
The IBar: A Perspective-based Camera Widget

Karan Singh
University of Toronto

karan@dgp.toronto.edu

Cindy Grimm, Nisha Sudarsanam
Washington University in St. Louis

cmg,nsudarsa@wustl.edu

Figure 1: Changing the perspective distortion of the scene.

ABSTRACT
We present a new screen space widget, the IBar, for effective
camera control in 3D graphics environments. The IBar pro-
vides a compelling interface for controlling scene perspective
based on the artistic concept of vanishing points. Various
handles on the widget manipulate multiple camera param-
eters simultaneously to create a single perceived projection
change. For example, changing just the perspective distor-
tion is accomplished by simultaneously decreasing the cam-
era’s distance to the scene while increasing focal length. We
demonstrate that the IBar is easier to learn for novice users
and improves their understanding of camera perspective.

Categories and Subject Descriptors: H.5.2 [User Inter-
faces]: Graphical User Interfaces (GUI)

Additional Keywords and Phrases: Camera control, Per-
spective, Widgets.

Introduction
Camera control for 3D rendering is a difficult problem. A
full perspective matrix [7] has 11 degrees of freedom: 6 to
control the position and orientation of the camera, and 5 to
control the projection. Specifying a perspective matrix with
just a mouse and a keyboard can be a challenging task. In this
paper we present a single screen-space widget that provides
intuitive manipulation of all of the camera parameters us-
ing just the mouse with optional key modifiers. This widget
changes pairs of parameters simultaneously (where appropri-
ate) in order to present the user with more intuitive controls.

Part of the difficulty of camera control is the complex inter-
relationships between the 3D objects in the scene, the 3D
position and orientation of the camera, the internal camera
parameters, and the final 2D scene layout. All of this infor-
mation is communicated to the user through the perspective
rendering itself. This places a heavy cognitive burden on the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
UIST ’04, October 24–27, 2004, Santa Fe, New Mexico, USA.
Copyright c© 2004 ACM 1-58113-957-8/04/0010. . . $5.00.

Vanishing point
Horizon line

One point perspective

Left vanishing point Right vanishing point

Three point
perspective

To third
vanishing point

Figure 2: Terms used by artists to describe perspective
projections. From: Perspective Drawing and Applica-
tions.

user, since they must build up a mental model of the 3D scene
and the camera, along with a mental model of how changing
camera parameters affects the perspective rendering.

For mathematicians, and most of the Computer Graphics
community, perspective projection is simply a 4 × 4 ma-
trix that projects a 3D scene into 2D, taking straight lines
to straight lines in the image plane and maintaining the depth
ordering. Artists, however, have a much more complex vo-
cabulary that qualitatively describes perspective projection
— they are primarily concerned with describing the visual
features of the projection in the 2D plane [2, 7]. Figure 2
illustrates some of these features. The terms 1,2, and 3 point
perspective refer to the number of vanishing points defined
in the image; this depends on the camera’s positional rela-
tionship to objects in the scene. The left and right vanishing
points define a horizon or eye line; changing the location of
this line can dramatically change how the scene is perceived.
When sketching out a scene, artists simplify the objects in the
scene, reducing them to collections of lines, points and sim-
ple curves. This allows them to visualize the primary vanish-
ing points, lines-of-sight, and horizon lines in the 2D plane.

Traditional camera manipulation techniques do not support
this type of visualization — they instead support the photog-
rapher’s approach. A skilled photographer learns to ”see”
through the lens of the camera, flattening out the scene in
their mind’s eye and evaluating it for its 2D aesthetics. Cur-
rent graphics systems allow the user to manipulate the cam-
era as if it were held in the hand. In this model, the vanishing
points or perspective distortion of the scene are controlled by
a combination of the camera’s focal length, film offset and
camera position relative to the scene.

In this paper we propose an alternative approach to the cam-
era specification problem that is more closely aligned with
the artist’s concept of perspective. We place a single screen-
space widget, called the IBar, into the image. The shape
of the IBar provides information about the current vanishing
points and horizon lines, and allows the artist to manipulate
those entities directly.

Contributions: The IBar is an effective camera control wid-
get. In particular it provides a natural interface for manipulat-
ing camera parameters that influence perspective distortion,
simplifying the control and animation of dramatic camera ef-
fects seen in Figure 1. Visualization of the mathematics of
projection also makes the IBar easy to understand and use
for novices.

Related work
For mouse-based systems, camera control paradigms fall
roughly into two categories, camera-centric and object-centric.
In the camera-centric paradigm, operations are applied to the
camera as if it were a real object in the scene. This mirrors
camera placement in the real world, and many of the cam-
era operations (dolly, pan, and roll) reflect that. The external
parameters, position and orientation, can be specified either
“through the lens”, or by manipulating a pictorial representa-
tion of the camera in a second window. The internal camera
parameters, with the exception of focal length, are changed
through textual input in commercial graphics system such as
Maya.

In the object-centric paradigm, the camera is centered on an
object and the viewpoint is rotated relative to the object (as
if there were a virtual trackball around the object [6]). The
camera can also be zoomed in and out. This paradigm is
useful when there is a single object in the scene (or one object
of importance) and the user is simply choosing a direction
from which to view it but is less useful in complex scenes.

An alternative approach uses image-space constraints [1, 4,
3], where points in the scene are constrained to appear at
particular locations, and the system solves for the camera pa-
rameters that meet those constraints. The IBar is, in some
sense, a specialization of the constraint approach, where the
points are the points of the cube. However, unlike the con-
straint approach, changes to the IBar result in well-defined
changes to the camera parameters. This provides more pre-
cise control and repeatability at the cost of generality.

The IBar Widget
A schematic diagram of the IBar widget is shown in Figure 3.
Conceptually, the IBar represents the two-point perspective

Zoom
Rotate LR

Rotate UD
Rotate LR

Aspect
ratio (shift)

Skew (shift)

Pan Zoom

Spin

COP LR COP UD COP LR
Zoom+dolly

COP LR

Rotate LR Rotate UD

COP UD

Dolly
(shift)

Figure 3: Arrows mark handle locations and movement
directions. First third of any IBar limb moves all four limbs
simultaneously. Second third moves both top (or bottom)
limbs simultaneously. Last third moves both left (or right)
limbs simultaneously. Moving left-right changes the limb
length, moving up-down changes the angle.

rendering of a cube centered on the Look vector of the cam-
era (see table). The IBar is inspired by the use of vanishing
points to control perspective; changing the IBar indicates the
desired change to the perspective rendering of the cube. The
internal parameters of the camera (center of projection, focal
length) are reflected in the shape of the IBar. Except for when
the IBar is being moved, it always appears in the middle of
the screen at a constant size (one-half of the screen height).

Moving or rotating the entire IBar corresponds to moving or
rotating the camera with respect to the box represented by
the IBar. The exact behavior depends on whether or not the
IBar is in camera or object-centric mode (discussed below
for each operation).

Changing the angles of the limbs corresponds to moving or
changing the vanishing points. This causes the camera to
move along the look vector, change focal length, move the
center of projection, or some combination thereof. To sim-
plify symmetric changes, different parts of the limbs change
either two or four of the limbs simultaneously. The size of
the limbs is changed by left-right mouse movement, the an-
gles by up-down movement. The IBar always snaps back to
the center of the screen after the end of a manipulation.

Visual cues

The angles of the limbs provide information about the van-
ishing points of the rendering. The relative differences in the
limb angles indicate in which direction the center of projec-
tion has been shifted; if all of the limb angles are the same
size, then the center of projection is in the middle of the
screen. The absolute angles of the limbs indicate where the
vanishing points are — this is a combination of the distance
of the cube from the camera and the focal length. The hori-
zon line can also be explicitly indicated by the placement of
the horizontal bar.

The IBar represents a unit cube at a distance d from the cam-

era. If the user has specified a focus distance 1 then the cube
will be placed at that distance. Alternatively, the user can
select a point in the scene to define the focus distance.

To keep the projected size of the cube constant on the screen
we scale the width and height (but not the depth) by d(H/f)
where f is the focal length. The limbs of the IBar are the
projection of the adjacent cube edges.

Name Variable
Screen size W ,H
Position T

Look, Up �L, �V

Right �R = �V × �L
Focus distance d
Focal length f
Center of proj. (u0, v0)
Film plane scale s = d(H/f)

Table 1: Camera parameters.

V

LT

f

H

d

V

L

R

T f H

W

v0u0

Screen-space position and orientation
We begin by describing the manipulations that change the
position and orientation of the cube in the image plane. The
mouse movements and widget handles are identical for both
the camera- and object-centric manipulations, but the behav-
ior is different.

Pan: Panning the camera is accomplished by dragging the
middle of the IBar. In camera-centric mode, the point in
the scene under the mouse is “snapped” to the center of the
screen when the button is released. This is useful for center-
ing the camera on a particular point. In object-centric mode,
the scene moves simultaneously with the mouse.

Object-
centric:

Figure 4: Roll: To rotate the camera about its Look vec-
tor, rotate the IBar using the top (or bottom) of the stem.
In camera-centric mode, the vertical bar is aligned with the
desired vertical axis for the scene.

Roll left-right, up-down: The camera is rotated by chang-
ing the lengths of the second (up/down) or third (left/right)
segment. These two operations support the traditional virtual
trackball [6] manipulation. Additionally, coarse and fine con-
trol is provided by either expanding or shrinking the limbs.
The rotation point is the center of the cube; this point can
be tied to an object if desired (see above). Because the IBar
snaps back after every manipulation, the object can be rotated
through all 360 degrees.

Zoom and dolly: These operations change the size of the
rendered objects, and, optionally, the perspective distortion.

1The focus distance is used to specify a depth of focus; it does not affect
the perspective matrix.

To zoom the camera in and out without changing the per-
spective distortion, scale the middle of the IBar. To move the
camera in or out while changing the focal length to keep the
object the same size, change the angles on all four limbs si-
multaneously. (Holding the shift key down changes just the
focal length.) In camera-centric mode, the IBar is scaled to
frame an object (or objects); at mouse release, the framed
object is scaled to fill one half of the screen.

Figure 5: Dolly in/out with zoom: To dolly the camera
in/out and simultaneously change the focal length, change
the angles on all four limbs simultaneously.

Internal Camera Parameters
There are 5 internal camera parameters; center of projection
(2), focal length, skew, and aspect ratio. Focal length (zoom)
was discussed earlier. Aspect ratio changes the ratio of the
height to the width. Skew essentially performs a shear in the
image plane.

Vertical:

Horizontal:

Figure 6: COP: To change the center of projection, make
the angles of the top limbs different from the bottom ones
(moves the center of projection up/down). Similarly, mak-
ing the angles of the left limbs different from the right moves
the center of projection left-right.

Figure 7: Aspect ratio: To change the aspect ratio, grab a
point on the IBar stem and move up-down while holding the
shift key.

Figure 8: Skew: To change the skew, grab a point on the
IBar stem and move left-right while holding the shift key.

Options
We describe several extensions to the basic IBar. The first
one places the horizontal bar so that it indicates the horizon
line. The second places the IBar at a specified point in the

scene, allowing the user to both visualize the perspective dis-
tortion at that point, and to rotate the camera around an arbi-
trary point in the scene.

Third, there are several possible methods for switching be-
tween camera- and object-based modes, for example, by us-
ing a toggle switch or a key-modifier. An alternative is to take
advantage of the multiple handles available for each camera
operation. For example, there are two zoom handles (left and
right). We map the left handle to the camera-centric zoom
and the right handle to the object-centric version. This has
the advantage of eliminating modes, but it does increase the
number of distinct handles.

Finally, the shift-key is used to constrain the interaction in
one of two ways. We currently use the shift-key to select the
less-common camera interaction (see Figure 3). The move-
ment of the limb is constrained to be either vertical or hori-
zontal, depending on the direction the user first moves. Both
directions are enabled by holding down the shift key. A sec-
ond option is to use the shift key to constrain the motion,
and allow simultaneous horizontal and vertical changes to
the limbs as the default.

User study
We performed a small user study to compare a Maya im-
plementation of the IBar with Maya’s traditional camera in-
terface. Our observations are as follows. First, our knowl-
edgeable participants performed, on average, as well as the
novice users. Second, the people who used the IBar first and
Maya second spent less time learning both interfaces than the
people who started with Maya. This appears to be because
the IBar taught them more about the camera transformations.
Third, most of the users found the IBar more intuitive. For a
complete description of the study, see [5].

The IBar has been in use in our lab for several months in a
variety of applications (surface modeling, visualization, and
scene construction). Anecdotal evidence suggests that the
IBar is not visually distracting, but it can accidentally “grab”
mouse events intended for other manipulations. A simple
toggle switch and visually highlighting when the IBar is ac-
tive greatly reduces these problems.

Conclusion
We have presented a simple, easy-to-use screen-space wid-
get for controlling all aspects of a perspective projection, in
particular the internal camera parameters. The widget allows
the user to manipulate the camera using just the mouse, and
provides visual clues about how the perspective will change
with manipulation.

The IBar appears to provide a better conceptual insight, es-
pecially for novice users, into how the camera works than a
traditional user interface. The combined zoom and dolly was
particularly popular, as was the lack of menus and need for
interaction mode changes.

Appendix: Implementation
In this section we define the equations that correspond to the
camera manipulations in the previous section. Our camera
parameters are summarized in Table 1; the perspective ma-
trix is built from these parameters in the usual way [7]. For

complete details, see [5].

The camera parameters are changed when the user manipu-
lates the IBar. The IBar is then drawn with the new camera
parameters; hence the manipulations are indirectly reflected
in the changed projection. In object-centric mode the scene
is drawn with the new camera. In camera-centric mode the
scene is drawn with the original camera; when the manip-
ulation is finished, the final camera is created by inverting
the appropriate action (for instance, panning in the opposite
direction).

Pan: The camera is moved by the mouse vector projected
into the film plane.
Uniform zoom: The focal length f is scaled by the ratio of
limb lengths before and after manipulation.
Spin (Rotating the stem): The Up and Right vectors are
rotated around the Look vector by the angle change of the
stem.
Rotate (lengthening the left-right or top-bottom limbs):
This is the standard track-ball rotation [6].
Dolly with zoom (changing the angle of all four limbs):
The focal distance is adjusted by the change in angle, then
the focal length is modified so that the object does not change
size. The desired focal distance change is found by moving
the limb in 3D, projecting it, and comparing the resulting an-
gle. Let y = ly−�l′y , where l is the original and l′ the adjusted
limb. The new focal distance d′ is −1/2+ (W/H)/(4y) and
the new focal length is fd′/d.
Center-of-projection:

The center of projection is changed to reflect the change in
the ratio of the angles of the limbs (either left-right or top-
bottom). The camera is then panned in the opposite direction
to keep the IBar in the middle of the screen. Let vy be the
vertical change in the limb. The new center of projection is
u0 +vy (or v0 +vy), and the adjusted translation is T −svy

�R

(or T − svy
�V).

REFERENCES
1. Jim Blinn. Where am i? what am i looking at? In IEEE

Computer Graphics and Applications, volume 22, pages 179–
188, 1988.

2. Rex Vicat Cole. Perspective for Artists. Dover Publications,
1976.

3. Steven M. Drucker and David Zeltzer. Camdroid: A system
for implementing intelligent camera control. In 1995 Symp. on
Interactive 3D Graphics, pages 139–144. April 1995.

4. Michael Gleicher and Andrew Witkin. Through-the-lens cam-
era control. Siggraph, 26(2):331–340, July 1992. ISBN 0-201-
51585-7. Held in Chicago, Illinois.

5. Cindy Grimm, Karan Singh, and Nisha Sudarsanan. The
ibar: A perspective-based camera widget. Technical Report
WUCSE-2004-32, Wash. univ. in St. Louis, 2004.

6. Jeff Hultquist. A virtual trackball. In Graphics Gems, pages
462–463. 1990.

7. J. C. Michener and I. B. Carlbom. Natural and efficient viewing
parameters. Computer Graphics (Proceedings of SIGGRAPH
80), 14(3):238–245, July 1980.

8. Charles o’Connor Jr., Thomas Kier, and David Burghy. Per-
spective Drawing and Application. Prentice Hall, 1998.

