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The Edinburgh Logical Framework (LF) has been proposed as a system for

expressing inductively defined sets. I will present an inductive definition of the set of

manifold meshes in LF. This definition takes into account the topological characteri-

zation of meshes, namely their Euler Characteristic.

I will then present a set of dependent data types based on this inductive def-

inition. These data types are defined in a programming language based on LF. The

language’s type checking guarantees that any typeable expression represents a correct

manifold mesh. Furthermore, any mesh can be represented using these data types.

Hence, the encoding is sound and complete.
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Chapter 1

Introduction

Correct programming is difficult and verifying that a program is correct can be even

more difficult. The reasons for this are numerous. One major contributing factor is

that the proof of an algorithm’s correctness is often not tied closely to the implemen-

tation of the algorithm.

Algorithms are typically written recursively. This necessitates a constructive

proof of correctness if the programmer wishes to argue that the code is truly correct.

However, in many domains, constructive proofs can be large and cumbersome. Mesh

manipulation algorithms for computer graphics is one such domain.

Constructive proofs of topological properties are often difficult because many

properties must be verified universally. For example, a mesh must be orientable,

meaning intuitively that, at all points, a direction of “up” can be agreed upon [7]. (A

Möbius strip is one common example of a non-orientable surface.) It is clear that a

constructive proof which verifies this at every point in the mesh will be quite large.

As we shall see, writing constructive proofs by hand for all but the simplest

of meshes (and perhaps even for the simplest of meshes) is a practically impossible

task. Our goal, instead, is to allow the programmer to tie the construction of these

proofs directly to the implementation of the algorithm. If an algorithm is written in

such a way that it will produce not only the result, but also a proof that the result is

correct, then one can be certain that the algorithm is correct.
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We propose that these proofs be part of the type system, so that a mesh is

correctly typed only if it contains a constructive proof that it is a valid mesh. Then,

an algorithm will only type check if it produces this proof.

In this thesis, after some background information, we present our inductive

definition of manifold meshes. We argue that this representation is faithful. Then,

we present an embedding of these definitions in the Edinburgh Logical Framework

and argue that our syntax is adequate. We encode this definition as data types in

the programming language Rogue-Sigma-Pi which is based on the Edinburgh Logical

Framework. We then conclude with a discussion of program verification through

typing.

1.1 Major Contributions

This thesis makes the following contributions:

• Development of an inductive definition of manifold meshes.

• Embedding of manifold meshes in the Edinburgh Logical Framework

• Development of a set of dependent data types representing valid manifold

meshes.

• Discussion of program verification through type systems, and thoughts on fur-

ther language support for verification.

The remainder of this chapter provides background for the thesis. We first

give an overview of the Edinburgh Logical Framework. We then discuss dependent

types and the programming language Rogue-Sigma-Pi. Finally, we give an overview

of manifold meshes.

1.2 Overview of the Edinburgh Logical Framework

We present only a brief introduction to the fragment of the Edinburgh Logical Frame-

work (LF) that we will be using explicitly. The interested reader is referred to several

other sources [10, 5].
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kinds K ::= type |Πx :A.K
families A ::= a |Πx :A.B |AM
objects M ::= c |x |MN

Figure 1-1: A portion of the LF grammar.

LF is a type theory based on a dependently-typed λ-calculus and was originally

developed as a framework to define or represent logical systems. It has also served

as the underlying type theory for programming languages like Twelf [11] and Rogue-

Sigma-Pi [12]. Here, we will use it as a framework to represent inductively defined

sets.

LF uses the notion of judgments as types [5]. This means that proof rules are

expressed as typed terms, with the type of the term representing the judgment made.

Then, proof checking amounts to type checking.

The syntax for LF is given by the grammar1 for kinds, families, and objects

as shown in Figure 1-1. In addition, LF contains contexts and signatures, both of

which are finite sequences of definitions. A signature contains a list of types of kinds,

families, and objects in the framework and a context contains types of bound variables.

These two structures are used in type (proof) checking. Embedding a logic (or in our

case, meshes) amounts to defining a signature for type checking. Then, any typeable

term expressed using this signature will represent an object of that type.

For convenience, we will write x : A ⇒ K and x : A ⇒ B for Πx : A.K and

Πx :A.B respectively. If x does not occur free in K or B, we may omit it. Successive

occurrences of “⇒” associate to the right and capture-avoiding substitution occurs

as expected.

The reader who is familiar with λ-calculus, but not with dependent types, may

be somewhat confused by the expression Πx :A.B given in the grammar for families.

Πx : A.B is simply the type of a function which takes in an object of type A and

returns an object of type B, where B may be dependent on x. In the following

section, we will see that this is analogous to the type of a type constructor in RSP.

A type constructor takes in a term of some type and returns a new dependent type

indexed by that term.

1The complete grammar for LF’s syntax contains several other non-terminals for kinds and fam-
ilies, but we will not be using them here.
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We do not present the typing rules for LF here, as they can be found else-

where [5], and are beyond the scope of this thesis. They are, however, a (non-trivial)

extension of the typing rules for typed λ-calculus.

1.3 Overview of Dependent Types

Dependent types appear in many modern programming languages [2, 15, 14]. De-

pendent types simply allow the type of a term to be indexed by a piece (or pieces)

of data. For example, the type of a list could be indexed by a number indicating the

length of the list. We write dependent types using a functional notation, so the type

of our list would be list(n), where n is the length of the list.

Dependent types can be used for some level of static program verification. For

example, an algorithm which operates on a list could take in a number n and a list of

type list(n). The type checker would then guarantee that the list actually contained

n elements.

1.3.1 The Syntax of Rogue-Sigma-Pi

Here we briefly introduce the syntax necessary for understanding the fragment of

RSP used in this thesis. A more thorough discussion of RSP’s syntax can be found

elsewhere [14].

The “::” terminal is used infix to represent declarations. For example, the

statement num :: type ;; declares num to be a type within the system. Likewise,

the “:” terminal is used for type ascription in the declaration of dependent types (as

we will see later).

The “=>” terminal is a representational arrow. It is used infix to represent the

types of curried functions. For example, succ :: num => num;; declares succ to

be a term representing a function from nums to nums.

1.3.2 Dependent Types in Rogue-Sigma-Pi

Rogue-Sigma-Pi (RSP) [12, 14] is a dependently-typed programming language based

on LF which we will use to encode our inductive definition of meshes. In RSP,
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# numbers

num :: type ;;

zero :: num;;

succ :: num => num;;

# list type constructor

list :: num => type ;;

# empty list

nil :: list zero;;

# cons function operating on lists

cons :: t:trm => n:num => l:list n => list (succ n);;

Figure 1-2: Example RSP code showing dependently-typed lists.

dependent types are created with type constructors. A type constructor for the list

example presented above can be seen in Figure 1-2.

In the example presented in Figure 1-2, we also introduce a non-dependent

type num. We then create a term zero of type num, as well as a successor function

which takes in nums and returns nums.

1.3.3 Using Dependent Types to Verify Data

In this thesis, our main use of dependent types is to statically verify properties about

data. Continuing our example, we first introduce a nil term which represents an

empty list. Naturally, it has type list(zero). We then define the cons function on

lists. This function first takes in the term to cons onto the list, then n of type number,

and finally a list of type list(n) (all functions in RSP are represented in curried form).

The resulting term has type list(succ(n)).

Because nil and terms created with cons are the only terms which have type

list, we have statically guaranteed that any typeable term of type list(n) will have

n elements. Figure 1-3 shows examples of both typeable and untypeable list terms.

The error in the second term would be caught by the type checker.

By indexing terms with more elaborate data, we can statically guarantee many

more properties of our data. We will revisit this idea in Chapter 4.
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# a typeable term of type list(succ(zero))

cons y (succ zero) (cons x zero nil)

# an untypeable term

cons y (succ (succ zero)) (cons x zero nil)

Figure 1-3: Example of an untypeable expression in RSP.

Figure 1-4: Example of a manifold mesh

1.4 Overview of Meshes

A manifold mesh consists of vertexes, directed edges, and faces, that together form

a two-dimensional connected, orientable, compact manifold. Intuitively, a mesh can

be thought of as a discrete representation of the surface of a 3-dimensional object.

Indeed, Figure 1-4 gives an example of a manifold mesh representing the surface of a

dinosaur.

Meshes are typically expressed as a series of complexes. The C0 complex is

a set of vertexes. The C1 complex is a set of directed edges built from vertexes in

the C0 complex. Finally, the C2 complex is a set of faces built from edges in the C1

complex. Because any polygon can be triangulated, we consider only triangular faces

throughout this thesis.

Naturally, for a set of complexes to form a valid manifold mesh, certain proper-

ties must hold within and between the sets. In the following section, we will examine
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each of the topological requirements of a mesh, and give constraints on the complexes

which guarantee these requirements.

1.4.1 Properties of Manifold Meshes

In order for the complexes to represent a mesh, we must ensure that the structure

is connected, orientable, and manifold. With these three properties, compactness is

guaranteed, since each face is compact, and there are a finite number of them. We

examine each characteristic separately.

Connectedness

Connectedness is the most straightforward property to guarantee. We simply require

that the C0 and C1 complexes form a connected graph.

Orientability

Because the edges are directed, we can use them to define an orientation of each face.

As such, we have our first constraint. The set of three edges which form each face

must form a cycle. That is, the head of each edge in the face must be the tail of the

edge following it.

Then, as we travel from face to face, we need the property that our orientation

remain consistent. So, if two faces share an undirected edge, the directed edges in

each of the faces must go in opposite directions. (The converse also holds; if two faces

share the same directed edge, it is certain that the surface is not orientable.) From

this, we get our second constraint. No directed edge can appear in more than one

face.

Figure 1-5 shows several examples of face pairings. Note that the face pairing

on the left has a consistent orientation, where as the one in the middle does not.
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Figure 1-5: Examples of one well-formed face pairing (left) and two ill-formed face
pairings (middle, right). The middle face pairing is not orientable, and the right face
pairing is not manifold.

Manifoldness

A topological surface is manifold if each point on the surface is locally homeomorphic2

to the plane, and each point on the boundary is locally homeomorphic to the half-

plane. Any point inside a face certainly satisfies this property, as does any point in

the middle of an undirected edge, whether it be an interior or boundary edge. (Note

that a boundary edge is any directed edge where the opposite edge is not part of the

mesh.)

Vertexes which are not part of any boundary edge will also certainly satisfy the

property. However, vertexes which are part of a boundary edge may cause problems.

If a butterfly vertex exists, as shown on the right in Figure 1-5, the manifold property

will not hold. More formally, every boundary of the mesh must be a cycle made up

of a disjoint set of edges and vertexes, and no boundary may intersect itself.

1.4.2 Topological Characterization

The topological characterization (or topology) of a mesh is often of interest. This is

especially true when attempting to verify mesh manipulation algorithms. Often, one

important part of correctness is ensuring that in manipulating the mesh the topology

does not change.

2Two surfaces are locally homeomorphic at some point iff for some disc of radius ε > 0 around
the point, the two surfaces are identical.
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The topology of a compact, connected surface can be completely expressed by

its Euler Characteristic [7]. The Euler Characteristic is defined as

χ(M) = |V | − |E|+ |F |

where V is the set of vertexes, E is the set of undirected edges, and F is the set of

faces.

Because of the importance of the topological characterization of a mesh, we

will take great care to ensure that the Euler Characteristic is represented in our

embedding.



10

Chapter 2

Inductive Definition of Manifold

Meshes

In this chapter we present an inductive definition of manifold meshes. This inductive

definition is based on the mesh properties expressed in Section 1.4. This definition is

sound and complete, so we say that it is a faithful representation.

2.1 Overview of Notation

Our rules for the inductive definition of meshes are presented in deduction notation.

The items above the line in a rule can be used to build the items below the line.

In addition, some of these rules require that certain constraints are met. These

constraints are listed below the rules.

The symbols v, e, f , and m (possibly with subscripts) represent vertexes, edges,

faces and meshes, respectively, and the symbols V , E, and F represent sets of the

first three.

Finally, we introduce two binary relations, “6/ ” and “<”, used infix. An edge

e and a face set F are related by “6 / ” iff F does not contain any face using edge e.

This is expressed more formally as ∀f ∈ F.e /∈ ∂(f), where ∂(f) is the set of edges in

f (i.e. the boundary of f).

Two sets S1 and S2 are related by “<” iff every element in S1 can be found

in some element of S2. For example, V < E if, for every vertex v in V , there
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is some edge using vertex v in E. Again, this can be expressed more formally as

∀s ∈ S1.∃t ∈ S2.s ∈ ∂(t).

2.2 Mesh Primitives

Figure 2-1 presents the rules for the construction of mesh primitives of vertexes, edges,

and faces.

v make-vertex

v1 v2

e(v1, v2)
make-edge∗

e1(v1, v2) e2(v2, v3) e3(v3, v1)

f(e1, e2, e3)
make-face

∗ if v1 6= v2

Figure 2-1: Rules for mesh primitives

In the rule make-edge, we have our first constraint, namely, that an edge be

constructed from two unique vertexes. As we build up more rules, these constraints

will become more complex in order to meet the topological requirements expressed in

Section 1.4. Our proofs of soundness and completeness will draw on these constraints.

Note that there is no need to explicitly enforce that the three edges used

to make a face form a simple cycle. Because the two vertexes from each edge are

guaranteed to be unique, we are guaranteed a cycle.

2.3 The Complexes

The C0, C1, and C2 complexes are defined very similarly. For each, there is a nil

constructor rule that allows the construction of an empty complex. Because higher
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complexes must be built out of units from lower complexes, we require the lower

complexes in the antecedent.

2.3.1 The C0 Complex

Figure 2-2 presents the rules for the construction of the C0 complex.

C0(∅)
c0-nil

C0(V ) v

C0(V ∪ {v}) c0-cons∗

∗ if v /∈ V

Figure 2-2: Rules for the C0 complex

There are no constraints on what vertexes can be placed into the C0 complex

(except that a new vertex cannot already be a member of the set). The following two

complexes will place tighter constraints on what can be added.

2.3.2 The C1 Complex

Figure 2-3 presents the rules for the construction of the C1 complex.

In our definition, the C1 complex is made up of two sets of vertexes and a set

of edges. The first vertex set is the vertex set from the C0 complex on top of which

this complex will be built. This is evident from the c1-nil rule.

In order to understand the use of the second vertex set, we must first observe

that there are two rules that add edges to the complex. One rule allows the addition

of inner edges. When this rule is used, both directed edges are added to the edge set.

The other rule allows the addition of boundary edges. This rule has the additional

constraint that the first vertex of the edge not be in the second vertex set. Upon

adding the edge, this vertex is added to the set. We will argue later that this is

necessary to guarantee manifoldness.
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C0(V )

C1(V, ∅, ∅) c1-nil

C1(V, Vb, E) e(v1, v2)

C1(V, Vb, E ∪ {e(v1, v2), e(v2, v1)})
c1-cons-inner∗

C1(V, Vb, E) e(v1, v2)

C1(V, Vb ∪ {v1}, E ∪ {e(v1, v2)})
c1-cons-boundary†

∗ if {v1, v2} ⊆ V, e(v1, v2) /∈ E, e(v2, v1) /∈ E
and either E = ∅ or {v1} < E or {v2} < E

† if {v1, v2} ⊆ V, v1 /∈ Vb, e(v1, v2) /∈ E, e(v2, v1) /∈ E
and either E = ∅ or {v1} < E or {v2} < E

Figure 2-3: Rules for the C1 complex

It is important to note that if an edge is added to the edge set as a boundary

edge, the edge in the opposite direction can never be added. It is also important to

note that if the set of edges E is not empty, any additional edge added to the set must

share a vertex with some other edge in the set. This will be used to help guarantee

connectedness.

2.3.3 The C2 Complex

Figure 2-4 presents the rules for construction of the C2 complex.

C1(V, Vb, E)

C2(E, ∅) c2-nil

C2(E, F ) f(e1, e2, e3)

C2(E, F ∪ {f(e1, e2, e3)})
c2-cons∗

∗ if {e1, e2, e3} ⊆ E, e1 6/F, e2 6/F, e3 6/F

Figure 2-4: Rules for the C2 complex
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Compared with the definition of the C1 complex, the C2 complex is straightfor-

ward. The only constraint we place on the c2-cons rule is that the face being added

cannot share any edges with any other faces. This helps guarantee orientability.

2.4 Manifold Mesh Definition

Figure 2-5 presents the final rule for construction of a manifold mesh.

C0(V ) C1(V, Vb, E) C2(E, F )

m(V, E, F )
make-mesh∗

∗ if V < E < F

Figure 2-5: Rule for a manifold mesh

Throughout the definition of the complexes, we have been guaranteeing that

all structures in higher complexes be built out of structures in lower complexes. The

mesh construction rule makes a similar constraint in the opposite direction: it requires

that all of the vertexes be used in the edge set and all of the edges be used in the

face set. This will be important for both connectedness and orientability.

2.4.1 Proof of Soundness

Lemma 2.1 (Soundness). Any mesh formed by this inductive definition is a valid

manifold mesh.

Proof. Certainly this definition forms a structure of vertexes, edges, and faces. We

must argue that this structure is connected, orientable, and manifold.

Connectedness is the easiest property to check. The definition of the C1 complex

requires that any edge added after the first be connected to some other edge already

in the set. Because the definition of a mesh requires that every edge be used in some

face, and every vertex used in some edge, we will have a connected structure.
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The structure formed will also be orientable. This is because each face is ori-

entable since the directed edges making up each face must form a chain. Furthermore,

each directed edge can only be in one face, so if two faces share an undirected edge,

they will have opposite directed edges, and orientation will be preserved when crossing

between these two faces.

Finally, the structure formed will be manifold. Suppose a point exists in the

structure that fails to be manifold. Surely this does not occur within a face, because

faces are locally homeomorphic to the plane. Furthermore this point does not occur

on an edge, because every edge is part of some face. So, if the edge is a boundary

edge, a neighborhood around the point will be homeomorphic to the half-plane. If

the edge is an inner edge, our definitions require that a face be present on each side

of the edge. So this point, too, has a local neighborhood which is homeomorphic to

the plane.

Thus, the point where the structure fails to be manifold must be at a vertex

v. This vertex must be a boundary vertex, for if not, the structure would certainly

be manifold at the vertex. Furthermore, it must be part of two boundaries. But

boundaries are cycles of directed edges. So, there are two distinct boundary edges in

the structure which have a starting point of v. But this is impossible by the constraints

expressed in the definition of the C1 complex. Namely, only one boundary edge with

a particular start vertex can be added to the edge set. We reach a contradiction and

conclude that the structure is manifold.

Because the structure is connected, orientable, and manifold, we conclude that

the structure is a manifold mesh.

2.4.2 Proof of Completeness

Lemma 2.2 (Completeness). All manifold meshes are constructible by this induc-

tive definition.

Proof. Suppose toward contradiction that there is some mesh M which cannot be

constructed from this definition. Then there must be some vertex, edge, or face in M

which could not be added to the appropriate complex.
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The definition of the C0 complex makes no restriction on what can be added

(except that no vertex can be added twice), so all vertexes in M could be added by

the definition.

Likewise, the C2 complex only stipulates that a face cannot be added if it shares

an edge with another face. As we have already shown, if two faces that share an edge

occur in a structure, that structure is not orientable. Since M is orientable, this must

not be the case.

So then, there is some edge e in M which cannot be added to the C1 complex.

But e cannot be an inner edge, since there are no restrictions on adding inner edges

(except that edges cannot be added twice). So then e is a boundary edge. But if e

cannot be added then its start vertex vs is already in the set of boundary vertexes.

So then, there exists another boundary edge which has a start vertex vs. But since all

boundaries are cycles, there are two distinct cycles in M which contain vs. As we have

already argued, this means that M is not manifold at vs. We reach a contradiction

and conclude that no such M exists. Thus, our definition is complete.

2.4.3 A Faithful Representation

Theorem 2.3. The inductive definition given faithfully represent manifold meshes.

Proof. This immediately follows from Lemmas 2.1 and 2.2.
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Chapter 3

Embedding Manifold Meshes in LF

After having developed an inductive definition of manifold meshes in Chapter 2,

embedding this definition in LF is quite straightforward. The building blocks of

meshes (vertexes, edges, faces, vertex sets, and so on) correspond naturally to families

in LF. Furthermore, the inductive definitions correspond to terms which create objects

of those families.

Our only real concern is how to deal with the constraints on many of the induc-

tive definitions. These constraints must somehow be bundled into the constructors,

so that terms of a given family can only be constructed if the constraints are met.

We solve this problem by introducing two additional families, o and pf. Terms

of type o represent propositions, which may be true or false, and terms of type pf i

where i is of type o represent proofs of propositions. We have one proposition for

each of the constraints expressed in the inductive definitions. This will be explained

in greater detail in Section 3.2.

The majority of the signatures for the embedding are given in Appendix A,

rather than here, because they are nearly identical to the definitions from Chapter 2.

3.1 The Mesh Families

Figure 3-1 gives the signatures for the LF families representing the building blocks of

meshes.
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o :: type
pf :: o ⇒ type

num :: type

vertex-t :: type
edge-t :: type
face-t :: type

vertex-set-t :: num ⇒ type
edge-set-t :: nv :num ⇒ vertex-set-t nv ⇒

nbv :num ⇒ vertex-set-t nbv ⇒
num ⇒ type

face-set-t :: nv :num ⇒ vs :vertex-set-t nv ⇒
nbv :num ⇒ bvs :vertex-set-t nbv ⇒
ne:num ⇒ es :edge-set-t nv vs nbv bvs ne ⇒
num ⇒ type

mesh-t :: num ⇒ num ⇒ num ⇒ type

Figure 3-1: LF families for embedding of manifold meshes

The families representing vertex sets, edge sets, and face sets are dependent

on terms of other families in exactly the same way that our higher complexes were

dependent on the complexes below. We also see that these families, as well has

the mesh-t family, are dependent on terms of the num family. This addition allows

us to express the Euler Characteristic of the mesh. We will discuss this further in

Section 3.5.1

3.2 Propositions and Proof Rules

As stated previously, we want to be able to construct terms representing mesh build-

ing blocks only when the constraints from the corresponding rule in the inductive

definition are met. In other words, we want to be able to construct a term only when

we can prove the propositions necessary to satisfy constraints in the corresponding

rule of the inductive definition.
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In order to make this guarantee, we use terms of the family pf, a family con-

structed from a term of type o. For each particular o constructor (a term which has

type · · · ⇒ o), we introduce pf o constructors (terms which have type · · · ⇒ pf i

where i is a term of type o) such that a term of type pf i can exist only if i is a true

proposition. We call these terms “proof rules.” So, then, we can say that the family

pf i is inhabited only if i is provable.

We then augment our constructors for each of the mesh families with a require-

ment for a term of type pf i where i is a proposition representing a constraint that

must hold. Then, as long as our proof rules are valid, we can only construct terms of

mesh building blocks when the constraints are met.

The propositions expressed in the constraints of the inductive definitions are

all related to set containment or equality. Because our sets are finite, proofs of these

constraints are easy to build inductively.

Examples of propositions and proof rules can be seen throughout Appendix A.

All terms of type · · · ⇒ o are propositions, and all terms of type · · · ⇒ pf i (where i

is of type o) are proof rules.

3.3 Constructors for Mesh Objects

Using these propositions and proof rules, the constructors for mesh objects are simple

translations of the inductive definitions from Chapter 2. These constructors can be

seen in Appendix A.

3.4 Adequacy of Syntax

Theorem 3.1 (Adequacy). The syntax presented here is adequate to represent man-

ifold meshes.

Proof. Because our definition from Chapter 2 was a faithful representation of manifold

meshes, and because there is a bijection between those definitions and our constructors

for terms of the families representing mesh building blocks, our syntax is adequate as

long as our proof rules are correct. Our proof rules only express notions of equality,
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dis-equality, set containment and set non-containment. These proof rules are defined

in the conventional way for inductive proofs. Therefore, our proof rules are correct,

and our syntax is adequate.

3.5 Topology Equivalence Proofs

It is often important to argue that two meshes have the same topology. For example,

in mesh optimization algorithms, output is only correct if it has the same topology

as the input [6, 13, 4].

Creating families for our vertex, edge, and face sets that depend on a number

indicating the cardinality of the set allows us to give proofs about topology equiva-

lence.

3.5.1 Embedding the Euler Characteristic

As stated in Section 1.4.2, the Euler Characteristic uniquely describes the topological

characteristics of any connected, compact surface. In our embedding, we consider the

Euler Characteristic as a tuple of three numbers: the number of vertices, the number

of (undirected) edges, and the number of faces. Then, we define an equivalence

relation R on the tuples such that

(v1, e1, f1)R(v2, e2, f2) ⇔ v1 − e1 + f1 = v2 − e2 + f2

It is clear that if two tuples are in the same equivalence class, they represent the same

Euler Characteristic.

Observe that the constructors for vertex, edge, and face sets increment the

number corresponding to their cardinality with each additional item. (Also observe

that when two opposite inner edges are added to the edge set, the count is only

incremented by one, indicating the total number of undirected edges.) So then, the

Euler Characteristic of a mesh is embedded in the dependencies for the family of a

mesh.

From this, it is easy to build inductive proofs that two meshes have the same

topology. The base case we have chosen is that meshes with tuples (0, 0, 0) and (0, 0, 0)
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have the same topology. Then, by incrementing appropriate pairs (for example, v1

and f2) of numbers, an inductive proof can be developed. A complete set of proof

rules is given in Figure A-10 of Appendix A.

3.6 Encoding Meshes in RSP

The Edinburgh Logical Framework is a proper subset of the programming language

RSP. Because of this, it is straightforward to encode our syntax in RSP. (In fact, the

grammar of LF is essentially a subset of the grammar for RSP.) This encoding results

in a set of dependent data types for mesh building blocks. We will discuss uses of

these dependent data types in Chapter 4.

While it is trivial to take something properly embedded in LF and encode it

in RSP, the usefulness of RSP in developing an embedding should not be discounted.

It is tremendously useful to employ the type checker’s power while developing the

signatures for an embedding. We will discuss this issue further in Chapter 4 as well.
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Chapter 4

Discussion and Conclusion

In this chapter, we present some of the “softer” results of our research. We begin

discussing the pros and cons of program verification through type checking, as well

as helpful ideas we have come across along the way. Then, we discuss potential

properties of programming languages which we believe would aid program verification.

We conclude with plans for future work.

4.1 Program verification through type checking

A great deal of work has been done in the field of program verification through type

checking [1, 8, 9, 15]. Certainly, type checking in mainstream type-safe languages

such as Java makes some specific guarantees about program correctness. The goal,

however, is to push larger amounts of semantic information into the type system so

that more properties can be guaranteed statically.

As this thesis has shown, dependent types are a very powerful tool for creating

rich data types which make much stronger guarantees about the data. The ultimate

goal, however, is to use these dependent data types in algorithms. In our case, we

would like the type checker to statically verify that the algorithm produces a valid

mesh, as well as statically verify properties about the topological characterization

of the output. Even more ideally, we could combine type checking with coverage

checking so that we could statically verify that our algorithm will both produce valid

output and never fail to produce output.
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4.1.1 On Verified Algorithms

It is one thing to argue that a type system can be used to statically verify that an

algorithm will produce valid results. It is quite another thing to argue that a type

system can be used to statically verify that an algorithm produces the expected results,

that is, that the algorithm meets its specification.

In this thesis, we have worked quite hard toward the first goal. Yet to date,

even the simplest of algorithms, called edge split [6], remains elusive. This algorithm

takes in a mesh and an interior edge in that mesh, and creates an additional vertex

in the middle of that edge. Two new edges are then created from the new vertex to

the far vertexes of each of the faces bordered by the original edge.

It is quite straight forward to write this algorithm in an unverified way. How-

ever, cleaning up the proof terms so that the new structure type checks is a daunting

task. Perhaps the most important observation that has come out of this work is

that it appears to be exceedingly helpful to have deterministic proof rules. In other

words, it is detrimental to have proof rules which allow you to prove the same propo-

sition multiple ways. In fact, a non-deterministic proof system is nearly fatal if the

programming language does not have coverage checking.

4.1.2 Discrepancy With Typical Representations

One major problem with program verification is that the data structures typically

used to represent data are not well suited for program verification. For example,

meshes are often stored in a winged edge representation [3]. This data structure

leaves many of the properties of a mesh implicit, and is completely unsuitable for

program verification. However, many algorithms we wish to verify are implemented

using these data structures.

Representations which are suitable for program verification tend to duplicate

large amounts of data. (This is certainly true in our system, where an ASCII repre-

sentation of a mesh with two faces occupies nearly 4 gigabytes.)

These two methods of representation need to be reconciled if we ever hope to

have deployable statically verified code.
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4.1.3 Automated Proof Construction

We were able to implement an “algorithm” for iteratively constructing the proofs

necessary to build a mesh. The algorithm takes in any proposition and attempts to

return a proof of that proposition.

Using such an algorithm as a sub-procedure in other algorithms is completely

contrary to the idea of verification using the type system. If such an algorithm is

used, the verification given is no stronger than using assert calls in any mainstream

language. However, development of this algorithm was crucial in finding bugs in our

embedding.

When proof rules are deterministic the pattern matches required to correctly

implement an automated proof construction algorithm are completely determined. If

such an algorithm could be automatically produced, it would be a tremendous aid in

developing embeddings.

4.2 Desirable Properties of a Language

In this section, we examine some of the properties which we feel would be useful in a

programming language to be used for verification via the type system.

4.2.1 Refactoring Tools

Refactoring in a dependently typed language is very difficult due to the connection

between terms and types. This is especially true when types change. However,

refactoring is a crucial part of the iterative process of defining a type system for

program verification. This is an area that needs to be studied further.

4.2.2 Primitive proof constructs

In developing this embedding, a tremendous amount of effort was put into expressing

ideas of equality, dis-equality, and set containment. These concepts are needed in

almost all verification situations (especially in algorithmic verification.) Languages
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intended for program verification should attempt to streamline the process of express-

ing these theorems.

While we have not concerned ourselves at all with implementation efficiency,

this is certainly a real world concern. As such, it would be beneficial to have verified

data structures as language primitives which will operate quickly at run-time, but

could be abstracted as sets for program verification.

4.2.3 Input Capabilities

Input is a tricky matter when it comes to program verification. This is because input

does not enter the system with proofs about its correctness. As such, automated

proof construction could be used as a means for verifying input before making it a

part of the system. If the appropriate proofs could not be created, the input could

be rejected, possibly with some information as to why it was rejected.

4.3 Future Work

We plan to continue to work toward a verified mesh manipulation algorithm using

our system of dependent data types. Ideally, we would like to implement both edge

split and edge contraction algorithms, as these two algorithms completely cover the

topology-preserving modifications which can be made to meshes [6].

Additionally, we would like to work toward reducing the size of proofs within

the system. This can hopefully be accomplished by factoring out repeated proofs

within a term. While this will probably have no effect on the speed of type checking,

it should speed up computation considerably.
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Appendix A

LF Signatures for Meshes

This appendix contains all of the LF signatures for our embedding of manifold meshes.

They are grouped by the structure they embed. For example, all signatures related

to vertexes are grouped together.

Within each group, first the families are listed, then propositions about the

families. These are followed by constructors for objects of the families, and finally by

constructors for proofs of propositions.
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o :: type
pf :: o ⇒ type

Figure A-1: LF signatures for propositions and proofs

num :: type

num-eq :: num ⇒ num ⇒ o
num-not-eq :: num ⇒ num ⇒ o

zero :: num
succ :: num ⇒ num

num-eq-i :: n1 :num ⇒ pf (num-eq n1 n1 )
num-not-eq-i1 :: n:num ⇒ pf (num-not-eq zero (succ n))
num-not-eq-i2 :: n1 :num ⇒ n2 :num ⇒ pf (num-not-eq n1 n2 ) ⇒

pf (num-not-eq (succ n1 ) (succ n2 ))
num-not-eq-sym :: n1 :num ⇒ n2 :num ⇒ pf (num-not-eq n1 n2 ) ⇒

pf (num-not-eq n2 n1 )

Figure A-2: LF signatures for numbers

vertex-t :: type

vertex-eq :: vertex-t ⇒ vertex-t ⇒ o
vertex-not-eq :: vertex-t ⇒ vertex-t ⇒ o

vertex :: num ⇒ vertex-t

vertex-eq-i :: v1 :vertex-t ⇒ pf (vertex-eq v1 v1 )
vertex-not-eq-i :: n1 :num ⇒ n2 :num ⇒ pf (num-not-eq n1 n2 ) ⇒

pf (vertex-not-eq (vertex n1 ) (vertex n2 ))

Figure A-3: LF signatures for vertexes
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edge-t :: type

edge-eq :: edge-t ⇒ edge-t ⇒ o
edge-not-eq :: edge-t ⇒ edge-t ⇒ o
edges-join :: e1 :edge-t ⇒ e2 :edge-t ⇒ o

edges-opposite :: e1 :edge-t ⇒ e2 :edge-t ⇒ o

edge :: v1 :vertex-t ⇒ v2 :vertex-t ⇒
pf (vertex-not-eq v1 v2 ) ⇒ edge-t

edge-eq-i :: e1 :edge-t ⇒ pf (edge-eq e1 e1 )
edge-not-eq-i1 :: v1 :vertex-t ⇒ v2 :vertex-t ⇒

v3 :vertex-t ⇒ v4 :vertex-t ⇒
p1 :pf (vertex-not-eq v1 v2 ) ⇒
p2 :pf (vertex-not-eq v3 v4 ) ⇒
p3 :pf (vertex-not-eq v1 v3 ) ⇒
pf (edge-not-eq (edge v1 v2 p1 ) (edge v3 v4 p2 ))

edge-not-eq-i2 :: v1 :vertex-t ⇒ v2 :vertex-t ⇒
v3 :vertex-t ⇒ v4 :vertex-t ⇒
p1 :pf (vertex-not-eq v1 v2 ) ⇒
p2 :pf (vertex-not-eq v3 v4 ) ⇒
p3 :pf (vertex-not-eq v2 v4 ) ⇒
pf (edge-not-eq (edge v1 v2 p1 ) (edge v3 v4 p2 ))

edges-join-i :: v1 :vertex-t ⇒ v2 :vertex-t ⇒ v3 :vertex-t ⇒
p1 :pf (vertex-not-eq v1 v2 ) ⇒
p2 :pf (vertex-not-eq v2 v3 ) ⇒
pf (edges-join (edge v1 v2 p1 ) (edge v2 v3 p2 ))

edges-opposite-i :: v1 :vertex-t ⇒ v2 :vertex-t ⇒
p1 :pf (vertex-not-eq v1 v2 ) ⇒
p2 :pf (vertex-not-eq v2 v1 ) ⇒
pf (edges-opposite (edge v1 v2 p1 ) (edge v2 v1 p2 ))

Figure A-4: LF signatures for edges
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face-t :: type

face :: e1 :edge-t ⇒ e2 :edge-t ⇒ e3 :edge-t ⇒
p1 :pf (edges-join e1 e2 ) ⇒
p2 :pf (edges-join e2 e3 ) ⇒
p3 :pf (edges-join e3 e1 ) ⇒
face-t

Figure A-5: LF signatures for faces

vertex-set-t :: num ⇒ type

vertex-set-contains :: vertex-t ⇒ n:num ⇒ vertex-set-t n ⇒ o
vertex-set-not-contains :: vertex-t ⇒ n:num ⇒ vertex-set-t n ⇒ o

vertex-set-nil :: vertex-set-t zero
vertex-set-cons :: v :vertex-t ⇒ n:num ⇒ s :vertex-set-t n ⇒

p:pf (vertex-set-not-contains v n s) ⇒
vertex-set-t (succ n)

vertex-set-contains-i :: v :vertex-t ⇒ np:num ⇒ sp:vertex-set-t np ⇒
p:pf (vertex-set-not-contains v np sp) ⇒
pf (vertex-set-contains

v (succ np) (vertex-set-cons v np sp p))
vertex-set-contains-ext :: v :vertex-t ⇒ vp:vertex-t ⇒

np:num ⇒ sp:vertex-set-t np ⇒
p:pf (vertex-set-not-contains vp np sp) ⇒
pf (vertex-set-contains v np sp) ⇒
pf (vertex-set-contains

v (succ np) (vertex-set-cons vp np sp p))
vertex-set-not-contains-nil :: v :vertex-t ⇒

pf (vertex-set-not-contains
v zero vertex-set-nil)

vertex-set-not-contains-i :: v :vertex-t ⇒ vp:vertex-t ⇒
np:num ⇒ sp:vertex-set-t np ⇒
p:pf (vertex-set-not-contains vp np sp) ⇒
pf (vertex-set-not-contains v np sp) ⇒
pf (vertex-not-eq v vp) ⇒
pf (vertex-set-not-contains

v (succ np) (vertex-set-cons vp np sp p))

Figure A-6: LF signatures for vertex sets
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edge-set-t :: nv :num ⇒ vertex-set-t nv ⇒
nbv :num ⇒ vertex-set-t nbv ⇒
num ⇒ type

edge-set-contains :: edge-t ⇒ nv :num ⇒ vs :vertex-set-t nv ⇒
nbv :num ⇒ bvs :vertex-set-t nbv ⇒
n:num ⇒ edge-set-t nv vs nbv bvs n ⇒
o

edge-set-not-contains :: edge-t ⇒ nv :num ⇒ vs :vertex-set-t nv ⇒
nbv :num ⇒ bvs :vertex-set-t nbv ⇒
n:num ⇒ edge-set-t nv vs nbv bvs n ⇒
o

edge-set-connected-to-edge :: edge-t ⇒ nv :num ⇒ vs :vertex-set-t nv ⇒
nbv :num ⇒ bvs :vertex-set-t nbv ⇒
n:num ⇒ edge-set-t nv vs nbv bvs n ⇒
o

Figure A-7: LF signatures for edge sets
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edge-set-nil :: nv :num ⇒ vs :vertex-set-t nv ⇒
edge-set-t nv vs zero vertex-set-nil zero

edge-set-cons-inner :: v1 :vertex-t ⇒ v2 :vertex-t ⇒
p1 :pf (vertex-not-eq v1 v2 ) ⇒
p2 :pf (vertex-not-eq v2 v1 ) ⇒
nv :num ⇒ vs :vertex-set-t nv ⇒
nbv :num ⇒ bvs :vertex-set-t nbv ⇒
pf (vertex-set-contains v1 nv vs) ⇒
pf (vertex-set-contains v2 nv vs) ⇒
n:num ⇒ s :edge-set-t nv vs nbv bvs n ⇒
pf (edge-set-not-contains

(edge v1 v2 p1 ) nv vs nbv bvs n s) ⇒
pf (edge-set-not-contains

(edge v2 v1 p2 ) nv vs nbv bvs n s) ⇒
pf (edge-set-connected-to-edge

(edge v1 v2 p1 ) nv vs nbv bvs n s) ⇒
edge-set-t nv vs nbv bvs (succ n)

edge-set-cons-boundary :: v1 :vertex-t ⇒ v2 :vertex-t ⇒
p1 :pf (vertex-not-eq v1 v2 ) ⇒
p2 :pf (vertex-not-eq v2 v1 ) ⇒ nv :num ⇒
vs :vertex-set-t nv ⇒ nbv :num ⇒
bvs :vertex-set-t nbv ⇒
pf (vertex-set-contains v1 nv vs) ⇒
pf (vertex-set-contains v2 nv vs) ⇒
n:num ⇒ s :edge-set-t nv vs nbv bvs n ⇒
pf (edge-set-not-contains

(edge v1 v2 p1 ) nv vs nbv bvs n s) ⇒
pf (edge-set-not-contains

(edge v2 v1 p2 ) nv vs nbv bvs n s) ⇒
pf (edge-set-connected-to-edge

(edge v1 v2 p1 ) nv vs nbv bvs n s) ⇒
p3 :pf (vertex-set-not-contains v1 nbv bvs) ⇒
edge-set-t nv vs (succ nbv)

(vertex-set-cons v1 nbv bvs p3 ) (succ n)

LF signatures for edge sets (continued)
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edge-set-contains-i-inner1 :: v1 :vertex-t ⇒ v2 :vertex-t ⇒
p1 :pf (vertex-not-eq v1 v2 ) ⇒
p2 :pf (vertex-not-eq v2 v1 ) ⇒
nv :num ⇒ vs :vertex-set-t nv ⇒
nbv :num ⇒ bvs :vertex-set-t nbv ⇒
p3 :pf (vertex-set-contains v1 nv vs) ⇒
p4 :pf (vertex-set-contains v2 nv vs) ⇒
n:num ⇒ s :edge-set-t nv vs nbv bvs n ⇒
p5 :pf (edge-set-not-contains

(edge v1 v2 p1 ) nv vs nbv bvs n s) ⇒
p6 :pf (edge-set-not-contains

(edge v2 v1 p2 ) nv vs nbv bvs n s) ⇒
p7 :pf (edge-set-connected-to-edge

(edge v1 v2 p1 ) nv vs nbv bvs n s) ⇒
pf (edge-set-contains

(edge v1 v2 p1 ) nv vs nbv bvs (succ n)
(edge-set-cons-inner

v1 v2 p1 p2 nv vs nbv bvs
p3 p4 n s p5 p6 p7 ))

edge-set-contains-i-inner2 :: v1 :vertex-t ⇒ v2 :vertex-t ⇒
p1 :pf (vertex-not-eq v1 v2 ) ⇒
p2 :pf (vertex-not-eq v2 v1 ) ⇒
nv :num ⇒ vs :vertex-set-t nv ⇒
nbv :num ⇒ bvs :vertex-set-t nbv ⇒
p3 :pf (vertex-set-contains v1 nv vs) ⇒
p4 :pf (vertex-set-contains v2 nv vs) ⇒
n:num ⇒ s :edge-set-t nv vs nbv bvs n ⇒
p5 :pf (edge-set-not-contains

(edge v1 v2 p1 ) nv vs nbv bvs n s) ⇒
p6 :pf (edge-set-not-contains

(edge v2 v1 p2 ) nv vs nbv bvs n s) ⇒
p7 :pf (edge-set-connected-to-edge

(edge v1 v2 p1 ) nv vs nbv bvs n s) ⇒
pf (edge-set-contains

(edge v2 v1 p2 ) nv vs nbv bvs (succ n)
(edge-set-cons-inner

v1 v2 p1 p2 nv vs nbv bvs
p3 p4 n s p5 p6 p7 ))

LF signatures for edge sets (continued)



33

edge-set-contains-i-boundary :: v1 :vertex-t ⇒ v2 :vertex-t ⇒
p1 :pf (vertex-not-eq v1 v2 ) ⇒
p2 :pf (vertex-not-eq v2 v1 ) ⇒
nv :num ⇒ vs :vertex-set-t nv ⇒
nbv :num ⇒ bvs :vertex-set-t nbv ⇒
p3 :pf (vertex-set-contains v1 nv vs) ⇒
p4 :pf (vertex-set-contains v2 nv vs) ⇒
n:num ⇒ s :edge-set-t nv vs nbv bvs n ⇒
p5 :pf (edge-set-not-contains

(edge v1 v2 p1 ) nv vs nbv bvs n s) ⇒
p6 :pf (edge-set-not-contains

(edge v2 v1 p2 ) nv vs nbv bvs n s) ⇒
p7 :pf (edge-set-connected-to-edge

(edge v1 v2 p1 ) nv vs nbv bvs n s) ⇒
p8 :pf (vertex-set-not-contains v1 nbv bvs) ⇒
pf (edge-set-contains

(edge v1 v2 p1 ) nv vs
(succ nbv)
(vertex-set-cons v1 nbv bvs p8 )
(succ n)
(edge-set-cons-boundary

v1 v2 p1 p2 nv vs nbv bvs
p3 p4 n s p5 p6 p7 p8 ))

LF signatures for edge sets (continued)
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edge-set-contains-ext-inner :: e:edge-t ⇒ v1 :vertex-t ⇒ v2 :vertex-t ⇒
p1 :pf (vertex-not-eq v1 v2 ) ⇒
p2 :pf (vertex-not-eq v2 v1 ) ⇒
nv :num ⇒ vs :vertex-set-t nv ⇒
nbv :num ⇒ bvs :vertex-set-t nbv ⇒
p3 :pf (vertex-set-contains v1 nv vs) ⇒
p4 :pf (vertex-set-contains v2 nv vs) ⇒
n:num ⇒ s :edge-set-t nv vs nbv bvs n ⇒
p5 :pf (edge-set-not-contains

(edge v1 v2 p1 ) nv vs nbv bvs n s) ⇒
p6 :pf (edge-set-not-contains

(edge v2 v1 p2 ) nv vs nbv bvs n s) ⇒
p7 :pf (edge-set-connected-to-edge

(edge v1 v2 p1 ) nv vs nbv bvs n s) ⇒
pf (edge-set-contains e nv vs nbv bvs n s) ⇒
pf (edge-set-contains e nv vs nbv bvs (succ n)

(edge-set-cons-inner
v1 v2 p1 p2 nv vs nbv bvs
p3 p4 n s p5 p6 p7 ))

LF signatures for edge sets (continued)
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edge-set-contains-ext-boundary :: e:edge-t ⇒ v1 :vertex-t ⇒ v2 :vertex-t ⇒
p1 :pf (vertex-not-eq v1 v2 ) ⇒
p2 :pf (vertex-not-eq v2 v1 ) ⇒
nv :num ⇒ vs :vertex-set-t nv ⇒
nbv :num ⇒ bvs :vertex-set-t nbv ⇒
p3 :pf (vertex-set-contains v1 nv vs) ⇒
p4 :pf (vertex-set-contains v2 nv vs) ⇒
n:num ⇒ s :edge-set-t nv vs nbv bvs n ⇒
p5 :pf (edge-set-not-contains

(edge v1 v2 p1 ) nv vs nbv bvs n s) ⇒
p6 :pf (edge-set-not-contains

(edge v2 v1 p2 ) nv vs nbv bvs n s) ⇒
p7 :pf (edge-set-connected-to-edge

(edge v1 v2 p1 ) nv vs nbv bvs n s) ⇒
p8 :pf (vertex-set-not-contains v1 nbv bvs) ⇒
pf (edge-set-contains e nv vs nbv bvs n s) ⇒
pf (edge-set-contains e nv vs

(succ nbv) (vertex-set-cons v1 nbv bvs p8 )
(succ n)
(edge-set-cons-boundary

v1 v2 p1 p2 nv vs nbv bvs
p3 p4 n s p5 p6 p7 p8 ))

LF signatures for edge sets (continued)
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edge-set-not-contains-nil :: e:edge-t ⇒ nv :num ⇒ vs :vertex-set-t nv ⇒
pf (edge-set-not-contains

e nv vs zero vertex-set-nil zero
(edge-set-nil nv vs))

edge-set-not-contains-i-inner :: e:edge-t ⇒ v1 :vertex-t ⇒ v2 :vertex-t ⇒
p1 :pf (vertex-not-eq v1 v2 ) ⇒
p2 :pf (vertex-not-eq v2 v1 ) ⇒
nv :num ⇒ vs :vertex-set-t nv ⇒
nbv :num ⇒ bvs :vertex-set-t nbv ⇒
p3 :pf (vertex-set-contains v1 nv vs) ⇒
p4 :pf (vertex-set-contains v2 nv vs) ⇒
n:num ⇒ s :edge-set-t nv vs nbv bvs n ⇒
p5 :pf (edge-set-not-contains

(edge v1 v2 p1 ) nv vs nbv bvs n s) ⇒
p6 :pf (edge-set-not-contains

(edge v2 v1 p2 ) nv vs nbv bvs n s) ⇒
p7 :pf (edge-set-connected-to-edge

(edge v1 v2 p1 ) nv vs nbv bvs n s) ⇒
pf (edge-set-not-contains

e nv vs nbv bvs n s) ⇒
pf (edge-not-eq e (edge v1 v2 p1 )) ⇒
pf (edge-not-eq e (edge v2 v1 p2 )) ⇒
pf (edge-set-not-contains e nv vs nbv bvs

(succ n)
(edge-set-cons-inner

v1 v2 p1 p2 nv vs nbv bvs
p3 p4 n s p5 p6 p7 ))

LF signatures for edge sets (continued)
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edge-set-not-contains-i-boundary :: e:edge-t ⇒ v1 :vertex-t ⇒ v2 :vertex-t ⇒
p1 :pf (vertex-not-eq v1 v2 ) ⇒
p2 :pf (vertex-not-eq v2 v1 ) ⇒
nv :num ⇒ vs :vertex-set-t nv ⇒
nbv :num ⇒ bvs :vertex-set-t nbv ⇒
p3 :pf (vertex-set-contains v1 nv vs) ⇒
p4 :pf (vertex-set-contains v2 nv vs) ⇒
n:num ⇒ s :edge-set-t nv vs nbv bvs n ⇒
p5 :pf (edge-set-not-contains

(edge v1 v2 p1 ) nv vs nbv bvs n s) ⇒
p6 :pf (edge-set-not-contains

(edge v2 v1 p2 ) nv vs nbv bvs n s) ⇒
p7 :pf (edge-set-connected-to-edge

(edge v1 v2 p1 ) nv vs nbv bvs n s) ⇒
p8 :pf (vertex-set-not-contains

v1 nbv bvs) ⇒
pf (edge-set-not-contains

e nv vs nbv bvs n s) ⇒
pf (edge-not-eq e (edge v1 v2 p1 )) ⇒
pf (edge-set-not-contains e nv vs

(succ nbv)
(vertex-set-cons v1 nbv bvs p8 )
(succ n)
(edge-set-cons-boundary

v1 v2 p1 p2 nv vs nbv bvs
p3 p4 n s p5 p6 p7 p8 ))

LF signatures for edge sets (continued)
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edge-set-connected-to-edge-nil :: e:edge-t ⇒
nv :num ⇒ vs :vertex-set-t nv ⇒
pf (edge-set-connected-to-edge

e nv vs zero vertex-set-nil zero
(edge-set-nil nv vs))

edge-set-connected-to-edge-i1 :: v1 :vertex-t ⇒ v2 :vertex-t ⇒ v3 :vertex-t ⇒
p1 :pf (vertex-not-eq v1 v2 ) ⇒
p2 :pf (vertex-not-eq v1 v3 ) ⇒
nv :num ⇒ vs :vertex-set-t nv ⇒
nbv :num ⇒ bvs :vertex-set-t nbv ⇒
n:num ⇒ s :edge-set-t nv vs nbv bvs n ⇒
pf (edge-set-contains

(edge v1 v3 p2 ) nv vs nbv bvs n s) ⇒
pf (edge-set-connected-to-edge

(edge v1 v2 p1 ) nv vs nbv bvs n s)
edge-set-connected-to-edge-i2 :: v1 :vertex-t ⇒ v2 :vertex-t ⇒ v3 :vertex-t ⇒

p1 :pf (vertex-not-eq v1 v2 ) ⇒
p2 :pf (vertex-not-eq v3 v1 ) ⇒
nv :num ⇒ vs :vertex-set-t nv ⇒
nbv :num ⇒ bvs :vertex-set-t nbv ⇒
n:num ⇒ s :edge-set-t nv vs nbv bvs n ⇒
pf (edge-set-contains

(edge v3 v1 p2 ) nv vs nbv bvs n s) ⇒
pf (edge-set-connected-to-edge

(edge v1 v2 p1 ) nv vs nbv bvs n s)
edge-set-connected-to-edge-sym :: v1 :vertex-t ⇒ v2 :vertex-t ⇒

p1 :pf (vertex-not-eq v1 v2 ) ⇒
p2 :pf (vertex-not-eq v2 v1 ) ⇒
nv :num ⇒ vs :vertex-set-t nv ⇒
nbv :num ⇒ bvs :vertex-set-t nbv ⇒
n:num ⇒ s :edge-set-t nv vs nbv bvs n ⇒
pf (edge-set-connected-to-edge

(edge v2 v1 p2 ) nv vs nbv bvs n s) ⇒
pf (edge-set-connected-to-edge

(edge v1 v2 p1 ) nv vs nbv bvs n s)

LF signatures for edge sets (continued)
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face-set-t :: nv :num ⇒ vs :vertex-set-t nv ⇒
nbv :num ⇒ bvs :vertex-set-t nbv ⇒
ne:num ⇒ es :edge-set-t nv vs nbv bvs ne ⇒
num ⇒ type

face-set-cfwe :: edge-t ⇒ nv :num ⇒ vs :vertex-set-t nv ⇒
nbv :num ⇒ bvs :vertex-set-t nbv ⇒
ne:num ⇒ es :edge-set-t nv vs nbv bvs ne ⇒
n:num ⇒ face-set-t nv vs nbv bvs ne es n ⇒
o

face-set-not-cfwe :: edge-t ⇒ nv :num ⇒ vs :vertex-set-t nv ⇒
nbv :num ⇒ bvs :vertex-set-t nbv ⇒
ne:num ⇒ es :edge-set-t nv vs nbv bvs ne ⇒
n:num ⇒ face-set-t nv vs nbv bvs ne es n ⇒
o

Figure A-8: LF signatures for face sets
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face-set-nil :: nv :num ⇒ vs :vertex-set-t nv ⇒
nbv :num ⇒ bvs :vertex-set-t nbv ⇒
ne:num ⇒ es :edge-set-t nv vs nbv bvs ne ⇒
face-set-t nv vs nbv bvs ne es zero

face-set-cons :: e1 :edge-t ⇒ e2 :edge-t ⇒ e3 :edge-t ⇒
p1 :pf (edges-join e1 e2 ) ⇒
p2 :pf (edges-join e2 e3 ) ⇒
p3 :pf (edges-join e3 e1 ) ⇒
nv :num ⇒ vs :vertex-set-t nv ⇒
nbv :num ⇒ bvs :vertex-set-t nbv ⇒
ne:num ⇒ es :edge-set-t nv vs nbv bvs ne ⇒
n:num ⇒ s :face-set-t nv vs nbv bvs ne es n ⇒
p4 :pf (edge-set-contains

e1 nv vs nbv bvs ne es) ⇒
p5 :pf (edge-set-contains

e2 nv vs nbv bvs ne es) ⇒
p6 :pf (edge-set-contains

e3 nv vs nbv bvs ne es) ⇒
p7 :pf (face-set-not-cfwe

e1 nv vs nbv bvs ne es n s) ⇒
p8 :pf (face-set-not-cfwe

e2 nv vs nbv bvs ne es n s) ⇒
p9 :pf (face-set-not-cfwe

e3 nv vs nbv bvs ne es n s) ⇒
face-set-t nv vs nbv bvs ne es (succ n)

LF signatures for face sets (continued)
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face-set-cfwe-i1 :: e1 :edge-t ⇒ e2 :edge-t ⇒ e3 :edge-t ⇒
p1 :pf (edges-join e1 e2 ) ⇒
p2 :pf (edges-join e2 e3 ) ⇒
p3 :pf (edges-join e3 e1 ) ⇒
nv :num ⇒ vs :vertex-set-t nv ⇒
nbv :num ⇒ bvs :vertex-set-t nbv ⇒
ne:num ⇒ es :edge-set-t nv vs nbv bvs ne ⇒
n:num ⇒ s :face-set-t nv vs nbv bvs ne es n ⇒
p4 :pf (edge-set-contains

e1 nv vs nbv bvs ne es) ⇒
p5 :pf (edge-set-contains

e2 nv vs nbv bvs ne es) ⇒
p6 :pf (edge-set-contains

e3 nv vs nbv bvs ne es) ⇒
p7 :pf (face-set-not-cfwe

e1 nv vs nbv bvs ne es n s) ⇒
p8 :pf (face-set-not-cfwe

e2 nv vs nbv bvs ne es n s) ⇒
p9 :pf (face-set-not-cfwe

e3 nv vs nbv bvs ne es n s) ⇒
pf (face-set-cfwe

e1 nv vs nbv bvs ne es
(succ n)
(face-set-cons

e1 e2 e3 p1 p2 p3
nv vs nbv bvs ne es n s
p4 p5 p6 p7 p8 p9 ))

LF signatures for face sets (continued)
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face-set-cfwe-i2 :: e1 :edge-t ⇒ e2 :edge-t ⇒ e3 :edge-t ⇒
p1 :pf (edges-join e1 e2 ) ⇒
p2 :pf (edges-join e2 e3 ) ⇒
p3 :pf (edges-join e3 e1 ) ⇒
nv :num ⇒ vs :vertex-set-t nv ⇒
nbv :num ⇒ bvs :vertex-set-t nbv ⇒
ne:num ⇒ es :edge-set-t nv vs nbv bvs ne ⇒
n:num ⇒ s :face-set-t nv vs nbv bvs ne es n ⇒
p4 :pf (edge-set-contains

e1 nv vs nbv bvs ne es) ⇒
p5 :pf (edge-set-contains

e2 nv vs nbv bvs ne es) ⇒
p6 :pf (edge-set-contains

e3 nv vs nbv bvs ne es) ⇒
p7 :pf (face-set-not-cfwe

e1 nv vs nbv bvs ne es n s) ⇒
p8 :pf (face-set-not-cfwe

e2 nv vs nbv bvs ne es n s) ⇒
p9 :pf (face-set-not-cfwe

e3 nv vs nbv bvs ne es n s) ⇒
pf (face-set-cfwe

e2 nv vs nbv bvs ne es
(succ n)
(face-set-cons

e1 e2 e3 p1 p2 p3
nv vs nbv bvs ne es n s
p4 p5 p6 p7 p8 p9 ))

LF signatures for face sets (continued)
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face-set-cfwe-i3 :: e1 :edge-t ⇒ e2 :edge-t ⇒ e3 :edge-t ⇒
p1 :pf (edges-join e1 e2 ) ⇒
p2 :pf (edges-join e2 e3 ) ⇒
p3 :pf (edges-join e3 e1 ) ⇒
nv :num ⇒ vs :vertex-set-t nv ⇒
nbv :num ⇒ bvs :vertex-set-t nbv ⇒
ne:num ⇒ es :edge-set-t nv vs nbv bvs ne ⇒
n:num ⇒ s :face-set-t nv vs nbv bvs ne es n ⇒
p4 :pf (edge-set-contains

e1 nv vs nbv bvs ne es) ⇒
p5 :pf (edge-set-contains

e2 nv vs nbv bvs ne es) ⇒
p6 :pf (edge-set-contains

e3 nv vs nbv bvs ne es) ⇒
p7 :pf (face-set-not-cfwe

e1 nv vs nbv bvs ne es n s) ⇒
p8 :pf (face-set-not-cfwe

e2 nv vs nbv bvs ne es n s) ⇒
p9 :pf (face-set-not-cfwe

e3 nv vs nbv bvs ne es n s) ⇒
pf (face-set-cfwe

e3 nv vs nbv bvs ne es
(succ n)
(face-set-cons

e1 e2 e3 p1 p2 p3
nv vs nbv bvs ne es n s
p4 p5 p6 p7 p8 p9 ))

LF signatures for face sets (continued)
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face-set-cfwe-ext :: e:edge-t ⇒ e1 :edge-t ⇒ e2 :edge-t ⇒ e3 :edge-t ⇒
p1 :pf (edges-join e1 e2 ) ⇒
p2 :pf (edges-join e2 e3 ) ⇒
p3 :pf (edges-join e3 e1 ) ⇒
nv :num ⇒ vs :vertex-set-t nv ⇒
nbv :num ⇒ bvs :vertex-set-t nbv ⇒
ne:num ⇒ es :edge-set-t nv vs nbv bvs ne ⇒
n:num ⇒ s :face-set-t nv vs nbv bvs ne es n ⇒
p4 :pf (edge-set-contains

e1 nv vs nbv bvs ne es) ⇒
p5 :pf (edge-set-contains

e2 nv vs nbv bvs ne es) ⇒
p6 :pf (edge-set-contains

e3 nv vs nbv bvs ne es) ⇒
p7 :pf (face-set-not-cfwe

e1 nv vs nbv bvs ne es n s) ⇒
p8 :pf (face-set-not-cfwe

e2 nv vs nbv bvs ne es n s) ⇒
p9 :pf (face-set-not-cfwe

e3 nv vs nbv bvs ne es n s) ⇒
pf (face-set-cfwe

e nv vs nbv bvs ne es n s) ⇒
pf (face-set-cfwe

e nv vs nbv bvs ne es (succ n)
(face-set-cons

e1 e2 e3 p1 p2 p3
nv vs nbv bvs ne es n s
p4 p5 p6 p7 p8 p9 ))

LF signatures for face sets (continued)
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face-set-not-cfwe-nil :: e:edge-t ⇒
nv :num ⇒ vs :vertex-set-t nv ⇒
nbv :num ⇒ bvs :vertex-set-t nbv ⇒
ne:num ⇒ es :edge-set-t nv vs nbv bvs ne ⇒
pf (face-set-not-cfwe

e nv vs nbv bvs ne es zero
(face-set-nil nv vs nbv bvs ne es))

face-set-not-cfwe-i :: e:edge-t ⇒ e1 :edge-t ⇒ e2 :edge-t ⇒ e3 :edge-t ⇒
p1 :pf (edges-join e1 e2 ) ⇒
p2 :pf (edges-join e2 e3 ) ⇒
p3 :pf (edges-join e3 e1 ) ⇒
nv :num ⇒ vs :vertex-set-t nv ⇒
nbv :num ⇒ bvs :vertex-set-t nbv ⇒
ne:num ⇒ es :edge-set-t nv vs nbv bvs ne ⇒
n:num ⇒ s :face-set-t nv vs nbv bvs ne es n ⇒
p4 :pf (edge-set-contains

e1 nv vs nbv bvs ne es) ⇒
p5 :pf (edge-set-contains

e2 nv vs nbv bvs ne es) ⇒
p6 :pf (edge-set-contains

e3 nv vs nbv bvs ne es) ⇒
p7 :pf (face-set-not-cfwe

e1 nv vs nbv bvs ne es n s) ⇒
p8 :pf (face-set-not-cfwe

e2 nv vs nbv bvs ne es n s) ⇒
p9 :pf (face-set-not-cfwe

e3 nv vs nbv bvs ne es n s) ⇒
pf (edge-not-eq e e1 ) ⇒
pf (edge-not-eq e e2 ) ⇒
pf (edge-not-eq e e3 ) ⇒
pf (face-set-not-cfwe

e nv vs nbv bvs ne es n s) ⇒
pf (face-set-not-cfwe

e nv vs nbv bvs ne es (succ n)
(face-set-cons

e1 e2 e3 p1 p2 p3
nv vs nbv bvs ne es n s
p4 p5 p6 p7 p8 p9 ))

LF signatures for face sets (continued)
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mesh-t :: num ⇒ num ⇒ num ⇒ type

all-vertexes-in-es :: nv-v :num ⇒ vs-v :vertex-set-t nv-v ⇒
nv-e:num ⇒ vs-e:vertex-set-t nv-e ⇒
nbv-e:num ⇒ bvs-e:vertex-set-t nbv-e ⇒
ne-e:num ⇒ es-e:edge-set-t nv-e vs-e nbv-e bvs-e ne-e ⇒
o

all-edges-in-fs :: nv-e:num ⇒ vs-e:vertex-set-t nv-e ⇒
nbv-e:num ⇒ bvs-e:vertex-set-t nbv-e ⇒
ne-e:num ⇒ es-e:edge-set-t nv-e vs-e nbv-e bvs-e ne-e ⇒
nv-f :num ⇒ vs-f :vertex-set-t nv-f ⇒
nbv-f :num ⇒ bvs-f :vertex-set-t nbv-f ⇒
ne-f :num ⇒ es-f :edge-set-t nv-f vs-f nbv-f bvs-f ne-f ⇒
nf-f :num ⇒
fs-f :face-set-t nv-f vs-f nbv-f bvs-f ne-f es-f nf-f ⇒
o

mesh :: nv :num ⇒ vs :vertex-set-t nv ⇒
nbv :num ⇒ bvs :vertex-set-t nbv ⇒
ne:num ⇒ es :edge-set-t nv vs nbv bvs ne ⇒
nf :num ⇒ fs :face-set-t nv vs nbv bvs ne es nf ⇒
pf (all-vertexes-in-es

nv vs
nv vs nbv bvs ne es) ⇒

pf (all-edges-in-fs
nv vs nbv bvs ne es
nv vs nbv bvs ne es nf fs) ⇒

mesh-t nv ne nf

Figure A-9: LF signatures for meshes
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all-vertexes-in-es-nil :: nv-e:num ⇒ vs-e:vertex-set-t nv-e ⇒
nbv-e:num ⇒ bvs-e:vertex-set-t nbv-e ⇒
ne-e:num ⇒
es-e:edge-set-t nv-e vs-e nbv-e bvs-e ne-e ⇒
pf (all-vertexes-in-es

zero vertex-set-nil
nv-e vs-e nbv-e bvs-e ne-e es-e)

all-vertexes-in-es-ext-l :: v1 :vertex-t ⇒ v2 :vertex-t ⇒
p1 :pf (vertex-not-eq v1 v2 ) ⇒
nv-v :num ⇒ vs-v :vertex-set-t nv-v ⇒
p2 :pf (vertex-set-not-contains

v1 nv-v vs-v) ⇒
nv-e:num ⇒ vs-e:vertex-set-t nv-e ⇒
nbv-e:num ⇒ bvs-e:vertex-set-t nbv-e ⇒
ne-e:num ⇒
es-e:edge-set-t nv-e vs-e nbv-e bvs-e ne-e ⇒
pf (edge-set-contains

(edge v1 v2 p1 )
nv-e vs-e nbv-e bvs-e ne-e es-e) ⇒

pf (all-vertexes-in-es
nv-v vs-v nv-e vs-e nbv-e bvs-e ne-e es-e) ⇒

pf (all-vertexes-in-es
(succ nv-v)
(vertex-set-cons v1 nv-v vs-v p2 )
nv-e vs-e nbv-e bvs-e ne-e es-e)

LF signatures for meshes (continued)
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all-vertexes-in-es-ext-r :: v1 :vertex-t ⇒ v2 :vertex-t ⇒
p1 :pf (vertex-not-eq v1 v2 ) ⇒
nv-v :num ⇒ vs-v :vertex-set-t nv-v ⇒
p2 :pf (vertex-set-not-contains

v2 nv-v vs-v) ⇒
nv-e:num ⇒ vs-e:vertex-set-t nv-e ⇒
nbv-e:num ⇒ bvs-e:vertex-set-t nbv-e ⇒
ne-e:num ⇒
es-e:edge-set-t nv-e vs-e nbv-e bvs-e ne-e ⇒
pf (edge-set-contains

(edge v1 v2 p1 )
nv-e vs-e nbv-e bvs-e ne-e es-e) ⇒

pf (all-vertexes-in-es
nv-v vs-v nv-e vs-e nbv-e bvs-e ne-e es-e) ⇒

pf (all-vertexes-in-es
(succ nv-v)
(vertex-set-cons v2 nv-v vs-v p2 )
nv-e vs-e nbv-e bvs-e ne-e es-e)

all-edges-in-fs-nil :: nv-e:num ⇒ vs-e:vertex-set-t nv-e ⇒
nv-f :num ⇒ vs-f :vertex-set-t nv-f ⇒
nbv-f :num ⇒ bvs-f :vertex-set-t nbv-f ⇒
ne-f :num ⇒
es-f :edge-set-t nv-f vs-f nbv-f bvs-f ne-f ⇒
nf-f :num ⇒
fs-f :face-set-t nv-f vs-f nbv-f bvs-f ne-f es-f nf-f ⇒
pf (all-edges-in-fs

nv-e vs-e zero vertex-set-nil
zero (edge-set-nil nv-e vs-e)
nv-f vs-f nbv-f bvs-f ne-f es-f nf-f fs-f )

LF signatures for meshes (continued)
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all-edges-in-fs-ext-in :: v1 :vertex-t ⇒ v2 :vertex-t ⇒
p1 :pf (vertex-not-eq v1 v2 ) ⇒
p2 :pf (vertex-not-eq v2 v1 ) ⇒
nv-e:num ⇒ vs-e:vertex-set-t nv-e ⇒
nbv-e:num ⇒ bvs-e:vertex-set-t nbv-e ⇒
p3 :pf (vertex-set-contains v1 nv-e vs-e) ⇒
p4 :pf (vertex-set-contains v2 nv-e vs-e) ⇒
ne-e:num ⇒
es-e:edge-set-t nv-e vs-e nbv-e bvs-e ne-e ⇒
p5 :pf (edge-set-not-contains

(edge v1 v2 p1 ) nv-e vs-e nbv-e bvs-e ne-e es-e) ⇒
p6 :pf (edge-set-not-contains

(edge v2 v1 p2 ) nv-e vs-e nbv-e bvs-e ne-e es-e) ⇒
p7 :pf (edge-set-connected-to-edge

(edge v1 v2 p1 ) nv-e vs-e nbv-e bvs-e ne-e es-e) ⇒
nv-f :num ⇒ vs-f :vertex-set-t nv-f ⇒
nbv-f :num ⇒ bvs-f :vertex-set-t nbv-f ⇒
ne-f :num ⇒
es-f :edge-set-t nv-f vs-f nbv-f bvs-f ne-f ⇒
nf-f :num ⇒
fs-f :face-set-t nv-f vs-f nbv-f bvs-f ne-f es-f nf-f ⇒
pf (face-set-cfwe

(edge v1 v2 p1 )
nv-f vs-f nbv-f bvs-f ne-f es-f nf-f fs-f ) ⇒

pf (face-set-cfwe
(edge v2 v1 p2 )
nv-f vs-f nbv-f bvs-f ne-f es-f nf-f fs-f ) ⇒

pf (all-edges-in-fs
nv-e vs-e nbv-e bvs-e ne-e es-e
nv-f vs-f nbv-f bvs-f ne-f es-f nf-f fs-f ) ⇒

pf (all-edges-in-fs
nv-e vs-e nbv-e bvs-e
(succ ne-e)
(edge-set-cons-inner

v1 v2 p1 p2
nv-e vs-e nbv-e bvs-e p3 p4
ne-e es-e p5 p6 p7 )

nv-f vs-f nbv-f bvs-f ne-f es-f nf-f fs-f )

LF signatures for meshes (continued)
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all-edges-in-fs-ext-bdry :: v1 :vertex-t ⇒ v2 :vertex-t ⇒
p1 :pf (vertex-not-eq v1 v2 ) ⇒
p2 :pf (vertex-not-eq v2 v1 ) ⇒
nv-e:num ⇒ vs-e:vertex-set-t nv-e ⇒
nbv-e:num ⇒ bvs-e:vertex-set-t nbv-e ⇒
p3 :pf (vertex-set-contains v1 nv-e vs-e) ⇒
p4 :pf (vertex-set-contains v2 nv-e vs-e) ⇒
ne-e:num ⇒
es-e:edge-set-t nv-e vs-e nbv-e bvs-e ne-e ⇒
p5 :pf (edge-set-not-contains

(edge v1 v2 p1 ) nv-e vs-e nbv-e bvs-e ne-e es-e) ⇒
p6 :pf (edge-set-not-contains

(edge v2 v1 p2 ) nv-e vs-e nbv-e bvs-e ne-e es-e) ⇒
p7 :pf (edge-set-connected-to-edge

(edge v1 v2 p1 ) nv-e vs-e nbv-e bvs-e ne-e es-e) ⇒
p8 :pf (vertex-set-not-contains v1 nbv-e bvs-e) ⇒
nv-f :num ⇒ vs-f :vertex-set-t nv-f ⇒
nbv-f :num ⇒ bvs-f :vertex-set-t nbv-f ⇒
ne-f :num ⇒
es-f :edge-set-t nv-f vs-f nbv-f bvs-f ne-f ⇒
nf-f :num ⇒
fs-f :face-set-t nv-f vs-f nbv-f bvs-f ne-f es-f nf-f ⇒
pf (face-set-cfwe

(edge v1 v2 p1 )
nv-f vs-f nbv-f bvs-f ne-f es-f nf-f fs-f ) ⇒

pf (all-edges-in-fs
nv-e vs-e nbv-e bvs-e ne-e es-e
nv-f vs-f nbv-f bvs-f ne-f es-f nf-f fs-f ) ⇒

pf (all-edges-in-fs
nv-e vs-e
(succ nbv-e) (vertex-set-cons v1 nbv-e bvs-e p8 )
(succ ne-e)
(edge-set-cons-boundary

v1 v2 p1 p2 nv-e vs-e nbv-e bvs-e p3 p4
ne-e es-e p5 p6 p7 p8 )

nv-f vs-f nbv-f bvs-f ne-f es-f nf-f fs-f )

LF signatures for meshes (continued)
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same-topology :: nv1 :num ⇒ ne1 :num ⇒ nf1 :num ⇒
nv2 :num ⇒ ne2 :num ⇒ nf2 :num ⇒ o

same-topology-zero :: pf (same-topology
zero zero zero
zero zero zero)

same-topology-sym :: nv1 :num ⇒ ne1 :num ⇒ nf1 :num ⇒
nv2 :num ⇒ ne2 :num ⇒ nf2 :num ⇒
pf (same-topology

nv1 ne1 nf1
nv2 ne2 nf2 ) ⇒

pf (same-topology
nv2 ne2 nf2
nv1 ne1 nf1 )

same-topology-v1-v2 :: nv1 :num ⇒ ne1 :num ⇒ nf1 :num ⇒
nv2 :num ⇒ ne2 :num ⇒ nf2 :num ⇒
pf (same-topology

nv1 ne1 nf1
nv2 ne2 nf2 ) ⇒

pf (same-topology
(succ nv1 ) ne1 nf1
(succ nv2 ) ne2 nf2 )

same-topology-e1-e2 :: nv1 :num ⇒ ne1 :num ⇒ nf1 :num ⇒
nv2 :num ⇒ ne2 :num ⇒ nf2 :num ⇒
pf (same-topology

nv1 ne1 nf1
nv2 ne2 nf2 ) ⇒

pf (same-topology
nv1 (succ ne1 ) nf1
nv2 (succ ne2 ) nf2 )

same-topology-f1-f2 :: nv1 :num ⇒ ne1 :num ⇒ nf1 :num ⇒
nv2 :num ⇒ ne2 :num ⇒ nf2 :num ⇒
pf (same-topology

nv1 ne1 nf1
nv2 ne2 nf2 ) ⇒

pf (same-topology
nv1 ne1 (succ nf1 )
nv2 ne2 (succ nf2 ))

Figure A-10: LF signatures for topology equivalence judgements
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same-topology-v1-e1 :: nv1 :num ⇒ ne1 :num ⇒ nf1 :num ⇒
nv2 :num ⇒ ne2 :num ⇒ nf2 :num ⇒
pf (same-topology

nv1 ne1 nf1
nv2 ne2 nf2 ) ⇒

pf (same-topology
(succ nv1 ) (succ ne1 ) nf1
nv2 ne2 nf2 )

same-topology-e1-f1 :: nv1 :num ⇒ ne1 :num ⇒ nf1 :num ⇒
nv2 :num ⇒ ne2 :num ⇒ nf2 :num ⇒
pf (same-topology

nv1 ne1 nf1
nv2 ne2 nf2 ) ⇒

pf (same-topology
nv1 (succ ne1 ) (succ nf1 )
nv2 ne2 nf2 )

same-topology-v1-f2 :: nv1 :num ⇒ ne1 :num ⇒ nf1 :num ⇒
nv2 :num ⇒ ne2 :num ⇒ nf2 :num ⇒
pf (same-topology

nv1 ne1 nf1
nv2 ne2 nf2 ) ⇒

pf (same-topology
(succ nv1 ) ne1 nf1
nv2 ne2 (succ nf2 ))

LF signatures for topology equivalence judgements (continued)
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[11] Frank Pfenning and Carsten Schürmann. System description: Twelf - a meta-

logical framework for deductive systems. In H. Ganzinger, editor, Proceedings of

the 16th International Conference on Automated Deduction (CADE-16), pages

202–206. Springer-Verlag, 1999.

[12] A. Stump. Imperative LF meta-programming. In C. Schürmann, editor, 4th
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