The focal plane is slid through
the scene using the sliders on the receding edges of the cube. The
pie-menu button is used to bring up the pie-menu.

at depth d, which can be changed by moving a
slider along the receding edges of the cube in the
1-pt perspective view (Figure 6). Thus, CubeCam
allows users to control the perspective distortion in
the scene.

C. 2-Point Perspective

2-pt perspective (Figure 7) allows for camera
dollying (Figure 8) and center of projection change.

Center of projection: We extend the focal plane
idea to the 2-point perspective view. When the
center of projection is changed the whole scene
slides in the opposite direction. To prevent this, the
camera is panned in the opposite direction ensuring
that objects at a depth d remain stationary. A focal
plane is rendered at this depth and its position is
controlled by sliders located on the slanting edges
of the cube. The position of the focal plane controls
which objects stay fixed on the screen (Figure 9).

D. 3-Point Perspective

3-pt perspective is used only for either con-
strained rotation or virtual trackball of the camera
(see Figure 10).

Rotation
In the 3-pt perspective view, the user can performed
either a constrained rotation or virtual trackball

6

Focal plane is behind all the
objects in the scene

Dragging the edge outward
results in perspective distortion
of all objects

Moving the slider away or
towards the center of the cube
slides the focal plane away or
towards the camera

Clicking the inside edge of
the cube results in a zoom
and dolly of the camera

Focal plane intersects the
bowl

Dragging the edge outward
results in a perspective
distortion of all objects
except the bowl.

Bowl remains the same
size

Focal plane

Fig. 6. Perspective Distortion controlled by the focal plane.

Pie-menu button

Change of
focal plane

Dolly in-out
Center of projection change

Fig. 7. The above figure shows the camera operations associated
with the 2-pt perspective view. The camera is dollied in or out by
dragging the outer edges of the cube outward or inward. The camera’s
center of projection is changed by moving the whole cube. The sliders
on the cube are used to change the position of the focal plane in the
scene.

of the camera. A constrained rotation is specified
by crossing a single cube edge. In constrained
rotation, the camera is rotated about a single axis.
The rotation axis depends on whether the primitive
is centered in the scene or on an object. If centered
in the scene, the camera is rotated about one of

Clicking any of
the outer edges
in the 2-pt
perspective view
specifies a
camera dolly.

Dragging the
edge inward,
results in the
camera being
dollied out

The final
scene after the
camera dolly

Fig. 8. Camera dolly in the 2-pt perspective view

the X,Y,Z world axes, depending on the selected
cube edge. For example, if the cube edge selected
is vertical, the camera will be rotated about the Y
axis. If centered on an object, the camera is rotated
about one of the X,Y,Z axes of the object. A virtual
trackball rotation is specified by crossing multiple
multiple edges of the cube. Once the rotation type
has been selected, the user can click and drag any
point on the cube to perform the rotation (Figure
11, 12).
picture of object centered rotation

Rotation Planes

7

The focal plane
intersects the bowl

The center of
projection is
changed by clicking
and dragging the
center of the cube

All the objects
except the bowl are
shifted.

All the objects
except the vase are
shifted

The focal plane
intersects the vase

Fig. 9. Center of Projection and Camera Pan

Our system visualizes the rotation point about which
a camera rotation takes place. This is done us-
ing three semi-transparent planes. The planes are
aligned along the principal axes of the cube in the
3-pt perspective view (Figure 10). Sliders located on
three edges of the cube, are used to change the po-
sition of the rotation planes. The final rotation point
is the intersection of the rotation planes (Figure 13).

E. Scene-centric CubeCam versus Object-centric
CubeCam

CubeCam can be either centered in the scene
or at the center of an object in the scene. Users
can switch between the two configurations using
the pie-menu. Clicking on an object centers
CubeCam about that object. All the previously
described camera operations can be performed in
both configurations of CubeCam with the only
difference being the axis used for rotating the
camera in the 3-pt perspective. If CubeCam is
scene centered then the camera primitives snap back
to the original position after the user has modified
them. In the case of object-centric CubeCam, the
position of the camera primitives change with the
position of the object. picture of scene centered
and object centered

Rotate about
X axis

Rotate about
Y axis

Rotate about
Z axis

Virtual
trackball

Pie-menu
button

Rotation
planes

Sliders for
manipulating
rotation planes

Fig. 10. The above figure shows the camera operations associated
with the 3-pt perspective view. The semi-transparent planes are
rotation planes. The intersection of these planes form the rotation
point about which the camera can be rotated. The position of each
rotation plane is controlled using the corresponding slider located
on an edge of the cube. Constrained rotation about a particular axis
is selected by crossing the appropriate edge. Clicking and dragging
any point on the cube then performs the actual rotation. A virtual
trackball rotation of the camera is selected by crossing multiple edges
of the cube. The pie-menu can be used to display the set of pie-menu
options.

The final scene
after the rotation is
performed

The edge crossed
is vertical: the
camera is rotated
around the Y-axis

Crossing a single
edge specifies a
constrained
rotation

Fig. 11. Constrained rotation

IV. GHOSTING

Our goal is to present the user with a simple
camera manipulation interface. By creating multiple
camera primitives we simplify the overall interface
but introduce the problem of expecting the user
to remember the functions associated with each
primitive. In order to help the user learn these
functions we provide ghosting. When ghosting is
active, users manipulate the camera primitive as

8

Virtual trackball is
performed by
selecting multiple
edges

The red path
indicates the
cursor path

The final path after
performing virtual
trackball of the
camera

Fig. 12. Virtual trackball

Rotation point is the
intersection of the
rotation planes

Moving the sliders
changes the position
of the rotation
planes

Rotation point

Fig. 13. Rotation Planes

they would normally. However, as they change the
camera primitive, a “ghost camera” is changed.
This ghost camera is used to render a ghosted
scene rendered over the current scene. The original
scene camera remains unaffected (Figure 14). For
advanced users, this mode provides an opportunity
to test out possible camera changes before actually
making them.

V. CAMERA BOOKMARKS

It is very useful to be able to save cameras
and snap back to them at will. For example, when
modeling a surface, a user might bookmark a hand-
ful of orthogonal views and close-ups of complex
geometry. An animator might also use bookmarks
to start laying out an animation sequence. In both
of these cases, we need to provide the user with
a method for quickly searching through existing
cameras. Although the user could simply create
a text list, appropriately naming each camera, we
believe that a visual search mechanism is more use-
ful. We have implemented two bookmark placement
algorithms, one of which is static placement and

The user drags the
center of the cube
which is a camera
pan. The ghost
scene is rendered
using the panned
camera on top of
the original scene

Dragging the inside
edge of the cube is
a perspective
distortion. This is
reflected in the
ghost image

Dragging a vertical
edge in 3-pt perspective
is a Y-axis rotation.
The ghost image is
rendered using the
rotated camera

Fig. 14. Ghosting helps users learn the various functions of each
camera primitive

the other is automatic placement. Each bookmark is
represented as an icon with an image of the scene.
In static placement, the user simply places the icon
on the image plane. As the user changes the current
camera, the bookmark icons remain at the same
place on the screen. Mousing over an icon renders
a ghost image of the bookmarked view on top of
the current view. Double clicking an icon switches
to the bookmark.

In the automatic method, bookmark icons are
arranged in a circular fashion around the center
of the screen. The cameras are arranged in an
increasing order of distance from the current camera
in a clockwise manner. If the 1-point or 2-point
perspective view is active, the ordering is based on
the translation parameters otherwise it is based on
the rotation parameters. To order cameras based
on the translation parameters, each bookmarked
camera’s eye point is projected onto the film plane
of the current camera. The magnitude of the vector
from the origin to the projected eye point is used
to order the bookmarks (Figure 15). The rotation
distance is calculated by measuring the length of
the geodesic path between the quaternion of the cur-
rent camera and the quaternion of the bookmarked
camera (Figure 16).

GeodesicPath(q1,q2) = Log(q1
−1,q2)

q1: Quaternion corresponding to the current scene
camera.

q2: Quaternion corresponding to the bookmarked
camera.

9

Bookmark appears as
an icon in the 12:00
position

New bookmark in
the 12:00 position

Swapping of
bookmarks

Initially, there are no
bookmarks in the
scene.

The camera is panned
and the current view is
bookmarked.

The position of the
bookmarks change as the
current camera changes.
Performing further
camera translations
results in a view which is
closer to the view in (b)
than (c). The bookmarks
swap positions.

Another view is
bookmarked. Since the
current view is same as
the newly bookmarked
view, the previous
bookmark is replaced
by the new bookmark
in the 12:00 position.

When a bookmark is
moused over, a ghost
image of the scene in that
bookmark is rendered
over the current view.

Fig. 15. Bookmarks ordered based on translation parameters

Swapping of
bookmarks

Further rotation
of the camera
results in a
view closer to
(a) then (b).

The user rotates the camera using the
3-pt perspective view and bookmarks
two views.

Fig. 16. Bookmarks ordered based on rotation parameters

As the user changes the current scene camera,
bookmarked cameras move further or closer to the
current camera. Accordingly, the ordering of the
bookmark icons change.

VI. IMPLEMENTATION

A. Rendering a ghost scene
The current scene is rendered to the back-buffer

using the ghost camera. If ghosting is turned on, the
ghost camera is the camera created by modifying

the current camera. If bookmarks are turned on,
the ghost camera is the bookmarked camera. The
scene is rendered under the original lighting in a
non-photorealistic style with the silhouette edges
highlighted. The contents of the back-buffer are
copied into a texture which is alpha-blended on top
of the original scene which is rendered using the
current camera.

B. Bookmark Icons

As the number of bookmarks in the scene in-
creases, the circle of bookmarks created by the auto-
matic placement algorithm becomes more crowded.
To prevent the occlusion of bookmarks in the circle,
we vary the size of the icon as a function of the
number of bookmarks in the scene.

SizeO f Icon =
√

2× r× 2π

3n
r : Radius of the bookmarks circle
n : Number of bookmarks

VII. AN EXAMPLE SEQUENCE

I plan to summarize key points of the video in
this section.

10

VIII. USER STUDY

We performed a small user study to compare
people’s performance and preferences when using
CubeCam versus using the IBar. Our user study
consisted of 10 participants (proficiency).

A. Experimental Task

Each user was asked to develop n storylines of
varying difficulty with both widgets. Each story-
line was placed in one of three categories (easy,
medium, hard) based on their difficulty.(give an
example of an easy storyline and a hard one).
We used different storylines with each widget since
building the same storyline again would be easier
the second time around irrespective of the widget
used. However, the storylines developed with both
the widgets were equivalent in difficulty. Every
storyline was specified as a sequence of conceptual
camera shots(example of a storyline). As the user
manipulated each widget, they saved each camera
shot as a camera bookmark. In the case of the IBar,
camera bookmarks were represented as a textual
list. At the end of the session, the user answered
a questionnaire. The questionnaire contained ques-
tions regarding the user’s opinion of specific fea-
tures of CubeCam such as ghosting and bookmarks.
The questionnaire also gathered information about
their preferred interface.

B. Procedure

1) The experimenter explained the functions of
the IBar and CubeCam, demonstrated a few
examples with each widget and explained the
task to the user.

2) The user then had a practise session in which
they interacted with each widget until they
were comfortable with both.

3) Then, the user was randomly assigned to
start with either the IBar or CubeCam. They
were then given n/2 storylines in increasing
difficulty to build with the first widget. They
stopped building a given storyline when they
were generally satisfied with the result. They
repeated the same process with the second
widget, constructing different storylines.

4) Once the session was complete, participants
filled out a questionnaire.

C. Evaluation
We measured the performance of a user by the

time taken to develop a storyline and the degree
of satisfaction (expressed as a number between 0-
5, 5 being completely satisfied with the developed
storyline). Thus, the independent variables are the
type of widget used and the level of difficulty of
a storyline. The dependent variables are the time
taken and the degree of satisfaction.

D. Results
IX. CONCLUSION

We have presented CubeCam, a simple intuitive
screen-space camera manipulation widget. Cube-
Cam allows users to define camera operations in
terms of the change they want to see in the projected
image. We visualize in image-space the relation-
ship of the camera with respect to the scene. This
is achieved by explicitly visualizing the camera’s
focal-plane and the camera’s rotation point. Users
can easily manipulate the focal plane to achieve
different perspective distortions. Visual aids such as
ghosting help users remember the different opera-
tions associated with each camera primitive. Finally,
camera bookmarks and the relationship between
them are explicitly visualized in our system.

REFERENCES

[1] J. Callahan, D. Hopkins, M. Weiser, and B. Shneiderman, “An
empirical comparison of pie vs. linear menus,” in CHI ’88:
Proceedings of the SIGCHI conference on Human factors in
computing systems. New York, NY, USA: ACM Press, 1988,
pp. 95–100.

[2] J. Hultquist, “A virtual trackball,” in Graphics Gems, 1990, pp.
462–463.

[3] K. Henriksen, J. Sporring, and K. Hornbaek, “Virtual trackballs
revisited,” in IEEE Transactions on Visualization and Computer
Graphics, vol. 10, Mar 2004, pp. 206–216.

[4] D. A. Bowman, D. Koller, and L. F. Hodges, “Travel
in immersive virtual environments: An evaluation of
viewpoint motion control techniques,” IEEE Proceedings
of VRAIS’97, no. 7, pp. 45–52, 1997. [Online]. Available:
citeseer.nj.nec.com/bowman97travel.html

[5] R. Stoakley, M. J. Conway, and R. Pausch, “Virtual
reality on a WIM: Interactive worlds in miniature,”
in Proceedings CHI’95, 1995. [Online]. Available:
citeseer.nj.nec.com/stoakley95virtual.html

[6] I. Poupyrev, M. Billinghurst, S. Weghorst, and T. Ichikawa,
“The go-go interaction technique: Non-linear mapping for
direct manipulation in VR,” in ACM Symposium on User
Interface Software and Technology, 1996, pp. 79–80. [Online].
Available: citeseer.nj.nec.com/76070.html

[7] M. M. Wloka and E. Greenfield, “The virtual tricorder: A
uniform interface for virtual reality,” in ACM Symposium on
User Interface Software and Technology, 1995, pp. 39–40.
[Online]. Available: citeseer.nj.nec.com/wloka95virtual.html

11

[8] J. Blinn, “Where am i? what am i looking at?” in IEEE
Computer Graphics and Applications, vol. 22, 1988, pp. 179–
188.

[9] M. Gleicher and A. Witkin, “Through-the-lens camera control,”
in Siggraph, E. E. Catmull, Ed., vol. 26, no. 2, July 1992, pp.
331–340, iSBN 0-201-51585-7. Held in Chicago, Illinois.

[10] K. Singh, C. Grimm, and N. Sudarsanam, “The ibar: A
perspective-based camera widget,” in UIST, October 2004.

[11] C. Grimm, K. Singh, and N. Sudarsanam, “The ibar:
A perspective-based camera widget,” Washington university
in St. Louis, Tech. Rep. 7, 2004. [Online]. Available:
www.cs.wustl.edu

[12] M. Chen, S. J. Mountford, and A. Sellen, “A study in interactive
3d rotation using 2d input devices,” in Siggraph, vol. 22, no. 4,
August 1988, pp. 121–130, proc. of Siggraph ’88.

[13] J. Foley, A. van Dam, S. Feiner, and J. Hughes, Computer
Graphics : Principles and Practice. Addison Wesley, 1990.

[14] R. V. Cole, Perspective for Artists. Dover Publications, 1976.
[15] A. Gooch, B. Gooch, P. Shirley, and E. Cohen, “A

non-photorealistic lighting model for automatic technical
illustration,” Computer Graphics, vol. 32, no. Annual
Conference Series, pp. 447–452, 1998. [Online]. Available:
citeseer.nj.nec.com/gooch98nonphotorealistic.html

[16] C. o’Connor Jr., T. Kier, and D. Burghy, Perspective Drawing
and Application. Prentice Hall, 1998.

[17] R. C. Zeleznik, K. P. Herndon, and J. F. Hughes, “Sketch: An
interface for sketching 3d scenes,” in Siggraph, Aug. 1996, pp.
163–170.

[18] I. Carlbom and J. Paciorek, “Planar geometric projections and
viewing transformations,” in ACM Computing Surveys (CSUR),
vol. 10, no. 4, December 1978.

[19] J. C. Michener and I. B. Carlbom, “Natural and efficient
viewing parameters,” in Computer Graphics (Proceedings of
SIGGRAPH 80), vol. 14, no. 3, July 1980, pp. 238–245.

