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The goal of this research is to explore techniques for shading 3D computer gen-

erated models using scanned images of actual paint samples. The techniques presented

emphasize artistic control of brush stroke texture and color. We first demonstrate

how the texture of a paint sample can be separated from its color transition. Four

methods, three real-time and one off-line, for producing rendered images from the

paint samples are then presented. Finally, we develop metrics for evaluating how well

each method achieves our goal in terms of texture similarity, shading correctness, and

temporal coherence.
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Chapter 1

Introduction

This thesis paper describes several techniques for shading 3D computer generated

models using scanned images of actual paint samples. Figure 1.1 illustrates the basic

objective of our research. We start with a lit 3D model. An artist provides an example

of a shading change from dark to light in an image strip. This paint sample can either

be scanned in from traditional art media or created using a 2D paint program. We

then apply this user-defined shading style to the model, making it appear to be

painted with the same technique.

Figure 1.1: Basic research goal.

When traditional artists compose a scene, they have complete control over the

final image. They can alter the shading, brush stroke, and color as they see fit. They

also work exclusively on a flat canvas, requiring some degree of skill and experience

to convey believable lighting. On the other hand, computer graphics programs are

very good at computing accurate lighting, but are not able to make artistic decisions

about color choice or brush stroke texture. The techniques presented here address

this disparity by letting the artist and software each do what they are best at. We

seek to preserve the artist’s freedom while harnessing the processing power of the

computer to automate the time consuming details of applying the painting style to

the model.
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We present four techniques, each with a distinct set of advantages and draw-

backs for rendering the model in the desired painting style. In order to quantify and

compare these methods, we introduce a metric that qualitatively captures common

texture distortions, shading errors, and frame-to-frame coherence in animation.

A discussion of previous work relating to this research is presented in Chapter

2. Background information on the fundamental concepts and existing techniques that

we use in our research is given in Chapter 3. In Chapter 4 we demonstrate how to

process paint samples to extract desired information. We show how processing paint in

this way is useful, both for increasing artistic control and for improving our rendering

techniques. In Chapter 5, we present our object-based texture mapping technique;

the first of our four rendering methods. Our second technique, image-based texture

synthesis, is presented in Chapter 6. Our third technique, view-aligned 3D texture

projection, is presented in Chapter 7. Our final rendering technique, view-dependent

interpolation, is presented in Chapter 8. Chapter 9 introduces our metrics and in

Chapter 10 we compare the quality of each rendering method using these metrics.

We also summarize the strengths and weaknesses of each technique. We conclude

and discuss future work in Chapter 11.
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Chapter 2

Previous Work

The rendering techniques that we present can be categorized as non-photorealistic

rendering. As the name suggests, non-photorealistic rendering refers to any technique

that produces images in a style other than realism. There has been extensive research

in the area of non-photorealistic shading.

Technical illustration shading [14] introduced the use of warm-cool color blends

to enhance the perception of shape and orientation. This type of shading has been

used extensively in technical manuals, illustrated textbooks and encyclopedias. The

lit sphere approach [29] expands on this technique by providing a method to extract

artistic shading models from actual paintings. This allows a wide range of effects

from traditional painting to be reproduced. Unfortunately, much of the original brush

texture is lost as the shading gradient is captured. Another popular shading style is

cartoon shading [20]. The goal of cartoon shading is to render a 3D scene in a style

which resembles that of traditionally animated films. These three techniques perform

shading using color only and are illustrated in Figure 2.1.

Artists also make use of texture change across a surface to convey lighting.

Several papers have addressed the technique of hatching [26, 35, 20]. Hatching is

a drawing technique that uses groups of lines in close proximity to convey lighting,

suggest material properties, and reveal shape. Another popular technique is stip-

pling [8] which uses dots of varying density to convey shading changes. Creating a

desired tone using either stippling or hatching is straightforward; strokes are added

until the overall effect is dark enough. Other rendering styles that rely purely on

texture change are charcoal rendering [21], engravings [24], and half-toning [13]. All

of these systems use texture only and do not address the issue of color (which is rea-

sonable for the particular mediums they mimic). Additionally, all of these techniques
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(a) Technical
Illustration

(b) Lit sphere (c) Cartoon shading

Figure 2.1: Color only techniques. (a) Courtesy of A. Gooch et al., A Non-
Photorealistic Lighting Model for Automatic Technical Illustration. (b) Courtesy
of P. Sloan et al., The Lit Sphere: A Model for Capturing NPR Shading from Art.
(c) Courtesy of A. Lake et al., Stylized Rendering Techniques for Scalable Real-Time
3D Animation.

are very stylized and are therefore able to be captured procedurally or with minimal

user input. We explore the use of less structured texturing styles, giving the artist

more freedom over brush texture and color changes. These techniques are illustrated

in Figure 2.2.

Stroke-based techniques such as the WYSIWYG NPR system [18] take a dif-

ferent approach by attaching paint strokes on the surface of the object. These strokes

can convey fixed features of the model, or move over the surface in response to light-

ing changes. The idea of attaching paint strokes to a model is also used in painterly

rendering [22]. This approach is particularly interesting because it completely au-

tomates the painting process by using various techniques to determine the position,

orientation, size, color, and texture of the brush strokes. The system also main-

tains frame-to-frame coherence by reusing strokes throughout the animation. These

stroke-based techniques are illustrated in Figure 2.3.

Finally, Webb et al. [33] show how to convey both texture and color change

with shading. They use a volume texture approach that is based on the lapped texture

method [25], to place several levels of texture onto a model. They then blend between

these levels to give the illusion that the strokes are pinned to the model. Figure 2.4

shows a typical rendering obtained using this approach.
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(a) Hatching (b) Stippling (c) Charcoal

(d) Engraving (e) Half-toning

Figure 2.2: Texture only techniques. (a) Courtesy of E. Praun et al., Real-Time
Hatching. (b) Courtesy of O. Deussen et al., Floating Points: A Method for Com-
puting Stipple Drawings. (c) Courtesy of A. Majumder and M. Gopi, Hardware
Accelerated Real-Time Charcoal Rendering. (d) Courtesy of V. Ostromoukhov, Dig-
ital Facial Engraving. (e)Courtesy of B. Freudenberg et al., Real-Time Halftoning:
A Primitive for Non-Photorealistic Shading.

(a) WYSIWYG NPR (b) Painterly rendering

Figure 2.3: Stroke-based techniques. (a) Courtesy of R. Kalnins et al., WYSIWYG
NPR. (b) Courtesy B. Meier, Painterly Rendering for Animation.
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(a) Volume texture rendering

Figure 2.4: Technique that captures both color and texture with shading. (a) Cour-
tesy of M. Webb et al., Fine Tone Control in Hardware Hatching.

In this paper, we present several alternative approaches to the problem of non-

photorealistic shading. When artists paint an image in real life, they often must

replicate identical brush strokes over and over so as to completely cover the surface

they are trying to capture. We model this process using texture synthesis. The goal

of texture synthesis is to create more texture that is perceptually similar (but not

identical to) some input sample. Texture synthesis is not a perfect process since even

the best known algorithms have cases in which they fail. We use a texture synthesis

algorithm, based on the image quilting approach [9]. An explanation of this technique

is given in Chapter 3.

Several papers [32, 34] address the problem of synthesizing texture directly on

a model. These approaches require that the model be topologically well-structured.

Our techniques operate on arbitrary models, and have different trade-offs of texture

accuracy versus frame-to-frame coherency.
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Chapter 3

Background

This chapter provides the background for this thesis. In Section 3.1, we present the

fundamental concepts and general terminology used in our research. Additionally,

our research makes use of (and in some cases, modify) existing techniques in order to

achieve our goal. A discussion of these techniques is given in Section 3.2.

3.1 Fundamental concepts

3.1.1 Models

The 3D models that we use were either obtained from 3D laser scans of real world

objects or created using 3D modeling software. The models are stored as large text

files containing the coordinates of all the vertices in the model along with information

about how these vertices are connected. If we render this raw data, we obtain a wire-

frame depiction of the model. This is known as the mesh of the model and reveals

the underlying shape of the model. Figure 3.1(a) shows the mesh of a typical model.

3.1.2 Lighting

In order to accurately shade a given mesh, we must perform lighting calculations. For

the examples presented in this paper, we used a single directional light source and

computed the amount of light at every vertex as:

s =
1 + ~N · ~L

2
(3.1)
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(a) Raw mesh (b) Shaded mesh (c) ID buffer

Figure 3.1: Venus de Milo: raw mesh, shaded mesh, and ID buffer

where ~N is the surface normal and ~L is the light vector. Multiple lights or more

sophisticated lighting algorithms may also be used. The possible values for s range

from 0 to 1. The model’s assigned color is scaled by this value to result in a shaded

model. Figure 3.1(b) shows an example of a shaded model.

3.1.3 ID buffer

We assign a unique identifier to every model in a scene. These identifiers are stored

in an ID buffer. ID buffers are used primarily for improving efficiency. We use it as

a lookup table to quickly determine which model in the scene a given pixel belongs

to. This improves the performance of our rendering techniques. If we assign a unique

color to each identifier and render the contents of the ID buffer, we obtain an image

showing how the scene is segmented. Figure 3.1(c) demonstrates this for a simple

scene consisting of a single model.
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3.1.4 Object-based operations vs. image-based operations

At present, almost all affordable computer display devices are limited to 2D images.

Displaying a 3D object in 2D is accomplished by projecting the 3D object onto a 2D

plane. Numerous projection techniques exist [12]. Figure 3.1.4 illustrates the basic

principles of performing a projection. Throughout this thesis, we refer to object-based

Figure 3.2: Projecting a 3D object onto a 2D plane. Courtesy of J. Foley et al.,
Computer Graphics: Principles and Practice.

operations and image-based operations. Understanding the distinction between them

is important. Object-based operations refer to operations that use and manipulate the

properties of the 3D object before the projection takes place. Image-based operations

are those performed on the 2D image that results from the projection.

3.1.5 Color

We represent color using the RGB (Red-Green-Blue) color model. The RGB color

model is used in color CRT monitors. A given color is expressed as (r, g, b) where

the values are normalized. That is, all color values are restricted to the range of 0

to 1 inclusive. The RGB color model is additive, meaning that the values represent

the contribution of red, green and blue respectively. The RGB color space can be

visualized by plotting the values of red, green, and blue in a Cartesian coordinate

system as shown in Figure 3.3.



10

Figure 3.3: The RGB color space.

3.1.6 Paint

Figure 3.4 shows a scanned image of a typical paint sample used in our research.

Paint samples have two distinct properties: a color transition and a brush texture.

Figure 3.4: Example of a typical paint sample.

The color transition is the global color change across the sample. This change is more

correctly referred to as the color trajectory, as it defines a path through color space.

Brush texture can be described as local variations within the color trajectory. In

Chapter 4 we describe our method for separating the texture of a paint sample from

the color trajectory. For rendering purposes, we use the convention that a transition

from left to right across the sample represents a change from dark to light.

3.2 Techniques

3.2.1 Texture mapping

Texture mapping [6, 3, 15] is a popular technique used in computer graphics to add

detail to a scene. The basic idea of texture mapping is to map a texture image onto

some surface. In many computer games, for instance, the surface representing the
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terrain is texture mapped with images of grass and rocks. Likewise, the surfaces used

for walls are texture mapped with images of bricks. This adds to the realism and

overall visual appeal of the game. Additionally, even low-end commodity graphics

cards are now equipped with texture mapping capabilities allowing texture mapping

to be performed without any degradation in rendering time. Figure 3.2.1 illustrates

the texture mapping process. Once a 2D texture pattern is obtained, it is stored as

Figure 3.5: Texture mapping. Courtesy of J. Foley et al., Computer Graphics: Prin-
ciples and Practice.

an n×m array of texture elements or texels. The variables s and t are used to index

the rows and columns respectively of this array. These variables are called texture

coordinates and are usually scaled to values in the interval [0,1]. Texture mapping

associates a unique point from the texture with each point on the 3D surface. The

rendered image will appear as if the texture pattern is “glued” to the surface.

Despite the obvious benefits of texture mapping, there are some difficulties that

must be addressed. The situation often arises where the surface that we are mapping

to is larger than the texture pattern. There are several approaches that may be

used to solve this problem. One option is to stretch the pattern to fit the surface.

This stretching may be undesirable as it can cause the pattern to become distorted.

Another approach is to use multiple copies of the texture to cover the surface as

in Figure 3.2.1. This works well for textures that are tileable. Tileable textures

have the property that multiple copies can be placed side by side without revealing

seams where two copies meet. Tileable textures are discussed in Section 3.2.3. A
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third approach is to generate a larger texture pattern through texture synthesis. A

discussion of texture synthesis is presented in the Section 3.2.2.

Another problem that is encountered with texture mapping is that of mapping

a rectangular texture pattern onto a non-planar surface such as a sphere. This results

in the texture being distorted. To add to this problem, the resulting texture mapped

3D surface must be projected onto a 2D plane to be displayed as explained in Section

3.1.4. This projection causes further distortion to the texture pattern. Solving this

problem requires the use of complex mapping functions.

3.2.2 Texture synthesis

Texture synthesis refers to any process that generates texture that is perceptually

similar (but not identical to) some input sample. Figure 3.2.2 illustrates the texture

synthesis process. Early texture synthesis algorithms [16, 4] captured statistical mea-

Figure 3.6: Texture synthesis. Courtesy of M. Ashikhmin, Synthesizing Natural
Textures.

surements from the input texture and used it as a guide for the synthesis process. The

resulting texture was generated in order to maintain the statistical properties that

were present in the input texture. This approach worked well for stochastic textures
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but was not suitable for more structured textures. Later approaches [10, 2] performed

synthesis one pixel at a time. This was typically done in raster scan order (left to

right, top to bottom). In general, these approaches determine the color for a given

pixel (called a target pixel) in the resulting texture by searching the input texture

for a suitable candidate pixel and copying its color. The search for a candidate pixel

proceeds by searching for a region in the input texture that most closely matches the

region around the target pixel that has already been synthesized. The candidate pixel

is then chosen from this region of the input texture. While these approaches obtained

excellent results for a wider range of textures, they were computationally expensive.

Every synthesized pixel in the resulting image required that its neighboring pixels

be compared to every possible region in the input image. More efficient and simpler

texture synthesis techniques eventually emerged. One such technique, which we use

extensively in our research is image quilting [9].

The image quilting technique generates a resulting texture by stitching to-

gether small square patches of the input texture. This approach is more efficient

because entire patches of texture from the input are copied and pasted into the re-

sulting image instead of a pixel by pixel transfer. Figure 3.7 illustrates how this is

done. Figure 3.7(a) shows the input texture and also highlights a block that has been

selected. This block will be used as a patch in the quilting process. Blocks are se-

lected in order to meet certain constraints. Typical constraints include ensuring that

texture features such as edges are maintained across patches and ensuring that the

difference between the average color of neighboring patches is within some threshold.

Additional constraints can be introduced to make the synthesis process more specific.

Figure 3.7(b) shows the results of simply placing the patches side by side in a grid

pattern. As expected this leaves visible seams where two patches meet. A better

approach is to allow the patches to overlap each other. An additional constraint that

the overlapping regions of two patches have some degree of similarity is necessary.

The use of these overlapped patches in Figure 3.7(c) shows a clear improvement over

the naive side by side patch placement. This reduces the visual discontinuity but does

not eliminate it. A second pass over the image processes these overlapped regions

and performs a minimum error cut. The minimum error cut works by finding the

path through the overlapped regions that minimizes the the total error. This path

produces the optimal irregular boundary between the patches and further minimizes
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(a) Input

(b) Grid-like placement (c) Overlapped placement (d) Minimum error cut

Figure 3.7: Image quilting. Courtesy of A. Efros and W. Freeman, Image Quilting
for Texture Synthesis and Transfer.

discontinuities. Figure 3.7(d) shows the results of using a minimum error cut. Com-

puting the minimum error cut can be done using dynamic programming or by using

Dijkstra’s algorithm [7].

3.2.3 Generating a tileable texture

In some cases we require that a given texture be tileable. A tileable texture is one

that has a seamless appearance if multiple copies are placed side by side. The problem

of creating tileable textures is not easily solved by adding constraints to the image

quilting technique because of the raster scan order in which the blocks are placed. We

instead, utilize a simpler masking technique to achieve the desired result [5]. Given

a square input image T of size n × n pixels, we first generate a shifted image T′ as
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follows:

T′[x][y] = T[(x + n/2) mod n][(y + n/2) mod n]

This shifts the edges of the image to the center, revealing the vertical and horizontal

seams it produces when tiled. The pixels that were in the center of T are also now

on the edges of T′ so it can be tiled. Next, we use the following mask to blend the

center of T with the edges of T′. A circular mask works well in our case:

M[x][y] = 255− 255 ·
√

(x− n/2)2 + (y − n/2)2

n/2

We clip the values of M to the interval [1, 255], and generate M′ as we did T′. The

output image O is finally computed as:

O =
T ·M + T′ ·M′

M + M′

Figure 3.8 summarizes the process and demonstrates how the resulting texture can

be tiled without any visible seams.
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(a) T: input texture (b) T′: shifted texture

(c) M: circular mask (d) M′: shifted mask

(e) O: result tiled twice in each direction without
any seams

Figure 3.8: Generating a tileable texture level.
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Chapter 4

Paint Sample Processing

In this chapter, we describe our technique for processing a user provided paint sample.

Paint processing is necessary for extracting information that will be used by our ren-

dering techniques. Additionally, paint processing is also beneficial in that it provides

an avenue for increasing artistic control. We first show how a smooth color trajectory

can be extracted from a paint sample in Section 4.1. In Section 4.2 we show how

the texture of the sample can be treated independently of the color trajectory. This

allows the user to modify the color trajectory while preserving the texture features

of the sample.

4.1 Color trajectory extraction

Consider the paint sample shown in Figure 4.1(a). If we plot the color values of each

pixel of this sample in RGB color space, we obtain Figure 4.2(a). Notice that this

plot reveals a rough shape of the color trajectory.

To extract an initial color trajectory from a given sample, we simply average the

colors of each pixel column of the sample image. This effectively filters the 2D sample

into 1D image strip that represents a path through color space. Unfortunately, the

result contains a fair amount of streaking due to local texture variation. We stretch

the 1D image vertically to better illustrate the streaking as shown in Figure 4.1(b).

We run the following recursive algorithm on this trajectory’s set of RGB points in

order to sort the colors into a smooth, continuous gradient.

We first seed the algorithm with the two endpoints of the unsorted trajectory.

Given two colors A and B of the trajectory in RGB space, we let M be their midpoint.

We search for the point C that is closest to M, but contained in the sphere of the
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(a) Red to yellow paint sample

(b) Color trajectory before sorting

(c) Color trajectory after sorting

(d) Extracted texture

Figure 4.1: Extracting the color trajectory and texture from a typical paint sample.

(a) Color distribution (b) Trajectory

Figure 4.2: Color distribution and non-linear trajectory for the paint sample in Figure
4.1(a).
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diameter AB (see Figure 4.3). If such a point is found, the algorithm runs recursively

on A and C and on C and B. If no such point is found, we know that A and B are

close enough to be considered neighbors and the recursion stops by adding A and B

into a linked list representing the sorted color trajectory. The output trajectory may

contain fewer colors than the input because samples which deviate too much from

the path are removed. Simple linear interpolation can stretch the output gradient

back to the size the input if necessary. Figure 4.1(c) shows how the output of the

algorithm has effectively removed the streaking effect while maintaining the shape of

the color trajectory we wanted to extract. Figure 4.2(b) shows the resulting smooth

trajectory. It is important to note that the resulting trajectory is non-linear. Most

existing computer based techniques represent color transitions using some form of a

linear blending. This is unnatural in practice and clearly does not model how real

paint behaves. An extracted color trajectory, using our approach, is a more realistic

representation of the behavior of actual color blends.

Figure 4.3: Searching for a sample point halfway between A and B.

For trajectories of high curvature, our sorting algorithm may reject too many

points and clip the most curved section from the output. We compensate for this by

expanding the search area for C by a user-defined scale factor. The output still may

have a different rate of color change because of discarded color segments. We correct

for this by allowing the artist to use a simple click-and-drag interface to control the

speed of the color trajectory.

4.2 Separating color and texture

As explained in Chapter 3 texture can be viewed as local modulation within the color

trajectory. We extract this local modulation by subtracting the color trajectory from
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each pixel row of the original paint sample. This produces an intermediate difference

image with RGB values ranging from -1 to 1 (Figure 4.1(d)).

The advantage of this separation is that we can then add an arbitrary color

trajectory back into the difference image (clipping any RGB values that fall outside

of the 0 to 1 range) to obtain a sample with different colors but similar texture.

While this approach is purely heuristic, it does in fact achieve the desired separation

reasonably well. Figure 4.4 shows a paint sample being modified to produce a much

more creative color blend by a user-specified path through color space. The approach

is not perfect. Indeed, we can observe some hints of green in the recreated blend that

may be undesirable, but the main stroke features are preserved which is our main

objective. This approach allows an artist to create a wide range of textured blends

from a single initial paint sample. The separation of the color trajectory and texture

from a paint sample is also useful for rendering as described in the following chapters.

(a) Input paint sample

(b) User specified color gradient

(c) Resulting user created “paint sample”

Figure 4.4: Changing the color trajectory of a paint sample without changing its
texture.
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Chapter 5

Object-Based Texture Mapping

The idea behind our object-based texture mapping technique is to dynamically de-

termine the texture coordinates (s, t) for every vertex in the model. Since we are

using the convention that moving from left to right across the texture corresponds

to a change from dark to light, it means that the s coordinate, which represents the

horizontal index into the texture, caries shading information, and must be updated

every frame to reflect lighting changes. The t coordinate, the vertical index into the

texture, does not affect the shading, but rather impacts the perceived texture coher-

ence. We want vertices that are close to each other in the model to be mapped close

together in the texture. Once we have chosen a set of t values for a model, we keep

them fixed, and allow only the s coordinate to change. We do this because we want

the texture to remain consistent from frame to frame.

In order to assign the s texture coordinate for a particular vertex, we determine

the the amount of light received at the vertex as explained in Section 3.1.2. We use

the resulting value as the s texture coordinate.

To assign t values to the vertices, we start by picking a random t for a randomly

selected vertex v. Next, we place all the neighbors of v into a queue. We keep

processing from the front of the queue. For every vertex that leaves the queue, we

compute its t value based on the closest neighbor that has already been processed.

We queue all unprocessed neighbors of the current vertex and repeat the process until

the queue becomes empty.

The actual calculation for forwarding t values to a new vertex is as follows:

tv = tnearest +
δy

∆y
β + γ (5.1)
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where tv is the t value currently being computed, tnearest is the t value of its nearest

neighbor, δy is the difference between the y coordinates of the two vertices and ∆y is

the maximum y difference for the entire mesh. The choice of the y axis is arbitrary.

A user specified vector field could be used as in [25] to change the relative orientation

of the texture mapping. β is the number of times the texture repeats over the object

and γ is a random value that introduces some statistical variation.

Figure 5.1 illustrates our general method for texture application. We use a

simple grid to show how parameters can be adjusted to obtain desired results. The

sphere in Figure 5.1(a) shows the direct mapping of 4 strips of the grid with no

variation (γ = 0). Figure 5.1(b) and 5.1(c) show the mapping of 4 strips of the

grid with increasing variation in γ. Notice that in all cases the dotted blue line,

representing a line of constant lighting intensity, remains fixed. Figure 5.1(d) shows

the application of an actual paint blend.

Some problems arise if the mesh has seams. We can handle the problem in one

of two ways. We can identify the unprocessed disconnected vertex that is closest to

a processed vertex and simply forward that t value over. This is most useful in cases

where the seam falls within a region that should be continuous. The other approach

is to ignore the seam and generate a new random t value for a random unprocessed

vertex in each disconnected piece of the mesh. This tends to highlight the seam.

The calculation of the t values occurs only once, whereas the s values are up-

dated each frame. This guarantees that the scene correctly reflects changing lighting

conditions and that paint strokes stay consistent within a single frame and coherent

from frame to frame.

The main advantage of the object-based approach is the fact that it runs in

real-time. We only need to perform the random texture coordinate generation once

at startup, and can reuse the results for every subsequent frame. Since we only

use basic texturing capabilities present on any 3D capable graphics hardware, this

method is perfectly suited to real-time applications. Additionally, temporal coherence

is achieved because the spatial texture coherence is established separately from the

shading calculations and is carried over from one frame to the next.

There are, however, some serious drawbacks to this method. Most importantly,

the texture quality is unstable under changing lighting conditions. Figure 5.2 illus-

trates how the quality of the resulting texture diminishes as the light in the scene is

repositioned. When the lighting direction is parallel to the direction that the paint

sample is applied we obtain excellent texture quality. This is so because the shading
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(a) No perturbation (b) Small perturbation

(c) Large perturbation (d) Same parameters as 5.1(c)

(e) Grid texture to test continuity and alignment

Figure 5.1: Object-based texture application
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Figure 5.2: Texture distorts as direction of light changes

change across the model matches the left-to-right user specified shading across the

paint. As we increase the angle between the lighting direction and the direction that

the texture is applied, the texture becomes distorted in order to maintain the correct

shading across the model. The texture is completely lost when the lighting direction

is perpendicular to the direction that the paint is applied. One possible, but rather

complicated and inefficient, method for fixing this problem is distort the texture be-

fore it is applied to the model in such a manner that the amount of distortion caused

by the lighting cancels the texture distortion.

Other problems with this approach are also encountered. Since texture coor-

dinates can only be assigned to vertices, the algorithm has little control over meshes

that are sparsely tessellated. In these cases, the texture may be noticeably distorted

or stretched. Subdividing the mesh only helps for non-planar objects. This is because

a flat surface typically receives a constant amount of light. Figure 5.3(a) illustrates

this fact. Notice that the shading varies across the teapot but is constant on the table

top. This means that all the vertices for the table top will be assigned the same s

texture coordinate, which effectively hides the texture and loses the “painted look”.

The image obtained by applying paint to both the teapot and the table is shown in

Figure 5.3(b).

(a) Shaded scene (b) Painted scene

Figure 5.3: Rendering flat surfaces.
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Chapter 6

Image-Based Texture Synthesis

In our image-based texture synthesis approach, we seek to generate and apply paint to

the region covered by the model in image space while preserving the correct shading

of the scene. We modify the image quilting algorithm presented in Section 3.2.2 in

order to achieve this goal.

Figure 6.1 illustrates the image-based texture synthesis technique. We start by

rendering a grayscale shaded image, as explained in Section 3.1.2, that will serve as

a guide for the synthesis. Since we are letting the artist make decisions about color

and texture for the final appearance of the model, the fact that illumination is only

computed in levels of gray is not a problem.

The advantage of using the image quilting algorithm to perform the texture

synthesis is that we can control the appearance of the output by placing additional

constraints on which blocks we pick. In particular, we wish to constrain the search

area for a block to a region of the paint sample that corresponds to the correct shade

value. This is done by adding the constraint that the x coordinate of the block must

be no more than k block sizes away from x0 = L ·Wsample, L being the average light

value of the block in question, Wsample being the width of the paint sample image and

k being a texture dependent parameter (k = 4 worked best for us in most cases).

We made another important modification to the image quilting algorithm. As

more constraints are added to the algorithm, it is more likely that the underlying block

structure becomes visible due to the increased difficulty in finding a suitable block.

Efros and Freeman, the creators of the image quilting technique, suggest running the

synthesis algorithm multiple times, decreasing the block size at each step, and trying

to match the previous level as much as possible. This increases the computation time
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significantly yet does not completely solve the problem because regions where the

shading changes sharply still appear blocky.

We are able to take advantage of our knowledge of the data to solve this

problem differently. In particular: it is more important to capture the correct lighting

changes than it is to capture the correct texture changes. This is especially true

for small objects within a scene where shading conveys more important information

about shape and orientation than texture does. Getting the color gradient right is

therefore more important than getting the texture to change along with the lighting.

We generate the lighting component of the image by looking up the color gradient

with the shade value at each pixel. We can then synthesize the texture separately

using only the texture difference image: the paint sample minus the color gradient

as described in Section 4.2. Figure 6.1(d) shows a rendering using only the color

component of the paint sample in Figure 6.1(b) while Figure 6.1(e) shows a rendering

using only the texture component. We recombine these two images by adding the

RGB values together pixel by pixel, clipping any overflows that occur (see result in

Figure 6.1(f)). This effectively removes the blocking artifacts without increasing the

processing time because we can use only one pass of a relatively coarse block size

for texture synthesis. Another benefit of this separation is that we can let the artist

manipulate the color gradient in real-time after the texture has been synthesized,

thereby increasing artistic control.

Texture synthesis is only performed on the regions of the image that have the

correct ID value in the ID buffer (see Section 3.1.3). Blocks that cover regions without

any such valid pixels can be skipped, which speeds up the image generation process.

The ID buffer for our example is shown in Figure 6.1(c).

Finally, we address the issue of creating animations with this method. Naively

resynthesizing each frame from scratch produces a shower-door effect [17] (the model

looks as if it was viewed through a shower-door). To improve temporal coherence

we add an additional constraint: we require each block to match the previous frame

as much as possible (computed as a squared pixel difference error of the synthesized

texture image). For small lighting or camera movements, this added constraint works

very well at keeping texture coherent over time. The shower door effect is not com-

pletely eliminated, but is reduced to an unobtrusive level. Naturally, for paint samples

that exhibit drastic texture variations this constraint will make it impossible for the

synthesis to find suitable blocks after a few frames. There is no way for the synthesis

to turn a hatch mark into a curve, for example. For these more difficult cases, we
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(a) Shaded
mesh

(b) Paint sample (c) ID buffer

(d) Color only (e) Texture only

(f) Color and texture

Figure 6.1: Rendering created using image-based texture synthesis.
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must rely on blending to improve coherence. We synthesize an entirely new set of

texture every nth frame and blend texture values between these keyframes while re-

computing the shading at every frame. Again, the separation of color transition from

texture is very beneficial.

Stroke density in this method is directly related to the stroke density in the

original sample. Therefore the ratio between image resolution and paint sample res-

olution is significant. Simply rescaling the input paint sample is sufficient to achieve

a different stroke density. Since the image generation happens off-line, the target

resolution is known ahead of time and the paint sample can be prepared accordingly.

The off-line nature of this algorithm is its main disadvantage. Rendering takes

between 20 seconds and a minute depending on image resolution. The quality of the

results produced, is however, very good (this approach produces the best individual

frame quality of the four techniques). The underlying shading of the model is captured

and the overall painting style is consistent with that of the input sample. The two

following chapters describe alternatives that run in real-time on commodity graphics

hardware.
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Chapter 7

View-Aligned 3D Texture

Projection

Recent advances in graphics hardware technology has allowed for the use of volume

textures. A volume texture is simply a stack of 2D textures. A third texture coordi-

nate, r is used in addition to s and t to perform a lookup in the 3D texture space.

Since their introduction, volume textures has been used for MRIs and other scanning

programs. In our view-aligned 3D texture projection technique, we make use of the

volume texturing capabilities of GeForce 4 class graphics cards that are capable or

storing 3D textures up to size 512×512×512.

This approach uses texture synthesis only as a preprocessing step. We divide

the input paint sample into 8 sections of roughly constant shade level. We generate

larger versions (512×512) of each section with image quilting. Consider the paint

sample shown in Figure 7.1. Figure 7.2 shows the resulting 8 synthesized blocks.

Figure 7.1: Input sample.

We found that generating 8 levels was adequate for the particular size of our paint

samples given that this is about how often the texture changes. We experimented

with generating more levels and with trying to keep stokes coherent from level to level,

but observed no substantial gain. In order to keep texture information separate from
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Figure 7.2: Resulting synthesized images.

the color gradient, we subtract the average color of each section and only synthesize

a texture difference image. We store this difference image in a regular bitmap by

mapping the interval [−1, 1] linearly to [0, 1]. Once this is done we make a second

pass over the textures to guarantee that they are tileable as explained in Section 3.2.3.

For rendering, we start by creating a 3D texture from each of the synthesized

levels by stacking them in order of increasing shade level [33]. Figure 7.3 illustrates

the 3D texture. We access the 3D texture, expanding the value back to the interval

Figure 7.3: 3D texture.

[−1, 1] and adding a color gradient indexed by the light value. The s and t texture

coordinates are generated by mapping the horizontal and vertical screen coordinates

to the interval [0,511] respectively. We use the lighting value mapped to the interval

[0,7] as the r texture coordinate. The hardware automatically blends between the
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texture levels for values of r that are not whole numbers. The (s, t, r) triplet is

generated automatically by a vertex shader. Stroke density can be adjusted by a

simple scale factor on s and t. This is where the advantage of having a tileable

texture comes in, as no seams are visible when the texture repeats over the image.

Figure 7.4 shows a typical rendering using this approach.

Figure 7.4: Model of a bunny rendered using 3D textures.

In order to avoid the impression that the texture is fixed to the screen and

that the mesh is “sliding” through it, we keep track of an offset in s and t that we

adjust when moving the model. We increment this offset by the average screen space

displacement of the vertices most directly facing the camera. This gives the illusion

that the texture follows the movement of the object, at least for the polygons that

occupy most of the screen space. It is impossible to perfectly move the texture along

with the mesh since it is attached to the view plane, but this approximation increases

visual coherence.

The view-aligned 3D texture projection method is very attractive because it

can almost match the quality of the image-based texture synthesis technique, but

runs in real time. The hardware does, however, introduce error when interpolating

across levels in the 3D texture. Frame-to-frame coherence is again only approximated
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by trying to shift the texture in the view plane to match the motion of the model on

screen. The main disadvantage to this approach is, however, the preprocessing time.

Synthesizing 8 512×512 textures then processing each of them to ensure that they

are tileable may take as long as 15 minutes depending on the block size used during

texture synthesis.
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Chapter 8

View-Dependent Interpolation

Our view-aligned 3D texture projection technique presented in Chapter 7 automati-

cally blends between the levels of texture for shade values that are not whole numbers.

This happens for every possible view of the model, which in some sense means that

every view is equally important. The situation may arise, however, where we desire

that certain views of the model have a specific texture instead of blending between

textures. Our view-dependent interpolation technique achieves this goal.

The basic idea behind our view-dependent interpolation technique is to assign

specific textures to the important views of the model and perform blending between

these textures for all other views. Determining which views are important is left to

the discretion of the user. The only restriction we impose is that every face in the

mesh of the model must appear in at least one of these views. This is necessary to

ensure that there are no gaps (un-rendered faces) in the resulting image.

Typically, between 12 and 15 views which surround the model are selected.

We must determine which faces of the model’s mesh are in each view. To do this, we

center the mesh in the view by automatically adjusting the zoom and panning the

camera until the mesh is centered and as large as possible. We then project the mesh

onto the 2D plane of the current view and record which faces are present. We also

record the projected locations (s, t) of each vertex of each face in the 2D plane. This

will be used as the texture coordinates when the actual texture is applied.

For any reasonably complicated model, there will be portions of the model

that are occluded or partially occluded for a particular view. This means that two

or more faces overlap when projected. We want only the faces that are closest to the

projection plane to be recorded. We handle this issue by processing the overlapped
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faces to determine their depth-ordering and removing any face that is covered from

the list of faces for that view.

The above approach can leave a face uncovered if there is no view for which

that face is un-occluded. If this is the case, we mark all of the faces that are covered

by the current view and generate another set of views, this time with only the faces

that were not covered in the first pass. (We only need to keep the subset of these

new views that actually contain visible faces in the uncovered subset.)

Once we have recorded all the necessary information for each view, we use

texture synthesis to create a 3D texture as explained in Chapter 7. The 3D texture

will be comprised of n 2D textures where n is the number of views selected by the

user. For rendering a given view of the model, we first obtain the list of faces present

in that view. For each of these faces, we know which subset of the textures covers that

face and also the texture coordinates of the face in a particular texture. We assign

a weight to each of these textures based on how much the viewing direction of that

texture differs from the current viewing direction (we assign the highest weight to the

texture that has a viewing direction that most closely matches the current viewing

direction). We then use these weights to blend between the textures.

As we animate our scene and move from viewing direction v to viewing direction

v + 1, there is a subset of the faces that is visible in both views. To ensure frame-to-

frame coherency, we copy the resulting texture from the faces in v to the corresponding

faces in v + 1. This provides a smooth transition but may result in some texture

distortion as a face in view v will not look exactly the same in view v + 1 because of

the curvature of the model.

The view-dependent interpolation technique runs in real time, and maintains

excellent frame-to-frame coherence since the texture is pinned to the surface of the

model. There is however a loss of texture quality because the texture is distorted to

fit the contours of the mesh.
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Chapter 9

Metrics

In this chapter we outline our choice of metrics. The goal of these metrics is two-

fold. First, a metric provides a quantitative way of comparing the results of the

different rendering approaches. Second, analyzing the results using metrics may lead

to insights that can be used to improve our techniques. We developed three metrics:

• Texture similarity metric: Measures how much the texture in the rendered

image “looks like” the texture in the sample.

• Shading error metric: Calculates how close the texture at a given pixel in the

rendered image is to the the desired texture from the input sample.

• Frame-to-frame coherency metric: Measures how stable the texture from frame-

to-frame. There are two distinct choices here; either the texture is “pinned” to

the model and moves with the model, or the texture is fixed to the projected

2D image.

We define each of these metrics below.

9.1 Texture similarity metric

There are many communities that are examining the question of how to measure visual

similarity, such as human perception researchers, image database querying, image

recognition, and texture synthesis. Developing a metric for general human perception

is beyond the scope of this research. We instead focus on a metric that is capable of

measuring the types of texture distortion we expect to be present. These distortions

can be categorized as stretch, rotation or shearing effects, and discontinuities or poor
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texture sampling. We first define the similarity metric and then demonstrate its

behavior on a small test set that is designed to capture the above distortions types.

Our texture similarity metric combines several measures that are common

building blocks in image database retrieval algorithms [27]. The first measure is

the difference in the color histograms of the two images being compared. Next, we

run 3 × 3 filters across each of the 3 color channels of each image to locate edges.

The four filters, which locate horizontal, vertical, and diagonal edges respectively are

given by the following matrices:−1 0 1

−1 0 1

−1 0 1


−1 −1 −1

0 0 0

1 1 1


 0 0 3

0 0 0

−3 0 0


−3 0 0

0 0 0

0 0 3


We create a total of fifteen histograms for each image (1 color histogram and 4 edge

histograms for each of the 3 color channels of the image). Each histogram has 10 bins

of equal size (the choice of 10 bins is arbitrary).

To compare a pixel from the source texture with a pixel from the rendered

image, we first find the s× s block surrounding each pixel, then build the histograms

using that block. We then measure the Euclidean distance between each pair of

histograms, and normalize by dividing by s × s × 15. We have experimented with

block sizes ranging from 4× 4 to 12× 12.

In order to perform meaningful comparisons, we must determine where a given

pixel in the rendered image came from in the input sample. During rendering, the

blocks around a given pixel may become distorted or the pixel itself may be the result

of blending. It is therefore inappropriate to claim that we can be certain of where the

resulting pixel came from. To improve the statistical soundness of our approach, we

instead search for the k most likely matches and average between them (we typically

use k = 10 in this research). To speed up this process, we preprocess the data and

store it in a k− d tree. This allows us to find the closest matching pixels in the input

sample in O(log3 n) time where n is the number of pixels in the input sample [1].

To check that this metric correctly captures texture distortion, we evaluated

it on three test cases. For all tests we sampled the error at 100 randomly sampled

pixels from the rendered image, with histogram image block sizes of 4, 8, and 12.

These tests are explained below:
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9.1.1 Test 1: Rotation

For the first test, we progressively rotate a copy of a square input texture and com-

pared it with the original square. After each rotation, we sampled the error at 100

randomly chosen pixels. For relatively symmetric textures we would expect to see

a small error for all angles. For textures with a strong diagonal element, the error

achieves a maximum at π/2, but drops back as the angle approaches π. Figure 9.1

shows how our metric responds to rotation for three distinct textures. Notice that the

results obtained by varying the block size are qualitatively similar, but quantitatively

different. As the block size increases, the distributions generally smooth out, so the

total error decreases. This turns out to be true for all the tests.

9.1.2 Test 2: Scale

For the second test, we progressively scale the texture in the x and y directions

individually, and in both directions simultaneously. As in the previous test, we sample

the error at at 100 randomly selected pixels. Figure 9.2 shows our metric measuring

the error introduced by scaling. To simplify the graph, we only show the results for

an 8× 8 block size. The metric performs as expected since the error should increase

as the image is shrunk and expanded.

9.1.3 Test 3: Poor texture sampling.

For the third test we introduce an increasing number of texture discontinuities. To

create the discontinuity image we run a slightly modified version of the image based

texture synthesis algorithm of Chapter 6. A block pasted into location (x, y) in the

target image is taken randomly from a vertical stripe centered around x in the original

texture image. The width of this stripe is 2n, where n × n is the pasted block size.

The minimum error cut between blocks is then applied. As the block size increases

the error should decrease, since there are fewer boundaries where a cut is necessary.

We generated 8 distortion images, with block sizes ranging from 4 to 32. Figure 9.3

shows three of these (block sizes 4, 20, and 32) for illustration purposes, along with

a chart of the general (expected) response to the metric.
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Figure 9.1: Rotation error for three different textures: random, diagonal, symmetric.
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Figure 9.2: Scale error for the random texture.

Figure 9.3: Error introduced by poor texture sampling. (block sizes 4, 20, and 32
also shown).
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We have shown that the metric behaves as expected under different test con-

ditions, and is also fairly robust to block size. The test set also provides us with an

expected absolute measure of error for a given texture sample and block size.

9.2 Shading error metric

This metric calculates how close the texture at a pixel in the resulting image is to the

desired texture for that shade value in the input sample. We first find the k pixels in

the source texture that are the closest to the test pixel using the k− d tree explained

above. We then average the shade values corresponding to those k source pixels and

compare it to the real shade value.

9.3 Frame-to-frame coherency metric

We measure frame-to-frame coherency in either image space or object space. For

image-space coherency, we compare the histogram difference between the same pixel

location in frame i and frame i + 1. We measure this error for 100 randomly chosen

pixels, making sure the sample blocks lie inside the rendered object for both frames.

To measure object-space coherency we pick a point on the 3D object that is visible

in both frames, and compare the pixels in the two frames.
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Chapter 10

Results

In this chapter, we summarize the advantages and disadvantages of each of the ren-

dering techniques in Section 10.1. We then evaluate our rendering techniques using

our metrics in Section 10.2. We conclude this chapter by showing how a model skull

is rendered using each of our techniques with a variety of paint paint samples.

10.1 Summary of the rendering techniques

10.1.1 Object-based texture mapping

Advantages:

• Runs in real time.

• Zero preprocessing time.

• Excellent frame-to-frame coherence.

Disadvantages:

• Texture quality varies as light position changes.

• Texture is completely lost on flat surfaces.

10.1.2 Image-based texture synthesis

Advantages:
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• Resulting images are consistent with input paint sample (best quality of the

four techniques).

Disadvantages:

• Slow rendering time (between 20sec and 1 minute per frame).

• Poor frame-to-frame coherence (suffers from the shower-door effect).

10.1.3 View aligned 3D texture projection

Advantages:

• Runs in real time.

• Quality of rendered images is close to that of the image-based texture synthesis.

• Fair degree of frame-to-frame coherence.

Disadvantages:

• Large preprocessing time (performing texture synthesis and ensuring that the

textures are tileable may take as long as 15 minutes).

10.1.4 View dependent interpolation

Advantages:

• Runs in real time.

• Good frame-to-frame coherence.

Disadvantages:

• Loss of texture quality.

10.2 Evaluation of the rendering techniques

We use the metrics outlined in chapter 9 to compare our renderings (We omit the

object-based texture mapping technique since the quality of its results are dependent

on the position of the light as explained above). Table 10.1 shows how our well our
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Table 10.1: Evaluation of the rendering techniques using the metrics from Chapter 9
Technique Similarity Shading Frame-to-frame

Image Based Texture Synthesis 0.07539 0.00536 0.00297
View Aligned 3D Texture Projection 0.08048 0.00521 0.00016

View Dependent Interpolation 0.10197 0.00582 0.00547

rendering techniques performed in terms of the texture similarity metric, the shading

error metric, and the frame-to-frame coherency metric. The measurements were taken

from the images in Figure 10.1. Other paint samples produced similar results.

Our metric shows that the image-based texture synthesis technique introduces

the smallest amount of error in terms of texture similarity. This means that image

based texture synthesis provides the greatest amount of texture fidelity. Also, the

rendering methods capture shading with roughly the same amount of error. This

is important since our goal is to correctly convey shading. We measured frame-to-

frame coherence in image space. In this context, 3D texturing works best because

the texture is only translated from one frame to the next, whereas texture synthesis

must do blending to provide coherence. The view dependent method, while coherent

in object space, is not at all coherent when measured in image space as the texture

may be distorted by the curvature of the mesh.

10.3 Rendering Examples

Figure 10.1, Figure 10.2, and Figure 10.3 show the results of applying three different

textures to a model skull, using each of our techniques.



44

(a) Object-based (b) Image-based

(c) View-aligned (d) View-dependent

(e) Green to yellow paint sample

Figure 10.1: Results for green to yellow paint sample.



45

(a) Object-based (b) Image-based

(c) View-aligned (d) View-dependent

(e) Dark red paint sample

Figure 10.2: Results for dark red paint sample.
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(a) Object-based (b) Image-based

(c) View-aligned (d) View-dependent

(e) Red to yellow paint sample

Figure 10.3: Results for red to yellow paint sample.
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Chapter 11

Conclusion and Future Work

This thesis paper presented several techniques, each with distinct advantages and

drawbacks for shading 3D computer generated models using scanned images of actual

paint samples. A method for separating the color transition from the texture of a

paint sample was also demonstrated. We also introduced metrics that evaluate how

well each of our rendering techniques performed in terms of texture similarity, shading

correctness, and temporal coherence.

We have divided our ideas for future work into two categories. The first cate-

gory looks at improving the current rendering techniques. Despite the drawbacks of

our object-based texture mapping technique, it has the shortest overall running time

(zero preprocessing time and real-time rendering time). Our other two techniques

which render in real-time (view-aligned 3D texture projection and view-dependent

interpolation) require a large preprocessing time due to the use of texture synthesis.

Finally, our image-based texture synthesis approach, which produces the best quality

results, does not run in real-time. This encourages us to explore techniques that

provide the efficiency of the object-based texture mapping approach with the quality

of the image-based texture synthesis approach. Recent work in performing texture

synthesis directly on the surface of a model [30] could be coupled with 3D texture

blending in order to achieve this goal. We also wish to extend each of our rendering

techniques to capture artistic silhouettes [23] in styles provided by the user. We chose

to do this because the boundaries of the rendered images from all of our techniques

are sharp, which is uncharacteristic of artistic works.

Our second category for future work entails developing techniques that au-

tomate the process of composing a scene. Traditional scene composition involves

manually placing the models in a scene. Additionally, the user manually places and
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determines the parameters for the camera and the lights. This is a time consuming

process as it is necessary to make modifications to the scene, evaluate the results and

repeat the process until the desired scene/lighting is obtained. We hope to automate

this process.

One of the central problems in performing automatic scene composition is de-

veloping an intuitive method for communicating to the computer what the desired

scene should “look like”. Recent work by D. Lischinski has led to the development

of an automatic lighting design tool [28] and a method for automatic camera place-

ment [11]. We hope to use these results as a base for our future work.
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