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Abstract
This paper takes a systematic look at calculating the curvature of surfaces represented by triangular meshes.
We have developed a suite of test cases for assessing the sensitivity of curvature calculations, to noise, mesh
resolution, and mesh regularity. These tests are applied to existing discrete curvature approximation techniques
and three common surface fitting methods (polynomials, radial basis functions and conics). We also introduce
a modification to the standard parameterization technique. Finally, we examine the behaviour of the curvature
calculation techniques in the context of segmentation.

Categories and Subject Descriptors(according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling, Curve, Surface, Solid, and Object Representations

1. Introduction

Many complex structures, ranging from natural objects such
as bones to man-made ones such aircraft parts, are modeled
as meshes. We would like methods to compare two meshes
in order to, for example, identify similarities, quantify differ-
ences, or search for similar shapes in a database. One possi-
ble metric for use in surface comparison iscurvature. Cur-
vature is an intrinsic property of the surface and can be used
to, for example, segment a surface into areas of positive and
negative curvature. Unfortunately, curvature calculations on
meshes tend to be very noisy10, 9. One of the goals of this
paper is to quantify, in a statistical sense, what kind of noise
we might expect to see given that we know something about
how the mesh was sampled. As we will show, each curva-
ture technique responds differently to factors such as noise
in the mesh, irregularities in the triangulation, and overall
resolution.

Ultimately, we plan to use this information to create ro-
bust algorithms which incorporatea priori knowledge of the
surface and sources of error in different curvature calcula-
tions. For example, if a curvature calculation technique is
known to over-predict positive curvature, or fail in areas with
discontinuities, then we can weight their results accordingly.

Meshes come from a variety of sources, such as scanning
devices, analytical surfaces, or any number of other tech-

niques. The original analytical surface is rarely available,
so several methods of computing the curvature directly on
the mesh have been developed. They can be classified into
two groups; discrete approximations based on the definition
of curvature, or surface fitting approaches. We compare ex-
isting approaches (Desbrun’s3, Taubin’s15, Goldfeathers8,
and polynomial surface fitting) plus several new fitting tech-
niques we have developed (natural parameterization11, ra-
dial basis functions, and conics). These “new” techniques
are standard approaches to surface fitting; we examine their
suitability in the context of curvature calculation.

We would like to know how accurate these approxima-
tions are, and when they break down. Possible sources of er-
ror are the triangulation (i.e., where on the surface samples
are taken and how they are connected to form the triangula-
tion), noise in the sampling process, and sampling density.
We have developed a small number of tests using surfaces
for which we know the exact curvature. We assess how noise
(perturbation normal to the surface) and triangulation effects
(number, size, and regularity of triangles) impact the accu-
racy of the curvature calculations. We then evaluate the per-
formance of these techniques in two test surfaces at different
resolutions, the torus and a complex, analytical surface for
which the curvature is known.

Curvature metrics include scalar properties such as maxi-
mum and minimum principal curvatures, mean and Gaussian
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curvatures, and vector quantities such as principal curvature
directions. In this paper we focus on the Gaussian curvature
because it captures much of the data in a single number. The
evaluation techniques easily extend to the other properties.

The three main contributions of this work are the devel-
opment of several new curvature calculation techniques, the
construction of a test suite for the evaluation of curvature cal-
culation algorithms, and several insights into how and where
different methods fail. We also discuss how these methods
perform on a segmentation task.

Section 1.1 highlights previous work on curvature calcu-
lations for meshes. Section 2 briefly describes the different
methods. In Section 3, the test cases, mesh parameters, and
noise perturbations are described. Results of the analyses are
presented in Section 4. Section 5 summarizes the conclu-
sions of this study. Finally, Section 6 outlines possible areas
for future work.

1.1. Previous work

A number of researchers6, 13, 2, 14, 1 have looked at curvature
estimation from 3-D range images for computer vision appli-
cations. While these methods were developed for 3-D range
image data, the methods based on data fitting can also be
applied to meshes. The main difference between curvature
calculation on meshes and curvature calculations based on
range data is that range data provides a rectangular array of
pixel data, while on a mesh, data is available only at discrete
points. Therefore the mesh-based approach requires a pa-
rameterization step before the fitting step. An obvious choice
is to project the local portion of the mesh to a plane, which
may cause folding. A better choice is to use a parameteriza-
tion method such as Desbrun’s11 (see Section11).

Meek and Walton12 perform asymptotic analysis for sev-
eral methods using both regular data (as in range data) and
irregular data (as in meshes). However, they state that their
asymptotic analysis applies only to discretization and inter-
polation methods, but not to least-squares fitting methods.

Desbrun et. al.4, 3 defined methods to compute the first
and second order differential attributes (normal vector, mean
and Gaussian curvatures, principal curvatures and principal
directions) for piecewise linear surfaces such as arbitrary tri-
angle meshes. They claim optimality of their discrete curva-
ture operators under mild smoothness conditions. They in-
corporate local operators to denoise arbitrary meshes of vec-
tor fields, while preserving features. However, they also ad-
mit that smoothing techniques do not deal well with large
amounts of noise.

Taubin15 proposed a method that estimates the tensor of
curvature from the eigenvalues and eigenvectors of a 3× 3
matrix defined by integral formulas. He also incorporated
a smoothing step for noisy meshes. A key benefit of his
method is its simplicity; the complexity is linear in both time
and space.

Goldfeather8 compares several methods for calculating
principal curvature directions, looking at the impact of ran-
dom error on the resulting error in the calculated principal
curvature directions. He also compares three methods for
calculating normal directions at vertices. His primary test
cases are a torus and a more complex closed surface, with
random noise added to the vertices. He concludes that small
errors in quantities such as normal curvature can amplify the
error in the principal curvature directions. He describes an
improved method that uses the normal vectors at adjacent
points to generate a third-order fit in the curvature calcula-
tion. He attributes the improved control of the error mag-
nitude for his cubic method to its third-order, rather than
second-order, approximations.

2. Curvature Metrics

Curvature metrics can be grouped as either discrete metrics
or fitting methods. In the following sections we describe both
existing methods and our new or modified methods. The var-
ious methods and the acronyms summarized are summarized
in Table 2.

Curvature Calculation Taxonomy

Discrete Methods

Discrete Curvature Operator DCO

Modified DCO Mod (NEW)

Integral Eigenvalue Method IEM

1-Ring with Normal Fits

Adjacent Normal Cubic ANCE
Exact normals

Adjacent Normal Cubic ANC
Computed normals

Parametric Fitting

Parameterization
Fit Planar Desbrun

Polynomial Fit*P Fit*N (NEW)

Radial Basis RBF*P RBF*N (NEW)

Implicit Functions

Conic Fit Con* (NEW)

* = Number of rings

2.1. Discrete methods

Discrete methods attempt to calculate curvature directly
from a given mesh without an intermediate fitting step. They
derive relations based on a local region (typically the star of
the vertex, or 1-ring) about a point.
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2.1.1. Existing metrics

The discrete curvature operators of Desbrun et al.3 compute
curvatures for each vertex of a triangulation based on the 1-
ring neighborhood around the vertex. An area (Voronoi area
for non-obtuse triangles, and Barycentric area otherwise) is
assigned to each of its vertices for use as a weighting fac-
tor in the algorithm. This area weighting causes problems
for obtuse triangles, but can be fixed by changing the area
weighting (see below and Figure 14). This method will be
referred to as the Discrete Curvature Operators, orDCO.

The integral eigenvalue method of Taubin15 estimates the
tensor of curvature from the eigenvalues and eigenvectors
of a 3×3 matrix defined by integral formulas. This matrix
is constructed as a summation around the 1-ring neighbor-
hood using the projection of the edges to the tangent plane
and an estimate of the curvature of that edge. Taubin recom-
mends a smoothing preprocessing step for noisy surfaces.
This method will be referred to as the Integral Eigenvalue
Method, orIEM .

2.1.2. New metrics

The effect of obtuse triangles on the accuracy of the DCO
method motivated our development of a variation of the
DCO method with a slightly different area weighting for-
mula. The modified method was the same as DCO for non-
obtuse triangles, but the area weighting for obtuse triangles
was formulated to avoid the discontinuity as a triangle tran-
sitions between non-obtuse and obtuse. In this formulation,
the area of the triangle closest to a vertex is attributed to that
vertex, which is consistent with the Voronoi area for a right
triangle.

2.2. Fitting Methods

Fitting methods involve solving for an analytic function that
approximates the mesh around a point, then calculating the
curvature using that function. While any number of points
can be used for the fit, the simplest approach is to fit an N-
ring neighborhood around the point of interest. The N-ring
neighborhood is an extension of the 1-ring neighborhood de-
scribed above. A 2-ring neighborhood is created from the 1-
ring neighborhood by adding all of the vertices of any face
containing a vertex of the 1-ring neighborhood. Additional
rings can be added in the same way. For this study we looked
at 1, 2, and 3-ring neighborhoods.

Various functions can be used to fit to the points of the
chosen neighborhood. The function can be either a paramet-
ric function (defined in terms of surface coordinatesu,v) or
an implicit function (defined as the zero set of a function over
x,y,z). Each function has some number of free parameters
which are solved for, usually using a least-squares approach.

Fitting methods require a parameterization. The simplest
parameterization uses two orthogonal vectors in a local tan-
gent plane perpendicular to the normal vector. This approach

can be sensitive to the selection of the normal vector and
may cause folding. Alternatively, we can find a mapping that
takes the vertices to the plane while minimizing some mea-
sure of distortion, such as the approach by Desbrun11 (see
Section 2.2.2).

2.2.1. Existing Metrics

A simple function that has been used in different forms by
various researchers is a polynomial fit in parametric coordi-
natesu andv. For a second-order polynomial with six coef-
ficients in each coordinate direction we have:

x(u,v) = axu2 +bxuv+cxv2 +dxu+exv+gx

y(u,v) = ayu
2 +byuv+cyv

2 +dyu+eyv+gy

z(u,v) = azu
2 +bzuv+czv

2 +dzu+ezv+gz

This method is equivalent to performing a coordinate
transformation such that the positivez axis is aligned with
the normal,x is aligned withu andy is aligned withv. In
this latter form, referred to as a Monge patch,z is a height
function ofx andy. Both methods were implemented and the
results agreed. This method will be referred to as a polyno-
mial fit with planar parameterization.

Another common scattered-data surface fitting technique
is radial basis functions. There are several possible choices
for kernels; we chose a uniformly weighted Gaussian be-
cause the derivatives at a data point are well-behaved.

We also implemented the Adjacent-Normal Cubic
Method of Goldfeather8 described above. Goldfeather uses
the normals at each vertex of the 1-ring neighborhood in a
least-squares fit to generate a third-order surface approxima-
tion. Coefficients from this fit are used in the Weingarten
curvature matrix. The eigenvalues and eigenvectors are then
used to determine the principal curvatures and principal di-
rections.

For the remainder of the paper, this method will be re-
ferred to as the Adjacent-Normal Cubic method, orANC.

2.2.2. New Metrics

We implemented three new fitting methods. The first two
are the polynomial fit and radial basis function fit described
above, but with a different surface parameterization. The
third technique involves fitting a general conic to the surface.

The simple parameterization based on a local tangent
plane may cause folding or significant distortion of the spa-
tial relationships between points, particularly near areas of
high curvature. In general, it is not possible to map a 3-D
mesh to a plane without introducing some distortion. How-
ever, several techniques exist11 which produce a mapping
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that minimizes some measure of distortion. A particular ben-
efit of the method we chose is that the mapping of the bound-
ary of the mesh to the plane is computed by solving for an
optimal conformal mapping. Onceu andv have been calcu-
lated for each vertex, they can be used to compute the poly-
nomial or radial basis function fit just as was done for the
tangent plane parameterization.

Conic surfaces, particularly ellipsoids, have been used
for surface fitting, particularly in medical imaging applica-
tions. For completeness, we extend this approach to a gen-
eral conic:

ax2 +by2 +cz2 +dxy+exz+ f yz+gx+hy+ iz+ j = 0

Douros and Buxton5 apply a similar technique to a (typi-
cally dense) point cloud. In our initial implementation, the
fit would occasionally use a very flat saddle-shaped conic
such that adjacent points of the mesh would be on different
branches of the conic. We found the fitting to be more stable
if the points were transformed so that the normal was aligned
with thez axis.

3. Noise Analysis Test Cases

In this section we take a systematic look at the effect of dif-
ferent components of noise on the curvature calculations.
For space reasons we focus on the Gaussian curvature; the
test cases are also suitable for evaluating other elements such
as the maximum curvature.

Since the curvature calculation is a local operation on a
mesh, we can use simple shapes to model the range of pos-
itive and negative Gaussian curvatures. We use sections of
three basic shapes as our test cases: a sphere (constant), an
ellipsoid (positive), and a saddle surface (negative). Geo-
metric parameters are the radiusr for the sphere, and two
additional parameters,a andb, for the ellipsoid and saddle
shapes.

The sphere equation:

(x/r)2 +(y/r)2 +(z/r)2 = 1

The ellipsoid equation:

(x/r)2 +(y/a)2 +(z/b)2 = 1

The saddle equation:

x− (a−
√

a2−y2)+(b−
√

b2−z2) = 0

Thea andb parameters control both the maximum and mini-
mum curvature at the point of interest. For the sphere we use
r = 1.0 which results in a Gaussian curvature value of 1.0.
For the ellipsoid we user = 1.0, a = 1.0, b = 0.5, which
results in a Gaussian curvature value of 4.0. For the saddle

Figure 1: Sample Test Case Meshes. Left: Sphere section
(φ=10, valence=3) Middle: Ellipsoid section (φ=20, va-
lence=6), Right: Saddle section (φ=30, valence=5)

surface we user = 1.0, a = 1.0, b = 0.5 which results in a
Gaussian curvature value of−2.0.

The test cases built from these surfaces are split into three
cases: those that have points on the surface but with pertur-
bations of the triangulation, those with noise in the normal
direction, and different mesh resolutions.

3.1. Mesh Parameters

In order to assess the local curvature, we generate a trian-
gular mesh around a target point on the surface, encompass-
ing an N−ring neighborhood around a point as described
previously, whereN ∈ {1,2,3}. For N > 1 we can calculate
approximate normal vectors at the target point and itsN−1-
ring neighbors.

The Adjacent-Normal Cubic method uses normals to cal-
culate the curvature at the target point. We calculate the cur-
vature using both the approximate normals and the correct
normals generated by the surface.

Several parameters control the qualities of the mesh. The
number of points in the first ring is the first input parame-
ter, with the second ring containing twice as many points. A
second parameter,φ, determines the distance from the target
point to the first ring, and between the first and second rings,
measured as an angle at the center of the sphere. The vertices
are equally spaced along the rings around the target vertex,
except for noise perturbations described below.

The ellipsoid and saddle meshes were created from the
spherical mesh by projecting points along the X axis to the
surface defined by one of the equations above. Sample 2-ring
meshes are shown in Figure 1.

3.2. Noise Parameters

We define five components of noise, two of which are ap-
plied to the target vertex, and three of which are applied to
the vertices in the first ring. The target vertex can be per-
turbed either in a direction normal to the surface, or along
the surface (toward one of the vertices of the first ring). Sim-
ilarly, a vertex in the first ring can be perturbed in the normal
direction, on the surface toward or away from the central
target vertex, or on the surface along the one-ring toward
a neighbor on the same ring while maintaining a constant
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Figure 2: Mesh Noise Components. Top left: Baseline, Top
right: Target point moved on surface, Bottom left: Adjacent
point moved away from center, Bottom right: Adjacent point
moved along ring.

distance from the target vertex. Examples of perturbations
along the surface are shown in Figure 2.

The perturbation component normal to the surface repre-
sents noise,i.e.,a true deviation from the actual surface ge-
ometry. The components along the surface, radial or circum-
ferential, do not deviate from the true geometry, but rather
represent the effects of mesh quality. The baseline 2-ring
neighborhood around the target point is very regular, with
fairly uniform angles and edge lengths. Moving the target
point radially toward a point on the first ring, or moving a
point of the first ring radially or circumferentially along the
surface reduces this regularity. The perturbations are limited
to two points, and are generally applied to one point at a
time, to track the effects of the specific perturbation. As a
result, the region around the target point is still, in general,
better behaved than that of a general mesh point, which can
have angle and edge length variations associated with each
adjacent point.

3.3. Induced Random Noise

We can extend these noise-generation techniques to a com-
plete mesh representing an analytic surface. The magnitude
of the noise is specified based on a fraction of the smallest
triangle edge around a vertex. We keep the magnitude of the
noise below 50% to avoid (as much as possible) folding in
the mesh. For each vertex we can either slide it along the
surface (changing the mesh quality) or off the surface (intro-
ducing noise).

4. Results

The next several sections look at results for each of the in-
dividual curvature calculation methods. This is followed by
comparisons between the methods, and then results of the
impact of noise. Finally, application to general surfaces and
segmentation of surfaces are presented.

Figure 3: Impact of mesh cell size (φ) for Discrete Curvature
Operator on a spherical surface.

Figure 4: Impact of mesh cell size (φ) for Discrete Curvature
Operator on an ellipsoidal surface.

4.1. Discrete Curvature Operator

Figure 3 shows a plot of the calculated Gaussian curvature
on a sphere as a function of the mesh resolution parameterφ.
Separate curves are shown for valence (number of triangles
sharing a vertex) four through eight. For these valences, the
discrete curvature operator converges to the actual curvature
value (1.0) for the sphere. As expected, the accuracy of the
curvature estimate increases as the cell size decreases, rep-
resenting a higher resolution mesh, or conversely, a smaller
amount of curvature being modelled by each face. However,
on a mesh with valence three, the DCO method has signif-
icant error. This can be attributed to the obtuse triangles in
the mesh as supported by data from the mesh regularity vari-
ations discussed later. For coarse mesh resolution, there is
a spread in the curvature accuracy with higher valence pro-
ducing better curvature estimates.

Figure 4 indicates that the DCO method does not behave
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Figure 5: Impact of mesh cell size (φ) for Integral Eigen-
value Method on an ellipsoidal surface.

Figure 6: Impact of mesh cell size (φ) for Adjacent Normal
Cubic (exact normals) on a spherical surface.

as nicely for the ellipsoid (similarly for the saddle-shape).
The DCO method converges for valence 4 and 6 on the el-
lipsoid and for valence 6 on the saddle shape, but is off for
other valences. These results indicate that the valence of the
mesh vertices is important for the DCO method.

4.2. Integral Eigenvalue Method

Figure 5 shows that the integral eigenvalue method is rea-
sonably accurate for vertices where there are at least five
triangles coming together, but performs poorly for valence
three or four. The results for the saddle surface were similar.

4.3. Adjacent-Normal Cubic Method

One of the main differences between the adjacent-normal cu-
bic method and previous methods is that it uses more infor-
mation, namely the surface normals at the adjacent vertices.
For our test cases, we have an exact definition of the surface,

Figure 7: Impact of mesh cell size (φ) for Adjacent Normal
Cubic (computed normals) on a spherical surface.

so we can compare the method based on the actual normals
as well as normals calculated from the mesh.

Figure 6 illustrates the effect of cell size (φ) on the Gaus-
sian curvature calculation using the adjacent-normal cubic
method based on the exact normals for the spherical surface.
Note the convergence from below for valence 3, while all the
other valences converge from above, with little other effect
of the valence. This also holds for the ellipsoid, but for the
saddle shape, all valences converge from below, and there is
more relative effect due to the valence for larger values ofφ,
with larger valences being better than valence 3 or 4.

Figure 7 shows the same calculation for the adjacent-
normal cubic method using normals computed from the
mesh. This method does not appear to converge to the actual
curvature, even for the sphere case. There is also significant
variation due to the valence. Because these calculations do
not include any noise, and are on the same mesh as the ANC
method using exact normals, these errors must be attributed
to errors in the calculation of the normals.

4.4. Polynomial fit with tangent plane parameterization

Figure 8 shows how the 1-ring polynomial fit based on a pla-
nar parameterization converges for the saddle surface. All
valences converge to the correct value, but there is more er-
ror for valence three. The 2-ring polynomial fit behaves sim-
ilarly except that for the 2-ring fit valence 3 is more accurate
than the other valences.

4.5. Polynomial fit with Desbrun parameterization

Figure 9 shows the convergence for the 1-ring polynomial
fit based on the Desbrun natural parameterization applied to
the saddle surface. Note that the accuracy appears to be bet-
ter for higher valences. This is probably due to having more
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Figure 8: Impact of mesh cell size (φ) for a Polynimial (1-
ring) fit based on planar parameterization on a saddle sur-
face.

Figure 9: Impact of mesh cell size (φ) for a Polynimial (1-
ring) fit based on a Desbrun parameterization on a saddle
surface.

points used in the fit. The 2-ring and 3-ring versions of this
method, with even more points, converge well.

4.6. Radial basis function fit

The radial basis functions converge for the planar parameter-
izations, but not the natural ones. They are very susceptible
to noise in the normal direction, but not to mesh irregularity.
Increasing the number of rings only slightly increases the ac-
curacy. Note that most of the subsequent plots involving all
metrics will not include this method because the error is an
order of magnitude bigger in general.

4.7. Conic fit

The conic fit can model the sphere or ellipsoid exactly, pro-
ducing the exact curvature for those cases, independent of

Figure 10: Comparison of curvature calculation methods on
an ellipsoid.

Figure 11: Comparison of curvature calculation methods on
a saddle surface.

resolution. For the saddle surface, both the 2-ring and 3-ring
conic fits showed essentially the same trends as the 2-ring
polynomial fit based on the Desbrun natural parameteriza-
tion.

4.8. Accuracy Comparison

Figures 10 and 11 highlight the relative accuracy of the
methods in the absence of noise on an ellipsoid and a saddle
surface, respectively. All methods are plotted for valence 6,
which would be the preferred valence for an ideal triangular
mesh. All methods except the ANC method using computed
normals and the radial basis functions converge to the cor-
rect value. Note that while there are different rates of con-
vergence, the trends in accuracy are not consistent between
the ellipsoid and saddle shapes. The methods that have con-
sistently better accuracy are the discrete curvature operators,
integral eigenvalue method, polynomial fit using the Des-
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Figure 12: Impact of noise normal to the surface.

brun natural parameterization (1-ring and 2-ring), and the
1-ring polynomial fit using a planar parameterization.

4.9. Noise Sensitivity

Figure 12 shows the impact of the noise component normal
to the surface at the center point for a saddle surface. The
discrete curvature operators, integral eigenvalue method, ra-
dial basis functions, and the 1-ring polynomial fits (planar
and Desbrun parameterizations) were extremely sensitive to
noise. The conic 2-ring fit and the adjacent normal cubic
(computed normals) showed some noise sensitivity, while
the adjacent normal cubic (exact normals), and the polyno-
mial fits (planar and Desbrun parameterizations) using two
or three rings showed the least sensitivity to noise normal to
the surface.

Note that the methods which showed extreme sensitiv-
ity were the methods based on a 1-ring neighborhood. The
methods based on data from two or more rings were much
less sensitive.

Figure 13 shows the impact of the noise component along
the surface, by moving the center point toward or away from
a 1-ring point. Keep in mind that this noise really represents
issues of mesh quality and not the integrity of the surface
definition. The integral eigenvalue method, discrete curva-
ture operators, and the adjacent normal cubic(computed nor-
mals) have significant sensitivity to this mesh characteristic,
while the other methods show little dependence.

Figure 14 illustrates the effects of moving a 1-ring point
along the ring toward one of its neighbors on an ellipsoid.
Again, this represents issues of mesh quality and not the in-
tegrity of the surface definition. The discrete curvature oper-
ator shows some sensitivity up toθ = 30.0, but forθ > 30.0
where obtuse triangles come into play, the accuracy degrades
rapidly. The modified discrete curvature operator improves
this behavior by making a smooth transition between the

Figure 13: Impact of perturbations along surface normal to
ring.

Figure 14: Impact of perturbations on an ellipsoid surface
along ring.

area calculations as the angles become obtuse, however, the
method is still the most sensitive to this mesh characteris-
tic. The integral eigenvalue method also shows a sensitivity
to this noise component. The remaining methods have very
little dependence on this value.

4.10. Extension to General Surfaces

How do the results above, from analyzing specific behavior
for vertices with positive and negative Gaussian curvature,
apply to general surfaces? We applied these methods to a
torus (with meshes having three different levels of resolu-
tion) and another general surface built from rational polyno-
mials.

4.10.1. Curvature estimation on a torus

We applied the techniques to the baseline torus and to a torus
with noise added. The noise was simulated by randomly
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Figure 15: Surface plot of Gaussian curvature. Left: Exact.
Right: Integral eigenvalue method.

Figure 16: Segmentation. Left: Exact Gaussian curvature.
Right: Integral eigenvalue method.

moving each vertex a random distance in a random direction.
The maximum magnitude was 5.0% of the smallest spacing
in the mesh. Figure 15 shows the surface of a torus colored
by the exact Gaussian curvature value the integral eigenvalue
method, plotted on the same scale. Without noise, most of
the methods looked similar to the exact curvature plot, with
slight variations in the magnitudes of the curvature values.
There was more variation for the torus with noise, with the
DCO and modified DCO methods looking similar to the in-
tegral eigenvalue method plots.

Next, we used these curvatures to segment the surfaces
based on the sign of the Gaussian curvature. Figure 16 shows
the segmentation using the exact curvature and the integral
eigenvalue method. The DCO and modified DCO methods
again looked similar to the integral eigenvalue method, while
the other methods were more closely aligned with the exact
segmentation.

We also calculated the mean and standard deviation of the
error in the curvature estimates. These statistics were com-
piled for the overall surface, and into two groups, namely,
the vertices with positive Gaussian curvature, and those with
negative Gaussian curvature.

Figures 17, 18, 19, and 20 show logarithmic error plots
for the 8x32, 16x48, and 32x96 resolution meshes for the
torus for all methods. The error plots are capped at 120. For
each method we split the error into two groups based on the
sign of thecorrect curvature (negative on the left, positive
on the right). If the error is positive, we draw a white bar. If

8X24 torus 16X48 torus 32X64 torus

0

120 - + - + - + - + - + - + - + - + - + - + - + - +

20
10

DCO ANC DCO ANC DCO ANC
ANCE IEM ANCE IEM ANCE IEM

Figure 17: Logarithmic error on the torus for the four dis-
crete methods.

8X24 torus 16X48 torus 32X64 torus

0

120 - + - + - + - + - + - + - + - + - +

20

10

1 2 3 1 2 3 1 2 3
Conic Conic Conic

Figure 20: Logarithmic error on the torus for the conic
methods (1-ring, 2-ring, 3-ring).

it is negative, we draw a black bar. The size of the bar indi-
cates how many points were at this error level; smaller bars
indicate< 0.1%. The average is drawn in red across both
the positive and negative errors. For example, in Figure 17,
the DCO method has an average error of approximately 1.2
which decreases to less than one as the resolution of the torus
is increased. The method also tends to over predict both neg-
ative and positive curvature.

All three meshes for the torus represent very regular trian-
gulations. Although the torus has both positive and negative
Gaussian curvature, the constant curvature in one direction
and radial symmetry make this case fairly benign.

The DCO, ANC, ANCE, conic and polynomial meth-
ods all have very small error (< 1.0) on the high-resolution
mesh. The ANC method using computed normals is only
slightly worse than the ANC method using computed nor-
mals, probably due to the regularity of the mesh. The IEV
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Figure 18: Logarithmic error on the torus for the four polynomial methods (1-ring, 2-ring, 3-ring, planar parameterization and
Desbrun’s natural parameterization).
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Figure 19: Logarithmic error on the torus for the radial basis function methods (1-ring, 2-ring, 3-ring, planar parameterization
and Desbrun’s natural parameterization).

method shows no improvement as the mesh resolution is in-
creased.

For all methods, the 3-ring planar parameterization on the
low-res torus results in the mesh folding over on itself. This
results in excessively large curvature values (> 1000) for
the polynomial and radial basis function methods for some
points. The natural parameterization for the 2- and 3-ring
polynomial fit prevented this folding, resulting in better ac-
curacy. The radial basis functions saw a similar improvement
for the 1- and 2-ring cases.

4.10.2. Curvature estimation on a general surface

Figure 21 shows a more general surface built from rational
polynomials7. The Gaussian curvature ranges from -25 to
63. The mesh tessellation is very regular (squares split into
triangles).

Figure 21: Surface plot of exact Gaussian curvature for a
general surface with complex curvature.
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Figure 22: Logarithmic error on the general surface for the
four discrete methods.

The DCO, polynomial, radial basis functions, IEV, and
conic methods exhibit the same relative behavior as they
did on the torus, although the maximum error is higher. The
ANC and ANCE methods, however, exhibited excessive cur-
vature (> 1000) for a small number of points (see Figure 22).
These points all had the property that at least one of the edge
normals was nearly orthogonal to the center normal, forcing
the surface to “bow out”.

5. Conclusion

First, it is important to recognize that looking at surfaces col-
ored by the calculated curvature values is not very useful for
comparing methods. Noise, shape details of the surface, and
the surface triangulation effect the accuracy of the curvature
estimate and these effects are hard to detect by curvature vi-
sualization.

The overall mean and standard deviation of the error in the
curvature estimates can also be misleading. For example, the
ANC method has a small mean error for the torus, but this is
due to a somewhat larger over estimation of positive curva-
tures and over estimation of negative curvatures that cancel
each other out. By looking at the effects at vertices with pos-
itive and negative curvature separately, we can see trends for
the torus such as, the ANC method over predicts both posi-
tive and negative curvature, the IEM method under predicts
both positive and negative curvature, and the DCO and poly-
nomial fit with natural parameterization over predicts posi-
tive curvature and under predicts negative curvature. Several
of the other methods tend to have more error for negative
curvature vertices than for positive curvature vertices. We
found segmentation based on the sign of the Gaussian cur-
vature less sensitive to error since, even with errors in the
curvature magnitudes, the location where curvature is zero
may not change if the errors are “balanced”.

The impact of noise in the surface data is significant
for all of the 1-ring methods. Mesh irregularity can de-

grade the accuracy, particularly for the discrete methods and
the adjacent-normal cubic with computed normals. Several
methods are affected by the valence of the mesh. A valence
of six, which is the “ideal” for a triangular mesh, was consis-
tently good, but it is unrealistic to maintain exclusively for
real meshes.

Our evaluations included several new methods. The mod-
ified discrete curvature operator showed a slight improve-
ment in the behavior for obtuse angles, but the method is still
sensitive to mesh regularity and noise. The conic fit methods
performed fairly well on the torus, but did slightly less well
than the polynomial method for the more complex surface.
The radial basis function fit with the natural parameteriza-
tion did poorly even on the torus, even though the radial ba-
sis functions were adequate using a planar parameterization.
The polynomial fit with the natural parameterization showed
promise, and was consistent for the torus and more complex
surface.

The radial basis function, polynomial, and adjacent nor-
mal cubic methods all have cases where the calculated cur-
vature explodes. This happens because of folding, symmetry,
and numerical instability for the radial basis functions, fold-
ing for the polynomial case, and orthogonal normals for the
adjacent normal case. Both folding and orthogonal normals
are detectable, so it might be possible to screen for these
cases.

Different methods may be best for different circum-
stances. If it is known a priori that there is no noise in the
data and that the mesh triangulation is well-behaved, the
discrete curvature operator is a logical choice. In the pres-
ence of noise, the adjacent-normal cubic method is more ro-
bust, particularly if the normals can be computed accurately.
The 2-ring polynomial fit with a natural parameterization is
comparable in accuracy, very consistent, and very robust, al-
though somewhat more expensive to compute.

6. Improvement Recommendations and Future Work

Opportunities exist to improve both the discrete curvature
operators (better allocation of the area for obtuse triangles)
and the adjacent-normal cubic method (improved normal
calculation). Investigation of the effect of the valence is also
needed. We would like to evaluate the discrete curvature op-
erator combined with mesh smoothing16 compared to using
a metric such as the 2-ring polynomial fit that is less sen-
sitive to noise. We would also like to investigate the effect
of varying the weighting parameter in the Desbrun natural
parameterization. In addition, these algorithms need to be
applied to a wider variety of meshes to verify that the trends
are consistent.

Our ultimate goal is to use the error bounds on the cur-
vature and the parameterization techniques to develop more
robust algorithms for identifying features based on curva-
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Figure 23: Logarithmic error on the general surface for the four polynomial methods (1-ring, 2-ring, 3-ring, planar parame-
terization and Desbrun’s natural parameterization).

ture and for use in quantifying the difference between ob-
jects represented by surface meshes.
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