
Tech report WECS-2002-10: View-dependent Texture Maps�

Cindy M. Grimm William D. Smart John F. Hughes

ABSTRACT

We present a technique for adding view-dependent in-
formation to geometry, allowing us to write down, for each
point on the surface, what the surface looks like from ev-
ery direction. This data structure allows the incorporation
of “image-based” objects into ordinary rendering, allows
broader viewing conditions for image-based objects (one
can look at a torus from “inside the hole,” for example),
and provides opportunities for compression of image-based
objects and for separate interpolation of intensity and color
data for image-based objects.

We based our work on a surface representation that sup-
ports models of arbitrary topology, and discuss various
methods for capturing, representing, and compressing the
view-dependent information.

CR Categories: I.3.5 [Computer Graphics]: Computa-
tional Geometry and Object Modeling, Curve, Surface,
Solid, and Object Representations, Splines, Image-based
Rendering.

1 Introduction

This paper describes work designed to bridge the gap
between image-based rendering and the traditional rendered
geometry approach. It may be viewed in two ways. The first
is as adding geometry to an image-based rendering. In this
view, knowledge of the geometry helps us to make choices
about which samples to use when ”rendering” new images.
The second is that is adds view-dependence to traditional
geometric objects, i.e., creates objects that have interesting
surface behavior.

In conventional rendering, the light arriving at an ob-
ject is reflected from it; the reflectance process is modeled
by some relatively simple model like the Phong lighting
model. The dependence of the reflected light on the view
direction is relatively simple. This fails to capture various
important phenomena, but improved models, in which the
BRDF is recorded at each point and used to transform in-
coming light to outgoing light, have been developed. The

�This work was supported by a grant from the NSF.

success of such models depends not only on the accuracy of
the surface model, but on the accuracy of the model of the
incoming light. The light arriving at a point of the surface
is usually modeled by some approximation to the true inci-
dent light, consisting perhaps of direct light, or direct light
plus some important indirect lighting. In some stochastic
rendering schemes, samples are taken from the entire inci-
dent light field, an approximation that’s (for some sampling
strategies) guaranteed to converge to a good approximation
of the incoming light as the number of samples increases.

In image-based rendering1, the effects of the surface on
the incoming light are recorded by viewing the image from
multiple directions. In this case, all of the incident light is
considered, but only a few samples of the outgoing light-
field are recorded; it’s essentially dual to the conventional
rendering model, in which the outgoing field can be ap-
proximated for any view, but the incoming field and the
way it’s transformed have been approximated by some rel-
atively simple sampling model. To construct the outgoing
field in directions not previously observed, one interpolates
between “nearby” observations.

Slightly more formally, one may consider each point of
an object � as something that transforms an incoming dis-
tribution of light (described as a function on � �, the sphere
of directions from which light may arrive) into an outgoing
distribution of light, again parameterized as a function on
��. Thus the entire behavior of an object can be character-
ized by a function

� � � ����

� ���

�

where � denotes the space in which “amount of light” is
measured (for intensity computations, one may just use �),
and ���

denotes the set of all functions from � � to �. If
� is a point of � , then � ��� �� � ���

� ���

is a ver-
sion of the BRDF: when applied to a delta-function along
a single incoming direction, the resulting function is the
reflected light distribution. Image-based rendering takes a
fixed lighting condition � and indirectly records the value
of � ��� �� on a finite number of sample directions using the
constancy of radiance along rays: by observing the radi-

1For the moment, consider the special case of image-based rendering
where the images are gathered from real-world data using a digital camera.

1

p
q

Figure 1. The Lightfield and Lumigraph rep-
resent the outgoing lightfield (i.e., the trans-
formed incoming lightfield) by sampling the
radiance along rays passing through two par-
allel planes.

ance along some ray that intersects the object, one has indi-
rectly collected data about the function � ��� ��. Thus the
Lightfield [LH96] and Lumigraph [GGSC96] representa-
tions both generate functions on (subsets of)����� (called
light-slabs) where the value at a point ��� 	� is the radiance
along a ray passing through the points � and 	 of two par-
allel planes in �� (see Figure 1). Conventional rendering
takes an explicitly known value of � ��� �� (or an approxi-
mation of �) and applies it to an approximation of the in-
coming field.

In this paper, we study a different representation of the
function � ��� �� – one in which the geometry of the object
is more explicitly taken into account. This has two advan-
tages. The first is that the light-slab representation fails to
capture certain occlusion properties (see Figure 2), but our
representation can handle these better, making it possible to
render such image-based objects within a conventional ren-
derer. The second advantage is that for fixed � , the function
� ��� �� may vary slowly as a function of the surface point
� (or may be written as a combination of a slowly-varying
term and a rapidly varying one). If all the data for a point
� and its neighbors are nearby one another in the represen-
tation, there’s an opportunity for enormous compression of
the data. More simply: the pattern of light emitted from a
point � on the surface is likely to be very similar to that
emitted from a nearby point � �. If the surface is textured
with a rapidly-changing texture, then at least the patterns
are likely to be similar, although a darkly-colored spot will
emit proportionally less light than an brightly-colored one.
Conventional rendering takes this to a limit, and treats the
BRDF and texture map as independent functions on the sur-
face, multiplying them to get the true reflectance.

Keeping in mind this model of what we’re trying to rep-
resent - the light leaving an object, written as a function on
the set of rays in empty space - we can now describe our
representation. We take the object of interest and construct
a smooth surface � that closely approximates it. In the case

PQ

v u

PQ

Q’

P’

uv

Figure 2. (a) To compute a view of the object
from the camera position shown, one deter-
mines the appearance of � by extending a
ray through the two planes defining the light-
slab; unfortunately, the data recorded there is
the appearance of the point
 along that ray.
The problem is that the lightfield should be a
function on the set of rays in empty space,
but a light-slab approximates it by a function
on the set of rays in space; there should be
different values on the rays labeled � and �,
but in a light-slab, there’s only one. (b) In
a surface-based representation, there’s room
for different values at � and � (the value for �
is stored in the sphere of directions at � �; the
value for � is stored in the sphere of directions
at
�.)

2

of synthetic objects, the approximating surface may be ex-
act; in the case of objects captured by digital photography,
it’s more approximate. We represent this surface as a man-
ifold [GH95], i.e., as a collection of overlapping patches,
each of which is homeomorphic to a planar disk. We con-
sider the set of outward-pointing rays from each point of
this object; for each point, this set can be parameterized by
a hemisphere. We’ll represent the emitted light as a function
on the collection of all of these outgoing rays2 by recording
samples - the values of the function on certain outgoing rays
- and then interpolate to determine values elsewhere. The
details of the surface representation and the interpolation
schemes form the bulk of the remainder of the paper.

A first application of this representation is as a cap-
ture mechanism for both real and synthetic objects, where
we capture both the geometry and emitted-light behavior
of the object. We can then place this object into a new
scene, replacing the traditional lighting calculations with
the emitted-light that we’ve recorded. Because the captured
object has at least a crude approximation of the real geome-
try (it need not be exact) we get around problems of occlu-
sion that would plague a light-slab representation3.

A second, related use is to capture surface emitted-light
characteristics so they may be applied to a new surface. We
do not explore this application, but we do discuss methods
for compressing captured data and filling in missing sample
points.

The third use is as a view-dependent texture map. Us-
ing inverse painting techniques the user can paint what the
surface looks like from one or more directions. Because the
user is painting on the actual geometry, self-occlusion is not
a problem.

The use of geometry also provides us with an interme-
diate step between the capture and compression stages. We
can employ knowledge of the scene to interpolate between
actual samples before passing them on to the compression
techniques. Since many compression techniques work best
on regularly spaced data, this can be very helpful.

2 Related work

There have been a variety of image-based rendering tech-
niques reported over the last few years. Approaches vary
from “pure” image-based approaches, where no knowl-
edge of geometry is used [GGSC96] [LH96] to approaches
which assume some basic geometry [DTM96] or depth
cues [SGHS98] [MB95]. At the heart of all of these papers
is the question, “Given this set of samples (several images),

2We’ve deliberately ignored transmission; transparent surfaces will be
addressed in future work.

3This application is dual to work of Debevec [Deb98] in which syn-
thetic objects were added to scenes in which an incoming lightfield (a kind
of enhance environment map) had been recorded.

how do I construct a new set of samples (i.e, a new im-
age)?” Some papers control the location of the samples to
simplify reconstruction [Che95] [SS97] [SH99]. Others as-
sume knowledge of the camera position and make some as-
sumptions about the geometry [MB95] [SGHS98] [YM98].
Like Lumigraphs and Lightfields, we capture a set of rays
passing through space, only we capture at a surface instead
of a plane. This means we lose the tremendous advantage of
regularly spaced samples, but gain the benefit of geometry
we can place in a scene without worrying about occlusion.

Several papers recently have focussed on capturing the
lighting of a scene in order to apply it to new geome-
try placed in the scene [Deb98] [CON99]. Curless, et.
al., [CL96] describe a method for capturing how an object
affects light passing through it.

The two papers most closely related to this work are by
Debevec, Taylor and Malik [DTM96] and Miller and Mon-
desir [MRP98]. The former uses simple geometry to guide
reconstruction of samples, essentially projecting the images
onto the simplified geometry of the building. We take this
approach one step further and re-write the image informa-
tion on the object itself, as Miller et al. showed was feasible.

3 The surface representation

In this section we provide an intuitive description of
manifold surfaces their uses. A detailed description is
in [GH95].

The key to manifolds is that they represent complicated
surfaces by gluing together overlapping simple ones. We
use spline surfaces as the simple surface type, although any
other class of embeddings of surface pieces into �� could
be substituted. Traditional methods of stitching together
simple surfaces into complicated ones involve gluing the
surfaces together edge-to-edge by constraining their bound-
aries. The problem with this approach is illustrated in 2D
in Figure 3. Three curves are stitched together end-to-end
by matching the end-point derivatives. Notice that if we
change the geometry of the middle curve even slightly, the
resulting “curve” is no longer even continuous. The man-
ifold approach, using the same three curves, is shown in
Figure 4. Here the final curve is defined as a blend of the
three input curves. Now, even if one (or more) of the curves
change, the blended curve is still smooth. In general, the
multiple surface pieces should all “agree”, and the blending
functions are used as “indicators” – the blend function has
the largest value at a point tells you which patch the point is
“most inside.” But the use of blend functions to smooth out
differences between corresponding surface patches is valu-
able as well.

As an additional benefit, the derivatives are also smooth
(provided the individual embeddings and the blend func-
tions have smooth derivatives). Therefore, we can define

3

Figure 3. The traditional approach to stitch-
ing together curves. Each curve has its own
parameterization and continuity of the glued-
together curve is achieved by matching end-
points (left). If one of the curves changes,
continuity must be re-established (right).

overlap overlap

Figure 4. The manifold approach to curve
stitching. Each curve has its own parame-
terization. We specify how curves overlap in
parameter space and also define blend func-
tions (dashed) for each of the curves (left
lower). The blend functions sum to one and
are used to blend between one curve and the
next where they overlap, resulting in the thick
line (left upper). Changing one of the curves
(right lower) does not affect the continuity
of the resulting curve (right upper) (original
blend shown dashed).

the normal at every point on the surface, using the parame-
terization of any of the charts that contain that point.

Manifold surfaces are constructed similarly, but out of
overlapping 2D surface patches (about three patches over-
lap at a typical point of our surfaces). We use a mesh to
describe the network of patches and to give a first approxi-
mation to the geometry (see Figure 5). The control points of
the individual patches are initially assigned locations which
are linear combinations of these mesh vertices. We use the
Catmull-Clark subdivision [HKD93] rules to determine the
linear combinations.

A brief note on parameterization: Most embeddings “be-
have” best when their parameterization is uniform, i.e., tak-
ing a Æ-sized step anywhere in parameter space produces a
�-sized step in 3D. With any reasonably complicated ge-

Figure 5. Left: The mesh used to specify
the connectivity and geometry of the surface
patches. Right: The resulting surface.

ometry, it becomes difficult to “stretch” a single embed-
ding to fit without greatly distorting the parameterization.
In fact, some surfaces (the sphere) admit no smooth, uni-
form, global parameterization. Manifold structures on a
surface address this problem by dividing up the surface into
small pieces, each of which is easily modeled with a “well-
behaved” simple embedding.

We can extend the idea of blending between the em-
bedding functions defined on overlapping charts to other
types of functions. For example, suppose that for each
chart we have a function that defines the color at every
point of that chart. We can blend together these functions
to get a global coloring function. If the function pieces
agree at corresponding points, the glued-together function
will look like each of them; if they disagree, the gluing-
together blends them. The functions we use to blend be-
tween the chart functions can be altered to give different
effects. There is a trade-off between using a smooth, slowly
changing blend function (which reduces discontinuities, but
introduces blur) and an abrupt one.

When we use manifolds as the geometric foundation for
representing the emitted light from an object, there are two
different approaches to rendering. The first is to directly
query the surface color by intersecting it with a ray from
the camera and evaluating the “outgoing light” function at
that point in that direction. This has two costs; the first
is intersecting the ray with the surface, the second is the
cost of evaluating the function. For making an image, this
intersection and evaluation must happen for every pixel the
object occupies.

The second approach, suitable for parallelization, is to
render the object with a texture map, updating the texture
map when the camera changes. In this case, we cast a ray
from the center of each pixel in the texture map (mapping
the location of the pixel to 3D using the embedding equa-
tion) back to the camera. The cost for this is filling in the
pixel value plus the function evaluation. There are three ad-
vantages and two related disadvantages to using a texture
map:

4

+ The texture map can be updated independently of draw-
ing the object, and at a slower rate if needed.

+ Parts of computations can be cached since we are always
evaluating the function at the same points.

+ The number of texture map pixels can be varied to
roughly match the number of pixels the object occu-
pies on the screen.

– We may do more function evaluations than strictly
needed if the texture map is too dense.

– The texture map may not have enough pixels to accu-
rately capture the variation in the surface.

We used ray intersections for the pictures in this paper,
but use texture mapping in our interactive prototype. This
prototype was used to test results but all the figures in this
paper were produced using the ray intersection method.

A brief note on the texture mapping: Each chart is as-
signed a portion of the texture map, with pixel boundaries
lying along the tessellation boundaries. Usually we “pad”
these texture map pieces with an extra pixel on all sides
to make OpenGL behave correctly. We change the resolu-
tion of the texture map by increasing or decreasing the size
of the texture map piece belonging to each chart, with a
minimum size of 1 pixel plus padding for each chart. This
gives us seamless, fairly uniform texture mapping (i.e., the
non-uniformity of the texture map is no worse than the non-
uniformity in the individual embeddings).

4 The Emitted-Light Function

In this section we describe the emitted-light function on
the surface and discuss two different coordinate systems
for expressing it. The emitted-light function tells, for each
point on the surface and each ray emanating from that point,
the color4 of that point when viewed from a point along that
ray (see Figure 6). If, for each point on the surface, the
color of that point were the same from all directions then
this function would be little more than a standard texture
map. Another way to think about the emitted-light func-
tion is as a view-dependent texture map, i.e., a texture map
that changes with the viewing direction (albeit one that is
examined directly to get the emitted light, rather than be-
ing multiplied by some incoming light weighted by some
lighting function).

The position on a parameterized surface corresponds to
a parameter point in ��. A direction at a point on a param-
eterized surface can be defined by a unit vector, i.e., a point

4More precisely, the radiance at that point in the given direction; we
record this at each of three wavelengths, and refer to the resulting triple as
a “color”.

Figure 6. At each point of a surface-piece,
there’s a hemisphere of outward pointing vec-
tors; at different points, the hemispheres will
generally have different orientations.

on the sphere, ��. Therefore the emitted-light function for a
small patch of surface is defined by a color value (which we
will represent as a point of ��) at a parameter point in ��

and a direction vector in � �(��): the function-piece from
which we’ll build the global emitted-light function is a func-
tion

 � �� � �� � � � ���� ����� �� ����� ����� � ���

For an arbitrary surface there usually is no single parameter-
ization of the entire surface, and so as described previously,
we divide the surface into overlapping regions. For a sin-
gle point on a surface, the outgoing direction vectors lie in a
hemisphere located at that point (see Figure 6). As we move
across the surface the vectors always fall into a hemisphere
but that hemisphere is continually changing as we move, so
that the aggregate of all the direction vectors (ignoring base
points) will cover the entire sphere.

Just as there’s generally no way to parameterize an en-
tire surface, there’s generally no way to parameterize the set
of all direction-vectors emanating from all points of a sur-
face. There are two choices: (1) parameterize them locally,
just as we did for the surface, and (2) use a redundant ab-
solute coordinate system – simply write down the ��� �� ��
coordinates of each unit vector. Each has its advantages.
Before describing them, though, let us recall how they’ll be
used: we will be asking, for a point � on the surface and
a direction vector � at that point, what is the emitted-light
function’s value at �����. To determine this, we’ll look
for samples of the function at locations near �����. How
is “nearness” determined? By some combination of prox-
imity on the surface and similarity of direction (see Sec-
tion 5). We’ll use absolute coordinates to help us quickly
locate samples that have similar directions; we’ll then use a
local coordinate frame to compare more precisely.

4.1 Absolute coordinate system

The absolute coordinates of a point-direction pair are
used to rapidly find samples whose directions are close to
the given direction, by computing dot products. Because dot

5

products are expensive, we use a binning procedure to nar-
row the search. We start by defining a set of points (the bin
points) that are approximately evenly spaced on the sphere 5.
We then assign each sample to the bin point it is closest to,
as measured by the dot product. To find the closest samples
(close in direction) to a given point-direction pair, we take
the dot product of the direction with all of the bin points,
then chose points in the � bins which are closest, where �
is typically 3-5. To ensure that the closest points are found,
� must be at least 3.

Typically, the desired number of bins is the smallest
number such that the number of sample points in each bin
is relatively small compared to the entire number of sam-
ples. For the examples in this paper, the number of bins was
between 800 and 1000.

4.2 Local coordinate system

The local coordinates of a point-direction pair are de-
fined surface-piece by surface-piece (see Figure 8). For a
given surface-piece, parameterized by a function

� � �� � �� � ��� �� �� ���� ���

the coordinates of the “point” part of the point-direction pair
are just the ��� �� parameter coordinates; to assign coordi-
nates to the direction portion of the pair, we build a coordi-
nate frame at the basepoint: the first vector is the normalized
tangent to the �-parameter curve (i.e., �����); the second is
the outward normal at � , and the third is the cross-product
of these. The resulting triple of coordinates is then stereo-
graphically projected to �� by sending

��� �� �� ��
��� � ���

��� � ��
��� ���

where �� and �� are parameters of the stereographic projec-
tion; in general, we use �� � � and �� � ��, although in
the special case of reconstruction via neural-net backpropa-
gation (see Section 5) other choices are needed. As a happy
coincidence, for any point � , we can take point-direction
pairs whose points are near � (i.e., in the same chart, pro-
vided that the chart does not curve too much) and assign
�� coordinates to the “direction” part using the coordinate
frame at � and the stereographic projection above. While
point-direction pairs at � , at least ones where the direction
is outward-pointing, will all have ��� �� �� coordinates in
which � is non-negative, directions from points nearby �
may have negative �-coordinates; if we choose �� smaller
than the smallest such �-coordinate, the stereographic pro-
jection will remain injective on the portion of the sphere
where we apply it.

5We subdivide each face of an icosahedron into a equilateral triangle
grid and project the resulting vertices onto the sphere.

y

(x,y,z)

(0,−y ,0)

y=y

(u,y ,v)c

c

p

Figure 7. Projecting part of the sphere onto
the plane at � � ��. The part above the cutting
plane is projected into a disk (shaded) in the
plane; the projection is injective on this part.

dX
ds X(s, t)

P

n

−n

(u,v)

v

Figure 8. For typical point-direction pair,
�����, the surface parameterization gives
��� �� coordinates to � , and gives a coordi-
nate frame at � , defined by the tangent to
the � parameter-curve at � , the normal at � ,
and their cross product. The coordinates of �
in this frame are stereographically projected
from the endpoint of the inward normal to get
a pair ��� �� of coordinates with �� � �� 	 �.

6

5 Construction of new points

The previous section gave us a method for writing down
samples. Section 6 will discuss possible methods for col-
lecting samples; for now we will assume that we have a col-
lection of � samples
�� � � 	 � 	 ��, each an element of
������

���� where the first factor tells which surface
piece the sample is associated with, the second gives the lo-
cal coordinates of the basepoint, the third the direction, and
the fourth is the color of that sample.
Constructing a new data point can then be phrased as,
“given a new point � � � � ��, what color should we as-
sign to it, based on the known samples ��?” This question
is complicated by the existence of two unrelated coordinate
systems, one for the position and one for the direction. Sim-
ply taking the closest sample in Euclidean distance space is
clearly not the answer.

We first discuss assumptions we can make about the
function the samples came from. Based on these assump-
tions we can define what the “best” interpolation method is;
different assumptions will lead to slightly different interpo-
lation methods. Finally, we detail an implementation which
makes the interpolation method feasible.

There are two factors influencing the reflected color; the
first is the BRDF of the surface, the second is the location
and direction of the light sources. If the surface is homo-
geneous, the BRDF is uniform, and the light sources are
an infinite distance away then the samples which point in
the same direction will have the same values. Of course,
BRDFs are not uniform, surfaces are not homogeneous, and
light sources are rarely at infinity. Still, if the surface and
the BRDF are not changing rapidly then the best samples to
reconstruct from are ones which are pointing in the correct
direction, even if they are a slight distance away. This will
capture the motion of highlights. If, however, the surface
color is changing rapidly but the BRDF has no large spec-
ular component (as in the case of a highly varied texture
map on a diffuse surface) then the best match for color is a
sample located at the same point, even if it points in another
direction.

Under these assumptions, the best samples to interpo-
late are those which point “roughly” in the correct direction
and are as close as possible to the point on the surface. If
we are interested in tracking highlights then “roughly” will
be much closer than if we are mostly interested in the cor-
rect color. Another way to phrase this is, “look for sam-
ples pointing in the correct direction at the desired surface
point”. If no samples are to be found, look at all the samples
pointing in the correct direction and take the ones that are
located closest to the surface point (if there are any nearby).

Because color and intensity differ in their best method
for interpolation, one solution is to convert the output col-
ors of the samples into an intensity plus color representation

(e.g. YIQ). Intensity can then be reconstructed using sam-
ples which point in the same direction, while color is re-
constructed using samples closest on the surface. This is an
approximation of the classical geometry-based graphics ap-
proach, in which lighting is computed using a (usually con-
stant) approximation of the material BRDF, and then mod-
ulated by the texture map.

5.1 Implementation

To make this approach feasible, we need to quickly find
samples pointing in the correct direction near a point on
the surface. We solve this problem by binning the samples
beforehand. In this initial step we also propagate samples
around as needed to fill out bins which are missing samples.

The surface domain is subdivided evenly in � and �,
while the directions are binned using the method described
in Section 4.1. There are two variables; the number of divi-
sions in the domain and the number of direction bins. The
number of domain divisions should be big enough so that
for any given domain bin we only get a small number (10-
300) of samples falling in each direction bin. If the domain
divisions are too big we will spend too much time sorting
the samples in the bin at reconstruction time. Empty bins
will be filled in with neighboring samples so the only prob-
lem with divisions that are too small is that it is expensive
to fill and keep unnecessary bins.

The number of direction bins to use depends on whether
or not we are tracking highlights. In general for highlights,
we chose a level where the dot product between a bin and
its closest neighbors is greater than ��	
, the distance at
which we consider two samples to point in the same direc-
tion. Colors typically get one level less.

After we have assigned our samples to the appropriate
bins, we propagate as needed to fill in empty bins. To pre-
vent inappropriate filling in, we limit the propagation to
about one fifth of the size of the domain. For any missing
direction bin in a domain bin, we examine all the samples
which fall in that direction bin and take the one or two which
are closest as measured on the surface domain.

At reconstruction time we take the union of the nine
chart domain bins surrounding the bin the sample point falls
into. We then examine the spherical bins; whenever one (or
more) of the samples falls into the same spherical bin, we
take the one (or more) which is (are) closest in the surface
domain to the input point. The more points we allow per
spherical bin, the more blending we get.

This gives us the samples to use for reconstruction. Since
these samples point mostly in the same direction, we can
project them down onto the plane using the technique de-
scribed in Section 4.2 (in which all point-direction pairs
near a particular point are projected to a plane via a sin-
gle stereographic projection). We now interpolate just in

7

the plane using a locally weighted regression technique.
Locally weighted regression (LWR) is a variation of

standard linear regression techniques. Training the algo-
rithm simply involves storing the sample points. When
LWR is called on to make a prediction of at a query point,
it performs a linear regression on the sample points, with
each point being weighted according to its distance from the
query point. Sample points that are closer to the query have
more influence over the regression, while those sufficiently
far away have little or no influence. It should be noted that
a new regression is required for every query point, unlike a
standard global regression, where one model is used for all
queries.

Using LWR allows us to have a globally non-linear
model using simple and well-understood regression tech-
niques. However, if implemented naively, predictions can
be extremely expensive to perform (since each one involves
a regression over all of the sample points). It is possible,
however, to reduce the cost of predictions significantly us-
ing appropriate algorithms, such as those surveyed by Atke-
son, Moore and Schaal [AMS97].

We can make a good guess for the correct kernel size
by setting it to be twice the average distance from the input
points to the origin.

6 Capture process

We have experimented with two different capture pro-
cesses. The first is the usual “snapshot” approach, where
several pictures are taken of the object. The second ap-
proach is only possible with a ray-tracer; we take a “pic-
ture” of the emitted-light function at evenly spaced points
on the surface.

The snapshot approach produces a camera matrix and an
image. To convert this into emitted-light-function samples,
we intersect the ray from the camera through the center of
each pixel with the object. The point of intersection gives
us a point in the domain of each chart which overlaps that
point (typically three). We also write down the ray and the
color of the pixel, giving us a complete sample. The sam-
ples produced by this method tend to be clustered by direc-
tion but fairly evenly spaced in the surface domain. The left
side of Figure 9 shows this clustering in effect; notice how
the locations of the clusters move from one side of the chart
domain to the other.

The uniform sampling approach, applicable only for syn-
thetic scenes, is to take multiple samples of a single point
on the surface from uniformly spaced directions. We do this
for evenly spaced points in the domain of each chart. The
right side of Figure 9 illustrates the kind of data produced
by this method.

To produce the synthetic examples we used the Radiance
ray tracer [War94], which produces radiance values which

Figure 9. An illustration of the samples pro-
duced for a single chart. Each grid square
corresponds to all of the samples for an area
of the chart. Within the grid square the sam-
ples are mapped into the square using the lo-
cal spherical projection. Points without sam-
ples are colored grey. This chart corresponds
to roughly one sixth of the sphere. Left: Uni-
form samples. Right: Snapshot samples.

are not clipped to ��� ��. The Radiance ray tracer also lets
us take samples at arbitrary points and directions.

The real-world capture was accomplished using the tech-
niques in [Gor]. The capture camera was positioned on
a Faro arm, which provides accurate position information.
The geometry was constructed by fitting a manifold surface
(shown in Figure 17) to geometry found by volume carv-
ing [Gor]. (The emitted-light values we used were simply
color-values from the digital camera; no conversion to ra-
diance values was done. Despite this gross lapse, the re-
sults look reasonable, probably because the range of radi-
ance values was relatively small.)

For the painted fish, we took nine snapshots then colored
them by scanning in hand-drawn images. The input images
were from the top, side, front, back, and side tilted up and
down.

One thing to note is that where the charts overlap they
get the same samples. In our surface implementation most
parts of the surface have three overlapping charts. This has
the disadvantage that we are keeping (and reconstructing)
three copies of most of the samples. In our opinion this is
well worth the cost for two reasons. First, the charts will
agree for a large overlap region, preventing noticeable over-
lap boundaries. Second, most sampling and compression
routines have problems with boundaries. Since the charts
overlap so much, we can ignore the boundary artifacts be-
cause we will never see them (the blend functions will have
gone to zero by the time we reach them).

8

7 Alternative representations and compres-
sion

We explored several alternative methods for represent-
ing the emitted-light function: wavelets, images, neural net-
works, and Gaussian mixture models. For four of these
cases we need to use a local coordinate system for the spher-
ical direction. There is a trade-off between using the same
local coordinate system for the entire chart and using a dif-
ferent coordinate system for each surface point. If the local
coordinate system changes too rapidly lose the coherency
of the highlight directions. However, we can only use the
same coordinate system as long as the vectors all fall within
the same area. The local parameterization described in Sec-
tion 4.2 can be extended to include more than just the upper
hemisphere. In this way we can use the same coordinate
system for more of the chart, or all of it if the surface is
relatively flat.

Note that for both the wavelet and the image approach
we rotate the edge chart (which is shaped like a diamond)
using an affine projection to maximize the amount of space
the chart takes up in the rectangular domain.

7.1 Wavelet

We experimented with a four dimensional Haar
wavelet [SDS95]. The first two dimensions are the ��� ��
position in the chart, the second two are coordinates ��� ��
in the local frame. If the wavelet is divided into � divisions,
we also use � local frames, one for each grid square. We
use the method described in Section 5 to produce the evenly
spaced samples.

To reconstruct, we project the input sample point using
the local frame closest (on the surface) to the input point.
We pass the surface position plus the projected point to the
wavelet.

7.2 Image

We can also store the function as an image, where each
grid square is a set of samples for a region of the surface
(see Figure 9). The images can be compressed using JPEG
or MPEG techniques. The two variables are the number of
divisions of the chart, and the number of direction samples.
In this case, we use one local frame for each of the chart
grid squares.

To fill in the image, we first project all the samples into
it, averaging when more than one sample falls into a pixel.
To fill in the remaining pixels we use the technique in Sec-
tion 5.

Image reconstruction is similar to the wavelet recon-
struction except we interpolate between the sixteen (four

Figure 10. Real and reconstructed images of a
glass sculpture with non-spherical topology.
From left to right: The real image of one of
the original snapshots, the original snapshot
reconstructed using LWR, then two novel im-
ages reconstructed using LWR.

charts by four directions) pixels surrounding the input sam-
ple. We use the local coordinate system of each of the four
chart samples to determine which of their four direction
samples to use.

7.3 Neural networks

Using a backpropagation network [MR86] with one hid-
den layer, we experimented with two different input meth-
ods. In the first case we used as inputs the surface domain
point plus the actual direction vector (a five dimensional in-
put) with between five and twenty hidden units. We also
tried projecting the direction vector into a single local coor-
dinate system (valid if the chart does not curve too much)
resulting in a four dimensional input. The advantage of us-
ing such neural networks is that, once trained, evaluation
is relatively fast and is a constant time operation. How-
ever, training the networks is often time-consuming, several
hours to train on our sample sizes, and the quality of the
learned model is very dependent on the parameters (num-
ber of hidden units, learning rate, etc.) selected.

7.4 Gaussian mixtures

In this approach, we model the function as the sum of a
set of Gaussian models, each of which has the form:

���� � ��
�
��
�

�����

�������
�

��
�

���

���
�

����� ��

We used a naive, greedy gradient descent procedure to fit
the parameters, �� and ��, to the data. We chose to try this
method because it seems well-suited to modeling the sorts
of variations that we expect to see in our functions.

9

Figure 11. The ray-tracing world used for the
synthetic experiments.

8 Results

We first discuss the synthetic experiments, then the real-
world data experiment, and finally the hand-drawn result.
Storage sizes required for the various approaches are then
summarized.

8.1 Synthetic

Figure 11 shows the world used for this experiment.
There are two very bright windows at one end, an overhead
light, and two flood floor lights. The floor and one wall are
textured, there is a mirrored surface under the object, and a
palm tree overhanging the object. The color on the sphere
is constantly changing, while the glass sculpture is mostly
uniform, with sudden changes. The sphere’s geometry has
both low and high frequency components while the glass
sculpture is smooth.

We performed the same experiment on four different
types of surfaces: metal, plastic, textured, and glass. Fig-
ure 12 shows the snapshots used to initialize the data; they
cover the entire sphere and were placed by hand to simu-
late holding a real camera. The glass example used forty
two images which varied in size but were mostly 355� 356
pixels.

We used the YIQ conversion for every case except the
textured sphere. Figures 13 and 10 shows the results of
reconstructing using the original samples, as described in
Section 5.

Approximate reconstruction times are summarized in Ta-
ble 1. Although the glass sculpture’s geometry is more com-
plicated than the sphere’s, there are fewer samples per chart,
which accounts for the quicker rendering times.

Figure 14 shows some results of the Haar wavelet recon-
struction. They suffer noticeably from discontinuity arti-
facts. On average, after removing coefficients whose con-
tributions are negligible, there were between 60,000 and

Figure 12. Twenty five of the twenty eight cam-
era angles used for initialization (one of the
remaining images can be found in the results
image). Each image is 260 � 190 pixels.

Figure 13. Real and reconstructed images of
a “sphere” with both smooth and abruptly
changing geometry. From left to right: The
real image of one of the original snapshots,
the original snapshot reconstructed using
LWR, then two novel images reconstructed
using LWR. From top to bottom: The plastic,
metal, and textured spheres.

10

Model LWR Image Wavelet
Plastic 870 1 13
Metal 870 1 15

Texture 870 1 12
Glass 95 1 5
Stuffy 120 1 6
Fish 83 1

Table 1. Reconstruction results. Times are
relative.

90,000 non-zero numbers kept per chart. Even if the rate
of compression were higher, there are still two fixes to be
made. The first is to use a smooth wavelet to remove the ar-
tifacts. Second, we need control over the size of the chart di-
mension versus the direction dimension. Experiments with
the image reconstruction format indicate that the direction
dimension needs to be almost twice the chart dimension for
highly reflective objects, while the reverse is true for highly
textured objects.

Figures 15 and 16 show the results for image reconstruc-
tion. Typical dimensions run between 8 and 25 divisions
for the chart, and 10 to 35 divisions for the direction, which
results in an image size from 200 � 200 to 875� 875, with
an average size of 250 � 250, since we rarely need both
dimension to be high. There is a fair amount of latitude in
choosing these dimensions, as indicated by the low to high
image comparison. The number of divisions was specified
by giving independent lower and upper bounds for both the
chart dimension and the direction dimension. Within those
bounds, the actual size (chart dimension� direction dimen-
sion squared) is chosen to be roughly the number of input
samples.

We had marginal success with neural networks and
Gaussian mixture models when using uniform samples, but
were unsuccessful with snapshot samples. Adding regularly
spaced samples (using the LWR reconstruction method)
helps, but also increases the data size.

8.2 Real

Nineteen pictures of a teddy bear (called Stuffy) were
taken using a Faro arm, which gives accurate camera posi-
tions. The pictures were used both as input images and to
create approximate geometry of the object [Gor]. We con-
structed a manifold and fit it to the approximate geometry,
as shown in Figure 5. Figure 17 shows several reconstructed
images, four of which are the original images.

While reconstructing, we discovered that the camera ma-
trices were not quite correct. This results in ghosting in the
inbetween images, which can best be seen in the video. For
this reason, the best reconstruction technique is LWR, since

Figure 14. The types of artifacts introduced
by discontinuous wavelets.

this only produces ghosting on inbetween images. Also,
since there were only nineteen 640 � 480 images, most of
which were only one quarter full, the actual data size and
number of samples per chart is fairly small.

An example of the image reconstruction and the ghosting
artifacts are shown in Figure 18.

8.3 Hand-drawn images

Our final example is a fish colored with nine hand-drawn
images. This example illustrates the effects of varying the
number of sample points interpolated for each direction. At
one extreme we take only the single sample pointing in the
correct direction (see Figure 19). This reproduces the hand-
drawn images correctly, but shows a sharp line between the
individual images. At the other extreme, we blend four
to six sample points, resulting in a blending of the texture
maps.

8.4 Storage requirements

Numbers are summarized in Table 2
For the LWR method we store the original samples (eight

numbers per sample, the five input numbers and the color)
and the bin information. The bin information is an � � �
array of bit vectors each the size of the number of samples
for that chart.

The images are currently stored as arrays of floats. The
total size is the size of each image (� � � � �) for each
chart. Obviously, the data set would be much smaller stored
as JPEGS. Initial tests indicate that the images can be com-
pressed by as much as 80 before noticeable is seen.

The wavelets are stored as arrays of floats. The total size
is ��� where � is the number of divisions. About 20 of
the coefficients are negligible.

11

Object N Charts LWR Samples Min Avg Max Total size (approx)
Sphere 26 559,386 30,538 56,331 123,311 22,675,088
Glass 1200 1,324,783 0 2911 22,499 54,263,264
Stuffy 914 1,187,895 0 3614 19653 17,761,159
Fish 578 621,478 94 2835 12283 5,739,931

N Charts Avg per side Image Total Size
Sphere (hires) 26 625 15,234,375

Sphere (lowres) 26 120 561, 600
Glass 1200 160 46,080,000
Stuffy 914 120 19,742,400
Fish 578 80 8,670,000

N Charts Avg per side Wavelet Total Size
Sphere 26 16 2,555,904
Glass 1200 8 7,372,800
Stuffy 914 4 350,976

Table 2. Approximate data sizes in doubles. Images and wavelets are kept as arrays of floats

9 Future work

The compression techniques presented here are by no
means a comprehensive list. As stated earlier, a smooth
wavelet approach or a more elaborate energy minimization
scheme might work. Also, hybrid approaches might be fea-
sible, both between individual charts and within a single
chart.

There is also the question of what to do when there are
only a few, possibly mis-matched, images to interpolate.
One possibility is to provide an explicit in-between func-
tion to create more samples. If we consider the camera
locations as points on the sphere then we can create new
images in places where there are no images by interpolating
between just the three camera locations containing the new
camera location. This would introduce some global knowl-
edge about which samples to interpolate and how much to
interpolate by.

In a different direction, there is no need for the geometry
of the surface to exactly match the geometry of the object
being captured. For example, we could use a simple blob to
model a bushy plant. This would require an alpha mask in
addition to a color in order to model the silhouettes properly.
This could also be viewed as a form of model compression
where we replace complicated geometry with simple geom-
etry plus view-dependent information.

References

[AMS97] Christopher G. Atkeson, Andrew W. Moore,
and Stefan Schaal. Locally Weighted Learning.
AI Review, 11:11–73, 1997.

[Che95] Shenchang Eric Chen. Quicktime VR - An
Image-Based Approach to Virtual Environment

Navigation. In SIGGRAPH 95 Conference Pro-
ceedings, pages 29–38. Addison Wesley, Au-
gust 1995.

[CL96] Brian Curless and Marc Levoy. A Volumet-
ric Method for Building Complex Models from
Range Images. In SIGGRAPH 96 Conference
Proceedings, pages 303–312. Addison Wesley,
August 1996.

[CON99] Brian Cabral, Marc Olano, and Philip Nemec.
Reflection Space Image Based Rendering. Pro-
ceedings of SIGGRAPH 99, pages 165–170,
August 1999.

[Deb98] Paul Debevec. Rendering Synthetic Objects
Into Real Scenes: Bridging Traditional and
Image-Based Graphics With Global Illumina-
tion and High Dynamic Range Photography. In
SIGGRAPH 98 Conference Proceedings, pages
189–198. Addison Wesley, July 1998.

[DTM96] Paul E. Debevec, Camillo J. Taylor, and Jiten-
dra Malik. Modeling and Rendering Architec-
ture from Photographs: A Hybrid Geometry-
and Image-Based Approach. In SIGGRAPH
96 Conference Proceedings, pages 11–20. Ad-
dison Wesley, August 1996.

[GGSC96] Steven J. Gortler, Radek Grzeszczuk, Richard
Szeliski, and Michael F. Cohen. The Lumi-
graph. In SIGGRAPH 96 Conference Proceed-
ings, pages 43–54. Addison Wesley, August
1996.

[GH95] Cindy M. Grimm and F. John Hughes. Model-
ing Surfaces of Arbitrary Topology using Man-

12

Figure 15. Examples reconstructed using im-
age reconstruction. From left to right: an
original snapshot followed by two novel snap-
shots. From top to bottom: plastic, metal,
and textured.

Figure 16. The glass sculpture reconstructed
using image reconstruction. From left to
right: an original snapshot followed by two
novel snapshots.

Figure 17. A real-world example of a stuffed
animal (“Stuffy”) reconstructed from nine-
teen 640 � 480 images. From top left to
bottom right: four novel views, four original
views.

13

Figure 18. “Stuffy” reconstructed using the
image and wavelet techniques. Blowups
show the ghosting artifacts.

Figure 19. Left: Taking one sample. Right:
Taking four samples.

ifolds. In SIGGRAPH 95 Conference Proceed-
ings, pages 359–368. Addison Wesley, August
1995.

[Gor] Steven J. Gortler. Unpublished work submitted
to SIGGRAPH 2000. We appreciate Gortler’s
having told us about this work.

[HKD93] Mark Halstead, Michael Kass, and Tony
DeRose. Efficient, Fair Interpolation Using
Catmull-Clark Surfaces. Proceedings of SIG-
GRAPH 93, pages 35–44, August 1993.

[LH96] Marc Levoy and Pat Hanrahan. Light Field
Rendering. In SIGGRAPH 96 Conference Pro-
ceedings, pages 31–42. Addison Wesley, Au-
gust 1996.

[MB95] Leonard McMillan and Gary Bishop. Plenop-
tic Modeling: An Image-Based Rendering Sys-
tem. In SIGGRAPH 95 Conference Proceed-
ings, pages 39–46. Addison Wesley, August
1995.

[MR86] James McClelland and David Rumelhart, ed-
itors. Parallel Distributed Processing. MIT
Press, Cambridge, MA, 1986. Volumes 1 and
2.

[MRP98] Gavin S. P. Miller, Steven Rubin, and Dulce
Ponceleon. Lazy Decompression of Surface
Light Fields for Precomputed Global Illumina-
tion. Eurographics Rendering Workshop 1998,
pages 281–292, June 1998.

[SDS95] Eric J. Stollnitz, Tony D. DeRose, and David H.
Salesin. Wavelets for Computer Graphics: Part
1. IEEE Computer Graphics & Applications,
15(3):76–84, May 1995.

[SGHS98] Jonathan W. Shade, Steven J. Gortler, Li-wei
He, and Richard Szeliski. Layered Depth Im-
ages. In SIGGRAPH 98 Conference Proceed-
ings, pages 231–242. Addison Wesley, July
1998.

[SH99] Heung-Yeung Shum and Li-Wei He. Render-
ing with Concentric Mosaics. Proceedings of
SIGGRAPH 99, pages 299–306, August 1999.

[SS97] Richard Szeliski and Heung-Yeung Shum. Cre-
ating Full View Panoramic Mosaics and Envi-
ronment Maps. In SIGGRAPH 97 Conference
Proceedings, pages 251–258. Addison Wesley,
August 1997.

14

[War94] Gregory J. Ward. The RADIANCE Lighting
Simulation and Rendering System. In Proceed-
ings of SIGGRAPH ’94 (Orlando, Florida, July
24–29, 1994), pages 459–472. ACM Press, July
1994.

[YM98] Yizhou Yu and Jitendra Malik. Recovering
Photometric Properties of Architectural Scenes
from Photographs. In SIGGRAPH 98 Con-
ference Proceedings, pages 207–218. Addison
Wesley, July 1998.

15

