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Abstract—Viewing data sampled on complicated geometry such as a human pelvis or helix is hard. A single camera view is not
sufficient to view different parts of such a complicated dataset. Multiple views are needed in order to completely examine the
structure. In this paper, we present a general tool-kit consisting of a set of versatile widgets, namely the unwrap, the clipping, the fish-
eye, and the panorama widgets, each of which encapsulates a variety of complicated camera placement issues and then combines
these several camera views into a single view in real-time. These non-linear views give a more complete visualization of the structure
without modifying the underlying geometry of the dataset. Multiple widgets can be combined to facilitate better understanding of the
underlying structure.

Index Terms—Non-linear perspective, User interfaces, Visualization, Camera control, rendering

1 INTRODUCTION

Faster computers, new data acquisition techniques, and increased stor-
age capacity are all contributing to the generation of highly complex
data-sets. Data-sets can either be composed of inherently complex
geometry (Figure 1) or a large collection of relatively simple geome-
try (Figure 2).

Finding the “best” view in which all of the interesting features can
be seen distinctly is challenging. As certain features come into a view,
others move out. Also, it can be quite difficult to manipulate a virtual
camera to view a particular feature. Knowing which of the many cam-
era parameters to change in order to get a desired view of the scene
can be quite an art. In this paper, we propose combining sub-views,
each of which allows particular features to be seen clearly, into a single
composite view. Data-sets can then be viewed through this composite
view instead of multiple single views. The idea of combining multiple
views into a single one is not new. This concept has been illustrated in
the works of artists such as M.C. Escher, David Hockney and Picasso.
These artists deliberately introduced distortions of perspective in their
work for several reasons such as a desire to create artistic effects or
as mood changes or for controlling the composition of a scene. The
perspective distortion introduced in these examples still relied on tra-
ditional linear perspective, but only locally. Singh[2002] referred to
such distorted perspective as a “non-linear perspective” view.

In this paper, we use this non-linear perspective idea to enable the
viewing of data-sets through a single composite view. This composite
view is built by continously combining a set of individual views (sub-
views). In each sub-view, certain user-specified regions are clearly
displayed. To simplify building these composite views, we present a
tool-kit of simple widgets, each of which encapsulates a set of com-
plicated camera transformations. Some of the views generated by our
framework are shown in Figure 4, Figure 19 and Figure 14. We be-
lieve that the compositions encompassed by our widgets are useful for
exploring a large variety of data sets. Thus, even though our widgets
have been applied to specific examples in this paper, we believe that
they are general enough to be applied to other situations.

2 APPROACH

Each of our non-linear perspective widgets represents a 3D volume
and a 2D area in screen-space. We refer to the 3D volume as the
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“source volume” and the screen-space area as the “destination area”.
The source volume specifies the region of the data-set which the user
is interested in viewing differently. The destination area controls
the “after-projection” aspects of the region such as placement on the
screen and projected size of the volume. For example, in Figure 3(a),
the maroon region encapsulates the source volume while in Figure 3(e)
the red box indicates the position and scale of the corresponding the
destination area.

The user first specifies a default view, which controls the overall
view (global perspective) of the data-set. Next, the user selects a
source volume using our 3D widget. The widget controls the posi-
tion, orientation and scale of the selected volume. In previous ap-
proaches [7] users were required to manually specify the destination
area. This caused problems because, as the user changes the default
view, they also had to change the corresponding destination area. To
simplify our interface, we introduce automatic methods for calculat-
ing the destination area for each widget. Thus in general, the user only
needs to specify a volume in order to generate a simple non-linear
projection (Figure 4).

The system automatically creates and assigns different cameras to
different parts of the data set, based on a given data point’s location
relative to the source volume. Exactly how these cameras are con-
structed from the default one depends on the particular widget being
used. The net effect is that data lying within the source volume is
viewed differently than data that lies outside. We refer to these new
cameras as “local cameras” (these correspond to the sub-views that
make up a composite view).

More specifically, each widget modifies a subset of the default cam-
era’s parameters to create each local camera. The remaining set of pa-
rameters are the same as the corresponding parameters in the default
camera. For example, a widget could change just the zoom parame-
ter of all of the local cameras, creating a fish-eye effect in the source
volume. In order to ensure a continous transition between the default
view and the local views, the cameras smoothly interpolate to the de-
fault one at the boundaries of the source volume. In order to combine
cameras, we build a fall-off function around the selected volume (Sec-
tion 9).

Finally, our framework makes no assumption regarding the repre-
sentation of the data. The only constraint we require is that the data be
sufficiently sampled. If, for example, meshes are used to represent the
data, then the triangulation should be sufficiently dense. The exact de-
scription of a source volume along with the blending techniques used
varies from one widget to another. The specifics of each widget will
be expanded upon in the following sections.

3 CONTRIBUTIONS

This paper presents a novel, real-time, view-based deformation tool-
kit for visualizing complex data-sets. Multiple widgets can be com-
bined to visualize different features within a single view. Our real-time
interface allows the user to continue to view these features even as the
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Fig. 1. This figure shows the front (left-side) and back (right-side) faces
of a helix. Trying to examine the front-faces of section A and section
B simultaneously in a single camera view is impossible. The unwrap
widget rotates the back faces of section B (shown in dashed lines) to
show its front faces while leaving the rest of the helix to be seen as is in
the front-view (see Figure 7).

global view of the data-set changes. All of the widgets presented here
are built on top a very general non-linear perspective rendering frame-
work which allows special kinds of projections such as panoramas to
be defined easily.

4 RELATED WORK

A large body of research has been devoted to interactive viewing of
volume data-sets. However, these methods actually deform the under-
lying geometry of the data-set in order to expose interesting structures
([5, 10, 17]). The problem with such methods is that the deformation
depends on the current view of the model. Changing the view of the
model results in an inconsistent deformation.

Rademacher et al. [19] and Martin et al. [16] presented approaches
for deforming geometry based on the observer’s position. Martin et
al. [16] used observer-dependent control functions to indirectly control
the transformations applied to the model. In contrast, Rademacher et
al. [19] blended a set of pre-defined object-deformations correspond-
ing to a set of view-points closest to the current view-point. Both these
methods provide a convenient way of deforming the model based on
the view. All of the deformations presented in this paper similar in that
they are view-based but are different in that they leave the underlying
geometry intact.

Fish-eye lenses have been found to be extremely useful for visu-
alization of information graphs and other applications. Magnifica-
tion lenses [24, 14] are one method of visualizing expanded views
of volume-data. Similar to these papers, we introduce a transforma-
tion of the view-space for exploring data in this manner. However, in
our work lenses are only a subset of the entire set of possible view-
transformations available in our framework.

In this paper, we present a set of widgets that make controlling of
several cameras easy. A perspective camera can also be controlled in-
directly by introducing image-based constraints into the scene ([4, 8]
). A general-purpose solver is used to solve for the change in the cam-
era parameters that would satisfy the given image-space constraints.
Our tool-kit is structured in a similar way in that given a set of 3D
points (source volume) and the corresponding 2D points (destination
area), we compute a set of cameras that project the 3D points to the
2D points. In contrast to previous approaches, for each widget we al-
low only a certain set of camera parameters to change and compute the
cameras analytically, without resorting to a solver. Also, the goals of
the two systems are different. Constraining methods are more general-
purpose and are well suited to camera placement or animation where
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Fig. 2. (a) This model consists of several bones which lie at different
depths and that overlap each other. A single slicing plane would not ex-
pose any single bone. The clipping widget can be attached to individual
(or several) bones to reveal the underlying details. (b) This model of
the human female pelvis has several features at different locations (for
example, the left and right acetabulum lying on opposite sides of the
pelvis) which cannot be seen in a single view. We apply our tool-kit on
this model for examining these different features.

the primary goal is to obtain a smooth camera motion that results in the
given change in screen-space. We believe that such a general approach
to data visualization is unnecessary and in some cases not useful. In
this paper, we describe a set of widgets, each of which produces a spe-
cific type of transformation useful for viewing data in a particular way.
The kind of transformation a widget can perform is clearly defined to
the user before-hand and modifying a widget is directly correlated to
the way in which the final view changes.

Multi-projection techniques ([2, 9]) allow each object to be ren-
dered from a different view-point. Neither of these approaches allows
for continuously varying projections over a single object. The idea of
creating a non-linear perspective projection from multiple linear per-
spectives was first introduced by Singh [21]. While Singh’s work did
not have methods to specify global scene coherence, Coleman et al. [6]
employed constraints to control the overall composition of the scene.
Both approaches required users to specify individual camera parame-
ters of different cameras in the scene which makes the overall interface
extremely cumbersome. Instead, each widget in our interface encap-
sulates a pre-defined type of perspective transformation (for example
the fish-eye widget creates a single fish-eye zoom over a user-selected
region). Also, the general-purpose interfaces of Singh and Coleman
et al. tends to be unnecessary for exploring scientific data-sets since
only a handful of camera transformations are usually performed (Sec-
tion 5.5).

A different approach to the manual camera specification used in the
above systems is the system introduced by Coleman et al. [7]. Their
system defines a simple set of primitives, such as points, lines, and
bounding boxes, that are used to express image-space constraints. A
simplex solver finds the camera that satisfies these constraints. Sev-
eral such primitives are combined to generate a set of cameras that
form a non-linear projection. Our framework follows a similar ap-
proach for generating a non-linear projection by combining several
linear perspective cameras. Also, both approaches use fall-off func-
tions in order to combine multiple cameras. However, our system dif-
fers from the system in [7] in terms of the final goal. Their system
was primarily intended for simulating the non-linear perspective ef-
fects seen in art. Thus, their interface was based on simple art-based
primitives. The primitives were very general and changing the prim-
itive even slightly could produce a significantly different projection.
Also, it was sometimes hard to know which primitives to use in order
to get a specific non-linear projection. This makes their system chal-
lenging to use for exploring data-sets. In our approach, each widget
produces a pre-defined, simple non-linear projection. In contrast, the
approach in [7] requires the composition of several primitives in order
to produce even a simple non-linear projection. Also, in addition to
the 3D primitive the user has to specify also specify a 2D component.
We simplify our interface by making certain assumptions about the
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Fig. 3. (a) The default view with the unwrap widget. The source volume is located on the right-side of the helix and is same as Figure 7. Note that
this volume is only slightly visible in the default view. (b)-(d) show the different intermediate stages of unwrap until the source volume is completely
seen in the default view. The red bounding box shows the destination area, which is automatically calculated by the system.

position of the 2D component. Manually specifying a 2D component
is important when the user is concerned with composition of the final
non-linear perspective scene. This is not as important when the user is
only concerned with exposing key features. Finally, the simplex solver
used in [7] occasionly gets stuck in local minima. While it is useful
to express constraints for a single camera through these primitives, the
non-linear rendering interface is not interactive. Our framework does
not make use of a solver and our GPU implementation of the render-
ing pass makes the interface real-time. Thus, the only common feature
between two methods is the global approach for generating non-linear
projections.

The work presented by Yagel et al. [13] is an alternative ap-
proach to deforming a model. Their approach consisted of deforma-
tion proxies or rendering agents which were inspired by traditional
object-deformation paradigms. These rendering agents were view-
independent. That is, irrespective of the view, the object appeared
to be deformed in the same way as it was initially defined. Thus, using
a rendering agent to deform part of an object does not guarantee that
that part will be seen in all views. It only guarantees that it appears to
be deformed (i.e the model itself remains intact) in a particular way.
Our goal is to present an alternative approach to viewing and explor-
ing an object which allows users to view the model as they like while
simultaneously guaranteeing that interesting features are always seen.

Work has been done in unfolding specific structures such as a hu-
man colon [3] and human blood vessels [12]. Among the various
differences between the unwrap widget and these approaches, one of
them is applicability. The unwrap widget can be used on any kind of
structure, and the interface (as well as the technique) is not restricted
by the topology of the object. Thus, unwrapping or flattening a tubular
structure is one of the transformations that can be done by our system
by adding a set of chained unwrap widgets along a user-defined path
or a path that is determined based on the specific structure at hand.
Furthermore, this can be done in real-time.

Work has been done in building multiperspective renderings using
ray tracing ([26, 27, 15]). Hou et al. [11] present a real-time multi-
perspective framework that involves discretizing a multi-perspective
surface followed by a two-step projection process on the GPU. Yu et
al. [27] presents a novel camera model that includes the pinhole cam-
era along with other classes of cameras. The authors then use this
formulation to build multiperspective renderings as seen in art ([26]).
The underlying framework used in our work is a subset of General
Linear Cameras since all the cameras used to build a non-linear per-
spective rendering are pin-hole cameras. However, the goals of Yu et
al. [26], [15] and [11] are different from ours. Our goal is not to gen-
erate a single non-linear perspective image, but instead to generate a
continous set of composite images each of which satisfy a set of con-
straints (in particular, certain specific features are always seen) while a
user explores the scene. Also, keeping in mind the domain we are in-
terested in, using only a particular class of cameras (pinhole cameras)

is natural since pinhole cameras are commonly used for exploring 3D
environments. Pinhole cameras also have the added advantage of be-
ing fast to compute.

Takahashi et al. [23] presents a system that renders different fea-
tures in a geographical map such that features can be seen within a
single global viewpoint. The goals of this system and ours are ex-
tremely close. However, unlike our view-based approach, their ap-
proach actually deforms the geometry based on constraints that ensure
that interesting features are seen within that view-point. Also, the con-
straints must be redefined every time the view-point changes. Our
approach allows users to change the view without having to change
the constraints.

Popescu et al. [18] present a camera model that looks around oc-
cluding objects to capture details of the occluded objects. This was
used in the context of image-based rendering where, given a reference
image, a depth image and color information, a scene can be rendered
from novel views. Their camera model augmented the existing depth
image with additional depth samples at places where depth discontinu-
ties occur when the view is changed. Since their domain was image-
based rendering, their non-pinhole camera model was used primarily
for storing samples of nearby occluded objects and held no informa-
tion regarding objects further away from the current view.

Work has been done in producing multi-perspective panoramas
given either a 3D model and a camera path [25] or a set of images [22].
A panorama is a special kind of non-linear projection. Thus we adapt
our framework to generate panoramas making the process completely
interactive. Extensive work has been done in creating panoramic views
from a set of input images without recovering the scene geometry
([28, 20, 1]). In contrast, our approach tackles a different problem
of generating panoramas when the 3D geometry is known.

5 THE NON-LINEAR PROJECTION TOOL-KIT

Our tool-kit is composed of three widgets, namely, the unwrap widget,
the clipping widget, the fish-eye widget, and the panorama widget. We
believe that these widgets are general enough to be used to build useful
non-linear projections.

5.1 Unwrap Widget
Exploring a data-set is commonly done through a series of camera ro-
tations and translations. However, in certain data-sets a small camera
rotation can result in a significant portion of the data going out of the
field-of-view. The unwrap widget applies a view transformation to
bring such data back into the current view. The data remains in the
field-of-view irrespective of how the current view is rotated. An ex-
ample of such data-sets are helices where two surfaces are interleaved.
In Figure 1, it would be impossible to see both section A and section
B of the helix in the same view since looking at either part would in-
volve a rotation of the camera that would result in the other moving
out of the view. The unwrap widget allows user-selected regions to
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Fig. 4. Figure shows a sequence of unwrappings obtained by rotating the default camera around the helix. The source volume is same as Figure 3
and is always seen. In Figures (a)-(c) the camera approaches the source volume as a result of which the length of the unwrap region reduces
and the size of the destination area increases. In Figures (d),(e) the camera has gone past the source volume. Note in all these examples, the
destination area is automatically calculated as the default camera changes.

be rotated into the current field-of-view while ensuring that remaining
parts of the model are seen as before.

5.2 Clipping Widget
The goal of the clipping widget is to expose structures that are oc-
cluded in a particular view. Usually, parts of the model that are farther
from the current view-point are occluded by those that are closer (Fig-
ure 2(a)). The clipping widget allows regions of the model located
at different depths along a particular view-direction to be exposed.
Changing the global view results in exposing structures lying at those
depths but along a different view-direction.

5.3 Fish-eye Widget
The fish-eye widget simulates a fish-eye lens. When a scene is viewed
through a fish-eye lens, regions within or close to the center of fish-
eye lens appear more magnified than regions that lie outside the lens
region (Figure 12).

5.4 Panoramas
Panoramas are a concatenation of several views to create a composite
view. We adapt our framework to combining different views of a 3D
model to generate a single panorama (Figure 17).

5.5 Design Rationale
Our widgets are inspired by commonly-performed camera operations
and object-space transformations. Frequently used camera operations
include camera panning, camera-dollying, camera rotation and camera
zoom. Camera rotation is encapsulated within the unwrap widget and
dollying is encaspulated within the fish-eye widget. The clipping wid-
get is derived from the common object-space transformation of using
slicing planes to view the internal structure of a model. Each of the
widgets affect different camera parameters independently, thus com-
bining the widgets is quite natural. Combining these widgets aggre-
gates the functionality of these operations and simultaneously applies
these deformations to the model.

6 THE UNWRAP WIDGET

6.1 Overview
As described in the previous section, the unwrap widget is used to
rotate selected regions which may not be seen into the current field-
of-view of the camera. Only the vertices located within the region are
affected, the rest of the model is seen as before.

6.2 User’s View
The user specifies a source volume which corresponds to the part of
the model that they are interested in viewing from a different direc-
tion. The source volume is selected using a 3D widget which contains
handles for controlling the 3D position and 3D scale of the selected
volume. We use the surface normal at the center of widget to fix the
orientation of the widget (Figure 7). If we directly use the local cam-
era, the region will be projected to the center of the screen and would

therefore be occluded by the rest of the model which is rendered using
the default view. Thus we need to determine a good screen-space posi-
tion for projecting the volume. The position of this area corresponds to
the position on the screen where the volume will be projected while the
scale corresponds to the final projected size of the volume. We could
have the user specify the 2D position and scale of the destination area,
but for most data-sets we can automatically determine a good area.

(a)

Surface 
Normal

(b)

Fig. 7. (a) The helix with the unwrap widget. The unwrap widget controls
the position, orientation and scale of the source volume. (b) The local
camera encapsulated by the unwrap widget. The camera looks at the
center of the widget along the normal at that point (which is denoted by
the brown axis in this case).

Automatic calculation of the destination area: To simplify our in-
terface, we make a few assumptions about the destination area. First,
we project a given source volume using the corresponding local cam-
era to compute the 2D bounding box, pv. We also compute the 2D
bounding box of the entire model by projecting its 3D bounding box
using the default view, pm. Ideally, we would like pv to lie completely
outside of pm i.e no part of the model seen in the default view occludes
the source volume seen in the local camera. Also, we would like pv
to be entirely visible on the screen i.e no part of pv lies outside the
screen. Thus, we alternately pan and zoom the default camera until pv
is completely seen (unoccluded) on the screen.

Representing a source volume: Internally, the source volume is rep-
resented by an implicit function which represents the position, orien-
tation and scale of the volume. Additionally, a fall-off function is as-
sociated with the source volume. The fall-off function is used to blend
between the points projected using the local camera and the default
view. Section 9 explains the method used for blending views in more
detail.
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Fig. 5. The unwrap widget is added to surround the right acetabular cavity. In the default view, only part of the cavity can be seen. The intermediate
steps between the default view to the final view is show. In the final view, the whole cavity can be seen.
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Fig. 6. The unwrap widget is added to the right acetabular cavity as before. The camera is then rotated around the pelvis. In each frame, the right
cavity is visible until both the cavities are seen side-by-side. The red box indicates the destination area of the right cavity.

6.3 Methodology

Each vertex 1 in the model is assigned a camera. The parameters of
the camera are computed based on the location of the vertex. Ver-
tices lying within the source volume are assigned a rotated camera
Crot looking at the center of the widget whose view-direction is given
by the surface normal at that point. In other words, for the unwrap
widget the local camera is a camera that looks at the surface volume
from the intended direction. The screen-space position of the rotated
region is calculated as explained in the previous section.

COP
′
= (−cx,−cy) (1)

COP
′

is the center-of-projection of local camera and (−cx,−cy) is the
calculated center of the destination area. Finally, all vertices lying
outside of the source volume are assigned the default camera. Thus,
the rest of the model is guaranteed to be projected as before while only
the source volume is assigned a different local perspective.

6.4 Examples

Unwrapping a helix: A real-world example where helical structures
are manipulated is in the case of protein data which is commonly found
to lie on helical structures. Figure 3 shows the final unwrapping start-
ing from the initial default view of the helix (number of faces = 27,689,
number of vertices = 13,248) The intermediate stages of unwrap are
used to give a sense of how the geometry appears to be deformed from
the default view to the final unwrapped view.

One of the key advantages of applying a view-based transformation
to the model is that the unwrapping is invariant to changes in the global
view. This is illustrated in Figure 4 where the camera is rotated around
the helix. As the default camera changes the source volume is always
seen and the corresponding destination area is recalculated based on
the projected size of the source volume and the available screen-space.
Exploring a human pelvis: Figure 8 shows different views of the
pelvis (Number of faces = 1,289,814, number of vertices = 49,989). In
this example, our goal is to compare the left and right acetabular cav-
ities which lie on opposite sides of the pelvis. The acetabular cavities

1For volume rendering we use the data grid vertices and the gradient.
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Fig. 8. We apply the unwrap widget for comparing between the left and
right acetabular cavities that lie on opposite sides of the human pelvis.

play an important role in surgeries relating to hip and joint replace-
ments. Finding a single view where both these cavities can be seen
simultaneously is challenging. We start by adding an unwrap widget
to the right cavity adjusting its scale to match the scale of the cavity.
Thus, a local camera looking at the cavity is created. The default view,
along with intermediate unwrappings obtained, are shown in Figure 5.

By simply rotating the default camera, both cavities are presented
side-by-side for comparison. In each intermediate step of rotation, the
right cavity is always seen. The entire sequence is illustrated in Fig-
ure 6. The destination area shown in red is automatically calculated.

7 CLIPPING WIDGET

The clipping widget is used to view occluded structures in a model.

7.1 User’s View
As before the user specifies a default view-point which determines the
overall projection of the model. In addition, the user specifies one or
more sections of the model that need to be exposed. These sections
can be thought of as a set of slices taken along a particular viewing
direction. Each section corresponds to a single source volume and is
represented by a bounding box (Figure 10(b)).
Automatic calculation of destination area: The selected sections
are projected to lie outside the projected bounding box of the model in
the default view. The sections are projected either to the left or right
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Fig. 9. This mug has a knot on the inside as well as a knot in the handle. As the default camera rotates different views of internal knot are seen
and can be compared with the external knot. The destination position is recalculated for each frame.

of the default view depending on the side that has the most space. The
default camera is panned and zoomed out if necessary to accomodate
the sections as before. Each section is placed vertically one above the
other. Finally, the camera corresponding to each section is zoomed
out if necessary to fit the slices (Figure 19).

7.2 Methodology
Vertices that lie within a source volume are assigned a local cam-
era that is the same as the default view but differs in its center-of-
projection and zoom angle. The center-of-projection corresponds to
the center of the region where the volume is to be projected. Project-
ing a source volume with this camera results in it being seen on an
unobstructed portion of the screen. Vertices that lie outside a given
source volume are assigned the default camera as before.

One important difference between the clipping widget and the re-
maining widgets presented here is that in the case of the clipping wid-
get no blending is performed. This is because a given vertex should
be associated with only one camera : the default camera or the local
camera. Thus, only a cut-out of the relevant section is rendered.

7.3 Examples

Occluded knot Clipping widget

(a) (b) (c)

Fig. 10. (a) The mug encloses an internal knot that is completely oc-
cluded. The front-view of the mug acts as our default view. (b) We
attach the clipping widget to the knot. (c) Both the front-view and the
knot are seen simultaneously.

Knotted Mug: The first example illustrates the use of the clipping
on the knotted mug (Number of faces = 10,768 , Number of vertices
= 5382). Within this mug, lies an internal knot that is completely
occluded in all views. Our goal is to compare the outer and internal
knot. If a clipping plane was passed through this mug, the internal knot
would be revealed at the expense of the outer knot. When the clipping
widget is attached to the inner knot, both the outer and inner knot
can be seen side-by-side (Figure 10). The destination position for the
clipped volume is automatically computed as described in Section 7.1.
As explained in Section 6.2 alternating between panning and zooming
out the camera is important to ensure that the source volume is both
unoccluded and entirely visible in the final view. We illustrate one
such scenario in Figure 11. Initially, the destination position is found
to lie outside the screen and thus the clipped volume is only partially
visible. Using our method of alternately panning and zooming out the
camera both the clipped volume and the model can be seen completely.

Even though, the model appears smaller, the clipped volume appears
at the original scale since the zoom parameter of the local camera is
unaffected.

Clipped area 
partly visible Overly large New destination 

position
Zoomed-out 
and panned 

(a) (b)

Fig. 11. (a) Initially, the destination position is found to lie outside the
screen. Note that the model occupies most of the screen-space in the
default view. (b) We alternate between panning and zooming the de-
fault camera until the source volume is entirely visible. Even though
the model itself appears zoomed out the source volume is seen at the
original scale.

When the user rotates the default camera, they can simultaneously
view and compare the outer and inner knot from different angles (Fig-
ure 9). Thus, using the clipping widget any feature lying within a
model can be compared with exterior features.

8 FISH-EYE WIDGET

8.1 Overview
Fish-eye lenses are a well-known data exploration tool. In this sec-
tion, we show that our framework is general enough to produce such
visualizations.

8.2 User’s view
A fish-eye widget is represented by two concentric spheres; the inter-
nal sphere corresponds to the region where the magnification is max-
imum. The region between the inner and outer sphere corresponds
to the region over which the magnification gradually reduces. Mov-
ing the widget around the model changes the region over which the
fish-eye is applied. Each fish-eye is also associated with a magnifica-
tion factor, m. Finally, all vertices that lie outside the outer sphere are
projected using the default view.

8.3 Methodology
Similar to the methods outlined in the previous section each vertex
on the model is assigned a camera. Vertices that lie within the in-
ner sphere of the fish-eye are assigned a local camera that is panned-in
and whose center-of-projection is adjusted appropriately (Equation 2a-
2c). Essentially, these equations build a camera that has been trans-
lated down the view-direction of the default view by reducing the fo-
cus distance of the camera. In addition, the center-of-projection of the
camera is adjusted so that the 3D point corresponding to the center of



Fish-eye widget

(a)  Default View (b) m = 1.14 (c) m = 1.44 (d) Final View – m = 1.7

Intermediate stages of magnification

Fig. 12. (a) The fish-eye widget is represented as a sphere. Note the increasing size of the joint in successive frames of the magnification.

the fish-eye remains at the center even in the new camera. Vertices
that lie in the region between the inner and outer regions are assigned
a camera that is a weighted combination of the fish-eye camera and
the default camera. Section 9 explains the method used for blending
views in more detail.

panAmount = fd × (1.0−1.0/m) (2a)

Eye
′
= Eye+ ~Look× panAmount (2b)

COP
′
= COP+(p− c) (2c)

panAmount : Amount the camera is panned in
fd : Focus distance of default camera
Eye

′
: Eye point of fish-eye

m : Magnification factor
COP

′
: Center-of-projection of fish-eye

Eye, Look, COP : Camera parameters of the default camera
c : Center of fish-eye widget
p : Projection of 3D point P corresponding to c

8.4 Examples
We illustrate the use of the fish-eye widget on the human pelvis. We
place the fish-eye widget on the sacroiliac joint to magnify it. The
intermediate steps of the magnification are shown (Figure 12).

9 BLENDING VIEWS

As described in Section 2, each widget is associated with a fall-off
function. We use fall-off functions to blend between the local camera
and the default camera, in order to ensure that a continous non-linear
perspective projection is generated. The fall-off function is:

w(Q) =


1 ||Q−C||< rin

g( ‖Q−C‖−rin
rout−rin

) rin ≤ ‖Q−C‖ ≤ rout
0 ‖Q−C‖> rout

(3)

Q : 3D vertex position
w : Weight of Q
C : Center of the source volume
g(x) = (x2 −1)2, x ∈ [0,1]
rin : Inside radius of the source volume
rout : Outer radius of the source volume

Equation 3 defines a fall-off function based on 2 parameters, namely
rin and rout . rin is calculated based on the scale of the source vol-
ume. rout controls size of the transition region over which blending
will takes place and is user-controlled. Increasing rout increases the
size of the fall-off function, which in turn improves quality of transi-
tion between the different views of data-set.

9.1 Blending projections of points
Each vertex is associated with a weight which is calculated based on
Equation 3. Then, the final projection of the vertex is computed ac-
cording Equation 4. Each vertex is simply a weighted combination
of the projections using the local camera and the default camera. The
weights of the different cameras are normalized in case their sum ex-
ceeds 1.

q = (1−
n

∑
k=1

wk)D(Q)+
n

∑
k=1

wkCk(Q) (4)

n : Total number of local cameras
Q : 3D vertex position
D : Default camera view
Ck : kth local camera
wk : Degree of influence of kth local camera on vertex Q

Another possible method of blending is to blend the individual cam-
era parameters of the two cameras and project the vertex using the final
blended camera. While this method produces the “correct” result, it is
time-consuming. We found that Equation 4 is a good enough approxi-
mation which works well in practice.

10 MULTIPLE WIDGETS

One of the primary goals of our work is to create a tool-kit which is
flexible enough to encapsulate a large number of useful non-linear pro-
jections. We accomplish this by creating compositions of the different
widgets. There are three types of relationship that can exist between
multiple widgets placed in a data-set. The type of relationship that
exists becomes important when we are computing the destination area
for each widget since the approach followed depends on the relation-
ship.

10.1 Independent widgets
In this case, multiple widgets are place in a scene and are treated inde-
pendently of each other. Each widget has its own region of influence
which may or may not overlap with another. We compute the destina-
tion area independently for each widget as per the approach outlined
in the previous sections.

10.2 Parent-child widgets
In this case, widgets are usually embedded within one another. More
specifically, both the inner and outer radii which define the region of
influence for the child widget must be less than the inside radius of
the parent widget. For example, a fish-eye widget could be embed-
ded within an unwrap widget for magnifying part of an unwrapped
region. In this example, the parent widget is the unwrap widget while
the child widget is the fish-eye widget. When the user selects such
a relationship, the system automatically assigns the default camera of
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(a) (b) (c) (d)

Fig. 13. (a),(b) - In addition to the unwrap widget, we add a fish-eye widget to the left cavity to aid the comparison of the two cavities of the pelvis.
(c),(d) - We add two fish-eye widgets to each joint in the pelvis.

the child widget to the local camera encapsulated by the parent widget.
Thus, the fish-eye widget’s default camera is the rotated camera of the
unwrap widget. The calculation of the destination area for the child
widget is then done with respect this new camera.

10.3 Chained widgets

In this case, multiple widgets (usually of the same type) are strung to-
gether. Chaining widgets is useful in order to specify a complicated
piece of geometry or to prevent a fold-over of geometry. When multi-
ple widgets are chained together, then the calculation of the destination
area follows the standard approach only for the first widget in the se-
quence. The center-of-projection (or zoom) is then propagated down
the chain. Thus, the after-projection parameters of successive widgets
are computed with respect to earlier widgets in the chain. This is done
so that widgets appear sequentially on the screen.
Foldover of geometry: Foldover or self-intersection of geometry oc-
curs when the difference between the default camera and the local
camera is large. In such a case, different faces in the transition re-
gion overlap one another resulting in self-intersections in the transi-
tion region. No amount of blending can prevent this if the two views
are really disparate. The solution is for the user to place additional
smaller widgets that individually result in fold-over free transforma-
tions. These smaller widgets exhibit a chain dependence on each other.

10.4 Examples

Bones data-set: The bones data-set (Number of faces = 158,080,
number of vertices = 316,100) is an especially challenging data-set
to view since there are several overlapping bones. Finding a single
view that reveals multiple bones is hard. We would like to use our
tool-kit for solving the following challenging visualization problem :
isolating and viewing the contact points between two bones. We apply
the clipping widget for isolating the two bones. We then introduce a
fish-eye widget as a child widget to visualize the actual contact point.
We can expose multiple bones by adding multiple independent clip-
ping widgets. These exposed bones can be simultaneously compared
with the remaining bones as seen in the default view (Figure 19).
Unwrapping a helix: Chained widgets are useful for selecting vol-
umes that are large and vary in shape. We illustrate the use of chained
widgets on the helix. Each widget is an instance of the unwrap wid-
get, which when chained together unwrap a single coil of the helix
(Figure 20).
Human Pelvis: We illustrate the application of independent widgets
on the human pelvis. In addition to the unwrap widget we added in
Figure 6, we add a fish-eye widget to the left acetabular cavity to aid
comparison of the two cavities (Figure 13(a),(b)).

We demonstrate another instance of multiple independent widgets
on the same data-set in Figure 13(c),(d). In this case, we add multiple
independent fish-eye widgets to compare the two joints lying on either
side of the sacral promontory.

11 PANORAMIC VIEWS

In this section, we illustrate the flexibility of our framework by apply-
ing it to the problem of generating panoramic views. Similar to the
widgets presented in this paper, panoramic views are used to view a
single data-set through multiple sub-views. Panoramas form a subset
of non-linear projections since they can be formulated through a con-
catenation of several views. Thus, we can easily generate panoramic
views using the existing framework.

11.1 Approach
The user provides either a set of keyframes or a camera path to the
system (Figure 14(a)). Given a set of keyframes, our goal is to com-
bine these views to create a single panoramic image. When creating
panoramic views, the user does not explicity specify a source volume
for each camera. The system automatically calculates a source vol-
ume for each of the input keyframes (Section 11.2). Adjacent source
volumes are then blended together to ensure a continous panoramic
view (Section 11.3). Finally, the system automatically calculates ini-
tial screen-space positions for different parts of the panoramic view
(Section 11.4). The screen-space positions can be later modified by
the user.

11.2 Computing a source volume
Each camera is usually centered on a specific region of the model. We
refer to this region as the region of interest (ROI) for a camera. Even
though this is same as the source volume for a camera as defined in
the previous sections, we will refer to this region as a camera’s ROI in
this section. We need to determine the center of a camera’s ROI and
the vertices that lie within it. To determine the center, a ray is cast
from the camera’s eye along the its view direction. The first point of
intersection corresponds to the center of its ROI (Figure 14(a)). Ap-
plying this approach to all the input cameras yields a set of centers on
the model (Figure 14(b)). For every vertex on the model the system
find the closest center. This results in a set of clusters corresponding
to the different ROIs on the model. Finally, each vertex is projected
with the camera corresponding to the closest center, iclosestcam to give
the panoramic view as seen in Figure 14(c).
Using the above method, it is possible for vertices that are seen in one
view to be assigned to another view where they are occluded (Fig-
ure 15). This occurs since our metric for clustering vertices does not
take into account the visibility of a vertex but only takes into con-
sideration its proximity to the center of a ROI. One possible method
to account for the visibility of a vertex is to compute the dot product
between the normal at that vertex and the look direction of a given
camera. A vertex is assiged to the camera that yields the minimum dot
product. However, we found that solely relying on the dot product to
cluster vertices produced several isolated clusters since such methods
are extremely sensitive to small changes in the geometry of the model.
To offset this problem, we incorporate an occlusion procedure. When
occlusion checking is turned on, in addition to finding iclosestcam, the
system also finds the camera that is looking most directly at a given



Center of camera’s region of interest

(c) Final Panorama

(b) Camera Clusters(a) Input Keyframes

Fig. 14. (a) Illustrates a few of keyframes (total number of keyframes = 9) obtained used to generate a panorama of the face model. The center of
each camera’s ROI is found using the method outlined in Section 11.2. (b) Each vertex is associated with the center closest to it. This results in a
set of clusters as shown in (b). Each color corresponds to the region of interest of a particular camera. (c) The final panorama. Notice that both
sides of the face can be seen completely along with the features lying in between.

vertex, ibestdotcam. This is done by finding the dot product between a
given camera’s view direction and the vertex normal and picking the
camera which yields the smallest dot product. Then, ibestdotcam is used
only if the vertex when projected with iclosestcam lies at a depth greater
than a threshold, depthiclosestcam.
Determining the depth threshold: The depth threshold is the maxi-
mum depth upto which the ith camera can see. It depends on a given
camera’s position and look direction. To find depthi, we project the
center of the model using camerai. The z component of the projected
center is then assigned to be depthi. After determining the depth
thresholds for all cameras, we can apply the occlusion check proce-
dure to each vertex as explained previously.

11.3 Blending

Since a panorama is a special kind of a non-linear projection, the
blending methodology used to combine different source volumes as
specified in the previous sections can be specialized to be applied in the
case of panoramas. As explained before, a panorama is made of mul-
tiple camera views. Thus any given view must be combined with the
adjacent views to yield a single continous composite view. This is the
underlying assumption of the technique used to create the panorama.
Given a vertex V lying within the ROI of camerai (Ri), the system
first identifies the two closest ROIs Ri−1 and Ri+1. V is projected with
camerai−1 and blended if it lies between the center of Ri−1 and the
center of Ri. Such a vertex would yield a positive value for the expres-
sion given in Equation 5a. This procedure is also used for finding those
vertices that are to be blended with Ri+1. Equation 5b is then used to
find a blend weight for each vertex. Equation 5b is same as the falloff
function used for blending between source volumes in the previous
sections (Equation 3). However, we can make assumptions about in-
side and outside radius of the fall-off function. The outside radius can
be at most the distance between the centers of the ROIs that are being
blended while the inside radius can be adjusted by the user. Experi-
mentally, we have found that assigning the outside radius to be half of

the distance between the centers and the inside radius to be half of the
outside radius works well. Finally, the blend weight is used to com-
bine the projections of V to give the projected vertex, v (Equation 5c).
Note that at the boundary, the first and last cameras are combined with
only the second and second to last cameras respectively.

LV = dot(V −Oi,Oi−1 −Oi) (5a)

w(V ) =


1 LV < rin
g( LV−rin

rout−rin
) rin ≤ LV ≤ rout

0 LV > rout

(5b)

v = wCi(V )+(1.0−w)Ci−1(V ) (5c)

V : Vertex lying within Ri
Oi, Oi−1 : Centers of Ri and Ri−1
LV : Length of projected V on the vector

between Oi and Oi−1
g(x) = (x2 −1)2, x ∈ [0,1]
rout : 0.5×Distance between Oi and Oi−1
rin : 0.5× rout
Ci,Ci−1 : ith and (i−1)st cameras

11.4 Calculation of the destination area
The initial destination position of each source volume can be com-
puted by first calculating the average of all the keyframes. We refer
to the camera corresponding to the averaged keyframe as the aver-
age camera. The average camera has each of its camera parameters
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Fig. 15. (a) Two keyframes are given as input into the system (the center
of each keyframes’s ROI is also shown). Note that while the left wing
of the gargoyle is clearly seen in key f rame1 the right wing is completely
occluded. The right wing is clearly seen in key f rame2. (b) The right
wing is closer to the center of camera1’s ROI than camera2’s ROI. Thus
it is assigned to camera1. (c) The resultant panorama. Although the
right wing is seen in key f rame2 the false assignment to camera1 results
in it being occluded in the final panorama. (d),(e) After applying the
occlusion check, the right wing is assigned to camera2 and seen in the
final panorama.

equal to the average of the corresponding camera parameters of the
input keyframes. The centers of the different ROIs are then projected
with the average camera to yield the initial destination positions for
the source volumes. Changing these positions changes the span of the
panorama (Figure 16).

11.5 Examples
Cow model: The first example applies our method on the Cow model
(number of vertices = 11606, number of faces = 23208) which uses
three keyframes to yield the final panorama (Figure 16).
Gargoyle model: We applied our method to the a low resolution ver-
sion of the gargoyle model (number of vertices = 129722, number of
faces = 259440) using 11 keyframes to create the final panorama (Fig-
ure 17). The destination positions for this panorama are same as the
initial positions calculated according to the method outlined in Sec-
tion 11.4.
Face model: In general, our framework can combine significantly dif-
ferent views smoothly as long as the blending function is smooth and
the underlying geometry is well-sampled. The face model (number
of vertices = 7256, number of faces = 14271) illustrates this by us-
ing two significantly different keyframes to create a single panorama
(Figure 18).

12 IMPLEMENTATION

All of the widgets presented in this paper share the same underlying
idea. Every point in the data-set is projected with a unique camera. To
ensure that the original lighting effects are retained even in the final
rendering, lighting calculations have to be done on a per-vertex basis
with respect to the original camera.

Implementing such a framework on the CPU results in slowing
down both the rendering as well as the interaction phase. For example,
we ran our framework on a laptop which had a 1.73Ghz Pentium M
processor with a 1GB RAM on the human pelvis model (number of
vertices = 1289814, number of faces = 49989). We introduced a sin-
gle unwrap widget to this model at which point the system computed
and stored the new projection of the vertices. This projection step took

(a)

(b)

Fig. 18. (a) Input keyframes along with the center of each keyframes’s
ROI. (b) The camera clusters and the final panorama.

115.95372054 seconds while the rendering time was 13.42311523 sec-
onds. These times made interactive manipulation impossible.

Thus, we implemented the framework on the GPU (a GeForce Go
6400 graphics card). A single vertex program performs the main task
of blending and projecting the vertices. Uniform inputs to the vertex
program are the falloff functions, the local cameras and the default
camera matrices. The vertex program projects a given vertex with
either a local camera, a default camera, or blends between the two de-
pending on whether the vertex lies within any of the fall-off functions.
In addition to the screen-space position, the output of the vertex pro-
gram includes the surface normal and world-space position of the ver-
tex transformed by the default camera. The entire data-set was stored
in a display list in order to speed up the rendering phase. The GPU-
accelerated program takes 0.775422016 seconds to render a non-linear
projection of the human pelvis model with a single local camera. Fi-
nally, the rendering time is dependent on the number of widgets but
independent of the type of widgets introduced in the scene.

13 LIMITATIONS

As the number of widgets added into the scene increase, it becomes
more difficult to specify how they interact. With a large number of
widgets, it also becomes hard to perceive the underlying structure of
the data-set and the usefulness of the final non-linear projection is re-
duced. Thus we have found that up to four widgets on a large model
(such as the human pelvis) works well.

14 CONCLUSION

We have presented a flexible, general-purpose tool-kit for building
non-linear projections of data-sets. Multiple widgets can be combined
easily in real-time to allow viewing of several features within a single
view. We illustrate the flexibility of our framework by adapting it to
create panoramic views.
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Fig. 16. (a) Shows the keyframes along with the centers of the corresponding ROIs used to generate the final panorama. (b) The camera clusters
created as seen in the average camera. (c) The initial destination positions calculated automatically using the method outlined in Section 11.4 along
with the corresponding panorama. (d) The modified destination positions and the corresponding panorama. Note that the span of the panorama
has increased compared to (c).

(a) Input Keyframes

(c) Camera Clusters shown in the panorama(b) Final Panorama

Fig. 17. (a) Shows few of the keyframes used to generate the final panorama (total number of keyframes = 11). (b) The final panorama. (c) Clusters
corresponding to the keyframes.
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Fig. 19. Our goal is to expose the contact points between the bones within the red oval and also expose the bone lying within the yellow oval as
seen in (a). Note that both these features are completely occluded in the default view. We add two clipping widgets, each for the relevant bones as
seen in (b). Thus we see all three bones completely in the final view in (c). To magnify the contact point between the two bones we add a fish-eye
widget as a child widget to the clipping widget seen in (d). In the final view, (e), the contact point appears magnified.

Chained Widgets

(a)

(b) (c)

(d) (e)

Unwraps corresponding to each widget of the chain

(e) Final View

Fig. 20. Our goal is to unwrap a large portion of one of the coils of the helix. We add several instances of a chained unwrap widget along the back
of the helix as shown in (a). Each unwrap widget produces a unique unwrapping shown in figures (b)-(e). These unwrap are combined together
to produce the final view as shown in (e). In addition to the local cameras being blended together, the destination positions of consecutive widgets
are shifted as described in Section 10.3.


