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Figure 1. An example of interactive scatter/gather clustering of a woolly horseshoe bat ear. The expert partitions the ear into four
clusters beginning from a setting of two clusters. (a) to (b)—The expert supplies a 2 × 3 constraint table to generate three clusters
from two, and the vertical ridge is lost in the result; (b) to (c)—the expert supplies constraints in a 3 × 3 table to retrieve the vertical
ridge; (c) to (d)—the expert provides constraints in a 3 × 4 matrix to scatter the border into two layers but to keep the rest of the
clusters the same.

Abstract— Significant effort has been devoted to designing clustering algorithms that are responsive to user feedback or that incor-
porate prior domain knowledge in the form of constraints. However, users desire more expressive forms of interaction to influence
clustering outcomes. In our experiences working with diverse application scientists, we have identified an interaction style scat-
ter/gather clustering that helps users iteratively restructure clustering results to meet their expectations. As the names indicate,
scatter and gather are dual primitives that describe whether clusters in a current segmentation should be broken up further or, al-
ternatively, brought back together. By combining scatter and gather operations in a single step, we support very expressive dynamic
restructurings of data. Scatter/gather clustering is implemented using a nonlinear optimization framework that achieves both locality
of clusters and satisfaction of user-supplied constraints. We illustrate the use of our scatter/gather clustering approach in a visual
analytic application to study baffle shapes in the bat biosonar (ears and nose) system. We demonstrate how domain experts are adept
at supplying scatter/gather constraints, and how our framework incorporates these constraints effectively without requiring numerous
instance-level constraints.

Index Terms—Scatter/gather clustering, alternative clustering, constrained clustering.

1 INTRODUCTION

Clustering is a classical technique for data analysis and has become
increasingly repurposed for new uses, with the advent of novel appli-
cations in bioinformatics [45,56,63], intelligence analysis [41,51], and
web modeling [1, 43]. Of recent interest has been the ability to impart
prior domain knowledge in the form of constraints [22,23,61,62], clus-
tering nonhomogeneous datasets [32], or providing expressive forms
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of user feedback [4, 33, 34].

We were motivated by the iterative process by which users inspect
clustering results, rerun clustering with different settings (e.g., chang-
ing the number of clusters), and assess the new results. In particular,
our desire was to provide a very natural interface for users by which
they can critique results and, at the same time, operationalize their
feedback into an effective mechanism to recluster the results. Our the-
sis is that ‘a little domain knowledge goes a long way’, and enabling
the user in the loop to supply feedback can be significantly more ef-
fective than trying to design a clever clustering algorithm.

We introduce a novel visual analytic approach—scatter/gather
clustering—that enables users to iteratively restructure clustering re-
sults to meet their expectations. As the names indicate, scatter and
gather are dual primitives that describe whether clusters in the current
segmentation should be broken up further or, alternatively, brought
back together. We will demonstrate how, by mixing scatter and gather
operations in a sequence of interactions (Fig. 1), users can very
quickly arrive at a segmentation of choice.

Our contributions are:

1. A new interaction style to steer clustering results and, corre-
spondingly, an underlying mathematical optimization framework
to support such restructurings. Further, our framework subsumes
previously introduced clustering variations such as alternative
clustering [19–21, 52].

2. A systematic approach to compose scatter/gather operations so
that our framework can be applied to the results of any clustering
algorithm.



3. A novel visual analytics application to studying structural pat-
terns of baffle shapes in the bat biosonar system that systematizes
how acoustics and vibration experts supply domain knowledge.

2 RELATED WORK

We survey related work under different categories.
Scatter/Gather Browsing and Interaction Mechanisms: The

phrase ‘scatter gather’ was actually coined in reference to a document
browsing/retrieval strategy [17, 18]. To communicate the structure of
a document collection, the idea here is to first scatter (cluster) the doc-
uments into groups, gather (collect) a subset of results, scatter them
again, and so on. We were motivated by the underlying iterative strat-
egy but use the terms scatter and gather with different interpretations
here. The scatter/gather approach of [17, 18] is meant to narrow down
to a single or few data points (documents) from a collection of points,
whereas our scatter/gather strategy retains all data points at all times
and is focused on iteratively reorganizing them into clusters. Thus the
semantics of the scatter and gather operations are fundamentally dif-
ferent. In particular, we allow scattering and gathering to take place
together in a single interaction and that there can be complex depen-
dencies between scattering and gathering. Further, our approach works
for any dataset rather than just document collections (as we will show
in this paper). Nevertheless, the work of [17, 18] was pioneering in its
embrace of interaction as a way to retrieve better quality results and
the use of clustering as a modality for doing so. Alonso and Talbot [4]
propose an extension with their ‘exposed hierarchical tree view’ that is
incrementally built as the user explores the collection. Here, the root
node represents the entire document collection and other nodes repre-
sent clusters of documents produced by the scatter/gather operations.
Kanada [37] introduces an axis-based organization method for search
results. For example, a search result with a specific query could be
ordered by axes like time, size, area, and other units. All these meth-
ods, as mentioned earlier, are focused on document collections and
involve alternating applications of scatter and gather operations. A re-
cent paper [30] describes the idea of scatter-gather as a technique to
browse trajectories discovered from surveillance videos. Here we em-
ploy scatter and gather operations as primitives to restructure clusters
in a more expressive manner.

Visual Analytic Frameworks for Clustering: The necessity of su-
pervision for clustering has motivated several works [3,6–8,24,48,55].
Schreck et al. [55] describe a visual analytic framework to effec-
tively combine automatic data analysis with expert supervision. This
framework has been applied on a trajectory clustering problem which
demonstrates its potential of combining machine and user-directed
processing in producing appropriate cluster results. Jeong et al. [35]

combine visualization with clustering to create tools for visual analysis
of gene expression data. G. Andrienko & N. Andrienko [5] and Guo
et al. [28] incorporate space and time into clustering to support visual
interactions with data. There are optimization techniques to group di-
mensions of data [7] as well as dimensionality reduction [3, 13] tools
that can preserve clustering quality. Nam et al. [48] and Chen and
Ling [11] describe interactive clustering systems in which users can
interact with the data objects after they are clustered.

Constrained Clustering: In the machine learning domain, con-
strained clustering refers to the idea of incorporating user supervision
into a clustering algorithm. Instance-level pairwise constraints can ap-
pear in two forms: must-link and must-not-link [60, 62]. Constrained
clustering algorithms proposed in [23,60,62] attempt to find a solution
to satisfy all the must-link and must-not-link constraints. It is some-
times cumbersome for the user to provide such instance-level feed-
back because there can be numerous combinations of the must-link
and must-not-link constraints. In our work, the user provides scat-
ter/gather constraints at the cluster level (rather than at the instance-
level) and hence the constraints are very small in number, easy to pro-
vide, and intuitive to understand.

Finding Multiple Clusterings: The idea of finding more cluster-
ings than a single one has been studied through various mechanisms
and also in various guises, including subspace clustering [2,12], nonre-
dundant clustering/views [16, 25, 49], associative clustering [38, 58],
meta clustering [10, 64], and consensus clustering [40, 45, 59]. A key
distinguishing feature of our work is the ability to interactively provide
feedback to obtain variations in clusterings. As we will show below,
our objective functions for scatter/gather clustering employ a simple
contingency table framework. While contingency tables have been
employed elsewhere [9, 57], they have been used primarily as criteria
to evaluate clusterings, not to specify requirements on clusterings. The
few works [26, 27, 47] that do use contingency tables to formulate ob-
jective criteria use them in the context of a specific algorithm such as
co-clustering or block clustering, whereas we use them to specify scat-
ter and gather operations. Our work can also be viewed as a form of
relational clustering [32] because we use (two) homogeneous copies of
the data to model the scatter/gather property of two clusterings. How-
ever, the locality of clusterings in their respective data spaces is also
incorporated into the objective function without any explicit trade-off
between locality and the ‘scatter/gather-ness’ property.

3 SCATTER/GATHER ANALYTIC APPROACH

Before we introduce our framework and the underlying mathematical
machinery, it is helpful to consider a motivating example.

Given data: 1000 points
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(a) Original data (b) k-means (k=4) (c) k-means (k=5)

Figure 2. Clustering the flower dataset. (a) The dataset has 1000 2D points arranged in the form of a flower. (b) Result of k-means clustering with
k=4. (c) k-means clustering with k=5. Points from the stalk spill over into the petals.
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Figure 3. Clustering the flower dataset with user provided input: Scatter/gather constraints when imposed over a clustering with four clusters yields
five clusters with well-separated petals and center with the stalk, unlike Fig. 2(c).
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Figure 4. (a) A tabular representation of the scatter/gather constraints
in the middle of Fig. 3, (b) Matrix for column-wise distribution, (c) Matrix
for row-wise distribution.

3.1 Motivating Example

To illustrate the idea of scatter/gather clustering, we use a synthetic
dataset composed of 1000 two-dimensional points (see Fig. 2(a)). The
dataset is composed of four petals and a stalk each containing 200
points. When the user applies simple k-means clustering, with a set-
ting of four clusters (i.e., k = 4), the flower is divided into four parts
as shown in Fig. 2(b) where the petals are indeed in different clusters,
but each of the petals also takes up one-fourth of the points from the
stalk of the flower. When a setting of five clusters is used, the user
obtains the clustering shown in Fig. 2(c). It is evident that the five
clusters generated by k-means are not able to cleanly differentiate the
stalk from the petals.

A conventional clustering algorithms like k-means does not take
user expectation as an input to produce better clustering results. Even
constrained clustering algorithms would require an inordinate number
of inputs to clearly separate the stalk from the petals. In our proposed
clustering framework, the user can provide an input to the algorithm
regarding the expected outcome as shown in Fig. 3. The constraints
shown in the middle of the figure should be read both from left to
right and from right to left. Reading from left to right, we see that
the user expects the four clusters to be broken down (scattered) into
five clusters. Reading from right to left, we see that the stalk is ex-
pected to gather points from all current clusters, but there is a one-to-
one correspondence between the desired petals to the original petals.
Fig. 3 shows that the results of such a scatter/gather clustering provide
well-separated petals and stalk, unlike the result provided by simple
k-means with k=5 (as shown in Fig. 2(c)).

3.2 User Input

The scatter/gather framework thus requires an existing clustering of
the data and a user-expected distribution of the clusters in the new
clustering (as shown in Fig. 3). In this paper, we refer to the existing
clustering as ‘given clustering’, ‘clustering 1’, or the ‘first clustering’.
We refer to the new clustering as ‘clustering 2’, or the ‘second cluster-
ing’.

We enable the user to provide a set of scatter/gather constraints in
the form of a matrix called an S/G constraint table. The matrix is
essentially an encoding of the bipartite graph shown in Fig. 3. For
our running example, the matrix is of size 4×5 as shown in Fig. 4(a),
where each row indicates a petal of the given (k-means) clustering
and a column indicates an expected cluster of the output of the scat-
ter/gather clustering framework. The tick marks denote the scatter and
gather operations desired. Note that each row of Fig. 4(a) has two tick
marks and one of these tick marks is in the fifth column, which is the
column for the expected stalk of the flower.

3.3 Formulating Probabilistic Contingency Tables

A cell of the S/G constraint table is meant to represent an expected
(or an ideal case) probability that objects of a cluster in one clustering

form part of a cluster in another clustering. We enable the user to sup-
ply a binary association matrix between two clusterings in the form
of the S/G constraint table (e.g., Fig. 4(a)). This matrix is converted
into two probability distributions, one defined along columns and one
defined along rows. This results in two matrices, row view IX ′ and
column view IX (see Fig. 4(b) and (c)). Although there are many
ways to construct such distributions from the binary matrix, we per-
form simple row-wise and column-wise normalizations here. (More
complex distributions can, of course, be incorporated based on user
input.) Thus, in our example, although not explicitly mentioned by
the user, we infer that 25% points of the stalk cluster should come
from each of the petals of the first clustering. Conversely, these dis-
tributions capture the requirement that each of the petals of the first
clustering should give up 20% of their points to form the stalk of the
second clustering and that the other 80% of the points should go into
one cluster of the second clustering.

3.4 Mathematical Framework

We now present the formalisms in our approach. Consider a dataset
X = {xs}, s = 1, . . . , n, of (real-valued) lx-dimensional vectors,

i.e., xs ∈ R
lx . Because we desire two different sets of clusters from

the scatter/gather clustering approach, we create X ′ = X an exact
replica of X . Let C(x) and C(x′) be the cluster indices, i.e., indica-

tor random variables, corresponding to X and X ′ and let k and k′

be the corresponding number of clusters. Thus, C(x) takes values in

{1, . . . , k} and C(x′) takes values in {1, . . . , k′}. Among these two

clusterings, the clustering of X is given and the clustering of X ′ is to
be determined.

Let mi,X (mj,X ′ ) be the prototype vector for cluster i (j) in X
(X ′). (These are precisely the quantities we wish to estimate/optimize,

but in this section, assume they are given). Let v
(xs)
i (v

(xt)
j ) be

the cluster membership indicator variables, i.e., the probability that
data sample xs (xt) is assigned to cluster i (j) in X (X ′). Thus,
∑k

i=1 v
(xs)
i =

∑k′

j=1 v
(xt)
j = 1. The traditional hard assignment

is given by:

v
(xs)
i =

{

1, if ||xs −mi,X || ≤ ||xs −mi′,X ||, i′ = 1, . . . k,
0, otherwise.

(Likewise for v
(xt)
j .) Ideally, we would like a continuous function

that tracks these hard assignments to a high degree of accuracy. A
standard approach is to use a Gaussian kernel to smooth out the cluster
assignment probabilities:

v
(xs)
i =

exp(− ρ

D
||xs −mi,X ||2)

∑k

i′=1 exp(−
ρ

D
||xs −mi′,X ||2)

, (1)

where

D = max
s,s′

||xs − xs′ ||
2, 1 ≤ s, s′ ≤ n.

An analogous equation holds for v
(xt)
j . The astute reader would

notice that this is really the Gaussian kernel approximation with ρ/D
being the width of the kernel. Notice that D is completely determined
by the data but ρ is a user-settable parameter, and precisely what we
can tune.

3.4.1 Preparing contingency tables

Contingency tables capture the relationships between entries in clus-
ters across two clusterings (here the clusterings of X and X ′). To
prepare a k× k′ contingency table, we simply iterate over the implicit
one-to-one relationships between X and X ′: We suitably increment
the appropriate entry in the contingency table in a one-to-one relation-
ship fashion:

wij =

n
∑

m=1

v
(xm)
i v

(xm)
j , (2)

We also define

wi. =

k′

∑

j=1

wij , w.j =

k
∑

i=1

wij



where wi. and w.j are the row-wise and column-wise counts of the
cells of the contingency table, respectively.

We will find it useful to define the probability distribution
αi(j), i = 1, . . . , k of the row-wise random variables and βj(i), j =
1, . . . , k′ of the column-wise random variables as

αi(j) =
wij

wi.

, βj(i) =
wij

w.j

.

The row-wise distributions represent the conditional distributions of
the clusters in X ′ given the clusters in X ; the column-wise distribu-
tions are also interpreted analogously.

3.4.2 Evaluating contingency tables

Now that we have a contingency table, we must evaluate it to see if
it reflects disparateness of the two clusterings. Ideally, we expect that
row-wise distribution αi and column-wise distribution βj of the con-
tingency table would match with the row view IX ′ and column view
IX of the expected contingency table generated from the S/G con-
straint table. Therefore for our objective criterion, we compare the
row-wise and column-wise distributions from the contingency table
entries to their corresponding row and column views of the expected
contingency table generated from the user provided S/G constraint ta-
ble. We use KL-divergences to define the objective function (lower
values are better):

F =
1

k

k
∑

i=1

DKL

(

αi||IX ′(i, :)
)

+
1

k′

k′

∑

j=1

DKL

(

βj ||IX (:, j)
)

−
1

n

n
∑

s=1

DKL

(

p
(

V (xs)
)

||U(
1

k
)
)

−
1

n

n
∑

t=1

DKL

(

p
(

V (xt)
)

||U(
1

k′
)
)

, (3)

where IX ′(i, :) refers to the ith row of the row view and IX (:, j) rep-
resents the jth column of the column view of the expected contin-
gency table generated from the user provided S/G constraint table as

described in Section 3.3. p
(

V (xs)
)

refers to the vector containing

the cluster membership probabilities of the sth datapoint of X (like-

wise, p
(

V (xt)
)

). U is the uniform distribution over k or k′ clusters.

(Note that the row-wise distributions take values over the columns and
the column-wise distributions take values over the rows of the contin-
gency table.)

3.4.3 Optimizing the objective function

Since scatter/gather clustering assumes that the clustering of X is
given, we keep the mean prototypes of X fixed to k-means outcomes
(or the current clustering) and vary the mean prototypes of X ′ during
the optimization. As a result, we obtain a scatter/gather clustering in
X ′ at the end of the optimization. We use an interior trust region based
approach [15] for nonlinear minimization of our objective function F .

3.5 Alternative Clustering: A Special Case of Scat-
ter/Gather Clustering

When the numbers of clusters in the given and the expected cluster-
ing are the same and all the cells of the S/G constraint table are filled,
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Figure 5. A special case of scatter/gather clustering where each cluster
is constrained to share elements with all the clusters of the second clus-
tering. (left) k-means clustering with k=2, (middle) S/G constraint table,
(right) resulting scatter/gather clustering.

a special case scenario named “alternative clustering” (popular in the
KDD literature [19–21, 52]) is obtained. The goal of alternative clus-
tering is to obtain two high-quality clusterings where the partitionings
are as highly different from each other as possible. An example of
an alternative clustering scenario with our running example dataset is
shown in Fig. 5. Thus, scatter/gather clustering is a more expressive
generalization of alternative clustering.

4 A VISUAL ANALYTIC FRAMEWORK TO STUDY THE BAT

BIOSONAR SYSTEM

We now illustrate a visual analytic framework based on scatter/gather
clustering to study the bat biosonar system.

4.1 Background: Bat Biosonar System

In the course of evolution, bats have developed an ultrasonic sensory
system with high performance, so called biosonar, that the majority
of recent bat species rely on as an important far sense. Bat biosonar
comprises four primary parts: signal generation (vocal folds), signal
emission (mouth or nostril), signal reception (ear), and signal analysis
(brain). Around 300 out of over thousand bat species presently known
to science emit their ultrasonic biosonar pulses through the nostrils.
All bats listen to incoming signals through their ears. The geometries
of the external structures in the biosonar system of bats differ consid-
erably between species. Since such differences could potentially be of
great functional importance, they need to be considered when analyz-
ing the function of bat biosonar.

The sound emission sites of bat species with nasal emission are
surrounded by soft-tissue structures (noseleaves) with often intricate
shape detail. The geometrical features of these structures could sig-
nificantly influence the beamforming operations that are performed on
the outgoing ultrasonic pulses. This hypothesis is corroborated by ex-
perimental case studies. Bats rely on their biosonar as a far sense to
support navigation and the search for food [54] in their habitats. The
biosonar systems of bats have undergone an extensive adaptive evo-
lution to match different ecological niches [36]. Bats obtain sensory
information through active sonar, i.e., the analysis of echoes to self-
emitted pulses, as well as passive sonar, i.e., the analysis of sounds
from foreign sources [53]. Active and passive sonar contribute impor-
tant sensory information for the acquisition of food in diets as diverse
as arthropods, vertebrates, nectar and pollen, fruit, and blood.

The pinnae of bats act as baffles that diffract the incoming ultra-
sonic waves. Hence, the shapes of the pinnae are in a position to
play a key role in determining the distribution of the ear’s sensitiv-
ity over direction and frequency [46, 50]. The pinnae can hence be
seen as beamforming devices operating in the physical (diffraction)
domain. Their function could inspire beamforming mechanisms as
well as strategies for engineering applications.

There is no visual analytic tool to study the local shapes of the bat
biosonar systems. In this work, we provide a scatter/gather cluster-
ing framework to help experts study the biosonar systems. Tools for
deriving estimates of the acoustic functions from the shapes of the
ears and noseleaves are readily available and have been used in several
case studies already [44]. In the present work, we concentrate on the
“shape” aspect.

Ma and Müller [42] have demonstrated that an eigensystem based
approach called eigenears is good at capturing overall shape proper-
ties. However, interpreting the eigenears for local shape features is
a difficult task. Nevertheless, these local shape features could have
a considerable acoustic significance [46]. We provide an interactive

Table 1. Bats used in the case studies of this paper.

Name Scientific Name # of Points

Tailless leaf-nosed bat Coelops frithii 84,513

Greater spear-nosed bat Hipposideros commesoni 126,646

Lyle’s flying fox bat Pteropus lylei 44,503

Intermediate horseshoe bat Rhinolophus affinis 56,177

Woolly horseshoe bat Rhinolophus luctus 91,524

Spectral vampire bat Vampyrum spectrum 233,048
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Figure 6. Analysis pipeline. Collected bat biosonar external organs are scanned using a 3D scanner, and shape descriptors are generated. The
analyst then iteratively uses our interactive scatter/gather clustering interface to partition a biosonar system to study the shape. The user steers
the clustering via a constraint table comprised of checkboxes.

tool to partition the biosonar systems into small parts based on local
features and find correspondences of similar features in the biodiver-
sity. This approach could lead experts to classify shapes as well as find
correlation between these shapes and the function (e.g., beam pattern).
Classification and correlation are beyond the scope of the current pa-
per and we aim to provide those facilities with the developed tool in
the future.

The ultimate goal is to identify common features of all available bat
species in the database and characterize them based on their geometry
and acoustic functions. Bat biosonar systems are not yet well stud-
ied and characterized in a way that maps geometry to acoustic func-
tions. One of the objectives of this work is to partition bat biosonar
systems based on the geometry and the local shape features that are
responsible for the acoustic functions. The scatter/gather clustering
approach described in this paper assists the expert in partitioning bat
biosonar systems, understanding the local geometry, and deciding on
which partitions represent common patterns (e.g., washboard, bound-
aries, ripples, ridges, and flat regions).

Fig. 6 shows the steps involved in our study of baffle shapes in
the bat biosonar system. It shows that collected bat biosonar external
organs are scanned using a 3D scanner, and shape descriptors are gen-
erated. Then the expert iteratively uses our interactive tool to partition
a biosonar system to study the shape. Further details are provided in
the following subsections.

4.2 Data Collection

There are more than 1,100 different species of bats known to science
at present. In collaboration with local field biologists, specimens rep-
resenting different bat species have been collected in location such as
Cambodia, China, India, and Vietnam. The outer ears and noseleaves
of these specimens were scanned using a high-resolution CT- scanner
(Skyscan 1072 micro-CT) to create three-dimensional models repe-
sented as 2D slices (images). The 2D slice images are then used to
construct digital shape models in various formats for each outer ear
and noseleaf. At present, the shape database compiled by the experts
contains samples from about 105 bat species. For the case study in this
paper, the experts used six different species shown in Table 1.

Local shape descriptors (LSD) [29] map a small section of the sur-
face mesh around a vertex to an n-dimensional vector. This differs
from point descriptors [14], such as curvature, which use just the sur-
face data at the vertex. LSD tend to be more robust to noise in the
mesh, and can also be scaled to capture features of different sizes.
There are a variety of methods for calculating LSD; essentially, we
sample the mesh in five concentric rings around the vertex, build up
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Figure 7. Generation of local shape descriptor.

a distribution of values for each ring for each vertex, then use PCA
to reduce the dimension of this data. We use distributions in order to
be orientation independent, and PCA to pull out the features of the
distributions that are dominant.

More specifically, we sample five concentric rings around the vertex
by intersecting spheres of increasing radii with the mesh, and sampling
those rings uniformly. For each sample, we generate two numbers: the
first is the angle change between the surface normal at the vertex and
the surface normal at the sample point i, projected to the plane contain-
ing the two points and the vertex normal (θi). The second is the angle
change between the current sample and the next one around the ring
(ϑi). For each ring, we find the distribution in one of two ways. The
first method is to sort the values (e.g., θi) and record the ones at the
0, 10, 50, 90, 100 percentiles. The second method is to find the aver-
age and the standard deviation for the ring. Note that, for the latter, we
use the Kubelka-Monk equation [39] to calculate distances between
probability distribution functions and apply multidimensional scaling
(MDS) on those distances instead of pure PCA. The methodology is
shown in Fig. 7 in a sequence.

In all cases, each vertex of a dataset (bat ear or nose leaf) is de-
scribed by a 20-dimensional vector generated by principal component
analysis (PCA) or multidimensional scaling (MDS). Later we show
that experts prefer to keep the number of clusters to less than five.
For five clusters, the 20 components discovered by PCA or MDS are
enough to capture the variability. We do not cluster the 3D points
based on their orientation in the space; rather we partition each of
the ears or noses using the 20-dimensional feature vector. That is, the
datasets X and X ′ of Section 3.4 have lx = 20 and are all based on the
features generated by PCA or MDS — they do not contain 3D points.
After our clustering framework is used, we map the clustering results
to 3D points of the biosonar system with a color code for each cluster
as an illustration of the results.

4.3 User Interface

The primary goals of the user interface are three-fold: (i) support it-
erative application of scatter-gather clustering so as to enable the user
to fine-tune a clustering to their specific needs; and (ii) map cluster-
ing results involving 3D shape descriptors back onto the original 3D
object so as to support direct manipulation; and (iii) support save and
restore operations to enable the user to return to previous analysis as
desired.

As illustrated in Fig. 8, the top left part of the user interface con-
tains the S/G Cluster Analysis Interface where the user can select the
number of clusters for k-means and S/G clustering using two sliders.
The corresponding S/G constraint table is located in a small panel in
a matrix with k × k′ check boxes where k is the number of clusters
in clustering 1 (k-means or given clustering resulting from a previous
scatter-gather operation), and k′ is the number of clusters in the desired
clustering. The size of the matrix comprising the checkboxes changes
with movements of the slider bars. Based on a discussion with the
expert (see Section 5.1) on number of clusters, we allow a maximum
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Figure 8. S/G cluster analysis user interface.

of five clusters in both clustering 1 and clustering 2 (by restricting the
size of the two sliders in the top left part). The user checks the boxes
as required to construct the S/G constraint table.

The other three panels shown in Fig. 8 are for the original 3D ob-
ject, object with clustering 1 mapped in it, and object with clustering
2 mapped in it. The 3D object can contain hundreds of thousands of
points (Table 1). Analysis of a large number of meshes in the ob-
ject of the top right panel or partitioning them manually to understand
the functionality is almost impossible for an expert. The interface we
developed provides partitioning based on the locality of the shape de-
scriptors of the points in the object. The panel at the bottom left shows
the results of the current clustering (i.e., the initial k-means clustering
or the results of a previous scatter-gather clustering).

Each color of the object surface indicates a cluster. Based on the
clustering result in the bottom left panel, the user generally provides
scatter/gather constraints in the top left part of the interface. The
clustering outcome (clustering 2) with the scatter/gather constraints is
shown in the bottom right panel. The user can then save the outcome
shown in the bottom right panel, load it from the bottom left panel and
start another iteration of the analysis.

In the top left part of the interface, the user also has an option to
coordinate the visualizations between the original 3D object, cluster-
ing 1, and clustering 2. The user can rotate, scale, and move any of
these three objects using the mouse. In the coordinated visualization,
the user can interact with any one of the three visualizations but all
three are affected. This allows the user to scrutinize the shapes and the
clustering results. Each 3D object is created from the 3D points using
Delaunay triangulation.

Although our user interface has focused on visualizations specific
to the 3D geometry of the bat biosonar system, the underlying scatter-
gather mathematical framework can be generalized to work from
shape descriptors to other forms of data, so that visualizations suited
to other applications can be substituted readily.

5 RESULTS

In this section we describe the results of our scatter/gather clustering
as analyzed by a specialist. The specialist is a researcher studying bat

biosonar systems for the last three years. The specialist is also involved
in the data collection process, digitization of the external biosonar or-
gans, and analysis of the shapes.

In all subsections below, we use k to denote the number of clus-
ters in the current clustering and k′ to denote the clusters desired from
the scatter/Gather clustering framework based on the constraints pro-
vided by the user. The reader might get the illusion from some of
the figures of this section that the cluster color-codes are merely
changed in the second clustering. However, a closer look reveals
key differences. Moreover, our three-dimensional visualization tool
allows the user to examine the results closely by allowing standard
rotation, scaling, and translation facilities.

5.1 Configuration

Two main choices for investigation are selections of the ring radii and
the number of clusters. In Section 4.2 we explained that we use dif-
ferent concentric rings around the vertex by intersecting a sphere of a
certain radius with the mesh and sample that ring uniformly. The gen-
erated shape descriptor dataset varies with different ring radii. To ex-
amine which ring radii we should use to generate the shape descriptor
data, we applied k-means clustering on the generated shape descrip-
tors with radii 1%, 3%, 5%, 7%, and 9% (of the diameter of the entire
mesh) for the ear of a tailless leaf-nosed bat. The expert preferred
using the tailless leaf-nosed bat ear for this experiment because this
ear is less complex than the ears of other bat species. The k-means
clustering results for different radii are shown in Fig. 9, which shows
that the boundaries are very narrow with low ring radii. The borders
are thicker with larger radii, but cannot pick up fine details when the
ring radius is too large. The expert preferred the results of the 5% ring
radius because it was able to pick up two layers in the boundary as
well as three sharp ridges (shown in red in the figure). After this pre-
liminary investigation with the tailless leaf-nosed bat, the expert was
provided with sample clustering results for the Lyle’s flying fox bat
and woolly horseshoe bat. The expert preferred 5% ring radii for these
two species as well. For the rest of the results in this paper, we hence
generated the shape descriptors with 5% ring radii.

Recall that our scatter/gather clustering algorithm is able to map k

1% 3% 5% 7% 9%

Figure 9. Comparison between clustering with different ring radii. (The ring radius is percentage of the bounding box diameter of the 3D mesh.)



(a) Two clusters of the ear of a tailless leaf-nosed bat (Coelops frithii) are repartitioned

into three clusters using scatter/gather constraints. The resultant clustering provides two

layers of borders. There is a yellow layer outside the red border in the final clustering.

(b) An ear of a Lyle’s flying fox (Pteropus lylei) bat is partitioned into three clusters from

two groups. Two layers of the pinna boundary are revealed as well as a better washboard

pattern. The washboard pattern and the outer pinna boundary of the final clustering fall

into the same cluster (cluster in green).

(c) The resultant three clusters of the woolly horseshoe bat (Rhinolophus luctus) ear reveal

two layers in the boundary.

Figure 10. Better boundaries using scatter/gather constraints to form
three clusters from two. In all the cases shown here, the boundaries are
better partitioned after scatter/gather clustering.

clusters into k′ clusters, where k′ can be smaller than, equal to, or
larger than k. We observed that the specialist was mostly interested
in two to four clusters. When he was specifically asked to provide
an explanation of the number of clusters, he mentioned that he was
interested in several regions of bat ears and noses, e.g., borders, wash-
board patterns, ripples, ridges, and flat regions. Not all of the bats
have all these regions in their biosonar systems. Based on this input
from the specialist, we provided a choice of two to five clusters for
both k-means and scatter/gather clustering. That is, the scatter/gather
constraint table can be a k × k′ matrix where each k and k′ can take
any integer value from two to five.

5.2 Scatter/Gather Clustering with k < k′

Fig. 10 shows a few examples of scatter/gather clustering with k <
k′. The figure illustrates partitionings for ears of three different bat
species: (a) tailless leaf-nosed bat, (b) Lyle’s flying fox bat, and (c)
woolly horseshoe bat. The number of clusters in the given cluster-
ing is k = 2, and the number of clusters in the output clustering is
k′ = 3. For each bat ear, the user provided scatter/gather constraints
in a 2×3 matrix with all cells checked indicating that the user expects
construction of three clusters from two where each of the three clusters
of the final clustering can contain points from any of the two given k-
means clusters. For all three bat species, our scatter/gather clustering
framework picked up two layers of borders unlike the corresponding
k-means clustering. The expert provided a detailed explanation of the
partitionings obtained for Lyle’s flying fox bat ear. In the case of Lyle’s
flying fox bat (Fig. 10(b)), the scatter/gather clustering provided bet-
ter washboard patterns than the k-means clustering. Additionally, the
washboard patterns found with scatter/gather clustering are in the same

Washboard pattern is 

more apparent in this 

clustering

(a) An ear of a Lyle’s flying fox (Pteropus lylei) bat is partitioned into four clusters from

two groups. Two layers of the pinna boundary are revealed as well as a better washboard

pattern. The washboard patterns are in a separate cluster (yellow) from the outer pinna

boundary unlike Fig. 10(b).

The alternative cluster 

clearly distinguishes 

vertical ridge, border in 

alternative pattern (green 

and red) and rest of the 

ear (yellow).

(b) Two clusters of the ear of a woolly horseshoe bat (Rhinolophus luctus) are partitioned

into four clusters using scatter/gather constraints. The resultant clustering provides two

layers of borders (green and red), a separated vertical ridge (light blue), and the rest of the

ear (yellow).

Figure 11. Better partitioning with scatter/gather constraints from two
clusters to four. In both the cases shown here, the boundaries are better
partitioned and some regions are well separated after the scatter/gather
clustering is applied.

cluster as the outer pinna boundary (cluster with green color). The fea-
tures that were not prominent in the k-means clustering result became
apparent in the partitioning discovered by our scatter/gather clustering
approach.

Fig. 11 shows two examples with a Lyle’s flying fox bat ear and
a woolly horseshoe bat ear. In each case, k = 2 and k′ = 4. These
two results were generated when the expert was analyzing the shapes
to obtain details from two clusters provided by k-means. The expert
provides a uniform scatter/gather constraint table for both cases. In
the case of Lyle’s flying fox bat (Fig. 11(a)), the washboard patterns
were separated in one cluster (yellow). Note that in the scatter/gather
clustering of Fig. 10(b) the washboard patterns were clustered together
with the outer pinna boundary, but the washboard patterns are in a sep-
arate cluster in the scatter/gather clustering shown in Fig. 11(a). This
indicates that scatter/gather clustering is able to provide finer details
with larger k′.

Fig. 11(b) shows that in addition to the two layers (red and green)
in the border of the ear of the woolly horseshoe bat, there is a separate
cluster for the vertical ridge (light blue) and a cluster for the rest of the
ear (yellow). The boundaries and the vertical ridges were in the same
cluster (green) in the k-means clustering but they are well separated
(green, red, and light blue) in the scatter/gather clustering result. This
helps the expert in characterizing the regions of the bat ears based on
the local shapes.

The expert provided us with comments regarding the boundary re-
gions:

“ The ‘pattern border’ of any shape if it exists is better visible in
the scatter/gather clustering results. By ‘pattern border’ I mean
if the border is having two different colors — Mostly one color is
sandwiched in between two or more colors. This could be useful
for us if we want to isolate the border of the ear and reduce the
intensity of local features like washboard pattern and ridges by
smoothing them out and studying the resultant beam patterns.”

In addition to this, his comment regarding scatter/gather clustering
with k < k′ is:

“The resulting clusters are able to isolate regions with similar lo-
cal features like washboard pattern and ridge in separate clusters,
especially for ears.”



(a) Four clusters of the nose of a giant leaf-nosed bat (Hipposideros commersoni) are

gathered together into three clusters. The borders are better separated in the resultant

clustering.

(b) Three clusters of the nose of a giant leaf-nosed bat are combined together to form two

clusters. The borders are obtained in one cluster in the resulting clustering.

(c) Three clusters of the nose of a greater spear-nosed bat (Hipposideros commesoni) are

constrained to form two clusters. The resulting two clusters clearly separate the border

from the rest of the nose.

(d) Two clusters of the nose of an intermediate horseshoe bat (Rhinolophus affinis) are

obtained from three clusters. The obtained clustering (with two clusters) provides better

separation of the borders.

Figure 12. Scatter/gather clustering (with k > k′) applied on several
species to combine overpartitioned clusters.

5.3 Scatter/Gather Clustering with k > k′

In our study, we observed that the analyst sometimes desires to merge
clusters because the existing clustering overpartitioned the data. A
sample is shown in Fig. 12. Fig. 12(a) shows that a giant leaf-nosed
bat nose has been partitioned into four clusters and the user provides
scatter/gather constraints to obtain three clusters. The borders are bet-
ter separated (yellow) in the obtained clustering. During the analysis,
the user also used the scatter/gather constraints to obtain two clusters
from three (Fig. 12(b)). The two obtained clusters of Fig. 12(b)(right)
reveal the border of the nose more clearly than the three clusters shown
at left. Fig. 12(c) and (d) both show that the borders are better discov-
ered when scatter/gather constraints are applied to obtain two clusters
from three clusters.

Each of the samples shown in Fig. 12 initially had complex parti-
tions with a larger number of clusters and the user attempted to merge
them to obtain a simpler partitioning. Scatter/gather clustering pro-
vides an abstraction of many clusters with k > k′.

The expert’s comment on scatter/gather clustering with k > k′ is:

“The resulting clusters have better noise isolation in terms of iden-
tifying the borders, especially in nose leaves.”

5.4 Scatter/Gather Clustering with k = k′

In sections 5.2 and 5.3, we described how the scatter/gather cluster-
ing framework can help in analyzing partitions by providing a facil-
ity to split and/or merge clusters. In this section, we show a special
case of scatter/gather clustering where the number of clusters remains
the same in the obtained clustering but the outcome is as disparate
as possible from the given (k-means) clustering, which we described

(a) Giant leaf-nosed bat (Hipposideros commersoni): The border of the nose leaf is shown

better in the alternative clustering (the cluster marked with yellow color).

(b) Greater spear-nosed bat (Hipposideros commesoni): The alternative clustering gives a

better view of the baffle shape.

(c) Lyle’s flying fox (Pteropus lylei): Although the washboard pattern in the alternative

clustering has the same color as the border of the ear, the washboard pattern is better

isolated compared to that in the k-means clustering.

(d) Woolly horseshoe bat (Rhinolophus luctus): The baffle geometry of the border and

relatively flat regions of the nose leaf are more clearly distinguished in the alternative

clustering.

(e) Woolly horseshoe bat (Rhinolophus luctus): The vertical ridge is a part of the same

cluster as the border of the ear. The ridge is one of the important structures of the ear that

defines the over all shape of the receiver (ear).

(f) Spectral vampire bat (Vampyrum spectrum): The baffle geometry of the border of the

nose leaf are more clearly distinguished in the alternative clusterings.

Figure 13. Some illustrative results with the special case of scat-
ter/gather clustering (known as alternative clustering). The comments
from an expert are inline.

as “alternative clustering” in Section 3.5. Alternative clustering is
sometimes important to an analyst to view partitionings from multiple
perspectives. Alternative clustering is known to capture less promi-
nent features that could be missed by conventional k-means cluster-
ing. Since bats have evolved for more than a million years, their
biosonar systems have regions with different levels of prominence. We
observed that the experts sometimes provide uniform S/G constraint



‘square’ tables to find hidden or less prominent layers.
Fig. 13 shows scatter/gather clustering results with k = k′ for ear

or nose of five different species: (a) giant leaf-nosed bats, (b) greater
spear-nosed bat, (c) Lyle’s flying fox bat, (d and e) woolly horseshoe
bat, and (f) spectral vampire bat.

Fig. 13(a) shows that the borders of the nose leaf of the giant
leaf-nosed bats are better isolated in the clustering obtained by scat-
ter/gather framework. Also in case of the nose leaf of the greater
spear-nosed bat (Fig. 13(b)), the baffle shape is better in the scat-
ter/gather clustering. The scatter/gather clustering of the ear of the
Lyle’s flying fox bat (Fig. 13(c)) provides two layers in the bound-
ary and clear washboard patterns. The baffle geometry of the border
and relatively flat regions of the nose leaf of the woolly horseshoe
bat are more clearly distinguished in the scatter/gather clustering com-
pared to the given k-means clusters (Fig. 13(d)). The scatter/gather
clustering of Fig. 13(e) picks up the important vertical ridge of the
woolly horseshoe bat pinna. The border of the spectral vampire bat
nose leaf is clearly distinguished and the noise level is reduced in the
scatter/gather clustering shown in Fig. 13(f). Overall, scatter/gather
clustering with k = k′ provides an alternative partitioning of a given
one. In all the cases in addition to finding an alternative partitioning,
the expert reported that the noise level was reduced in the alternative
clustering.

The expert’s comment on our scatter/gather clustering with k = k′

is:
“ I find that alternative clusters are good at isolating and reducing
noise compared to k-means. It also reveals interesting regions that
are less prominent in k-means. ”

5.5 Iterative Scatter/Gather Clustering using Sparse Con-
tingency Tables

Here we present an interactive scenario where the expert uses scat-
ter/gather clustering to obtain a desired partitioning by refining it sev-
eral times. The expert is trying to find partitions of a woolly horseshoe
bat ear. The expert at first partitions the object into two clusters using
k-means clustering (Fig. 1(a)). The expert finds the partitions inter-
esting. He observes that the boundary and the vertical ridges are in the
same cluster (green), and the rest of the ear is in another cluster. This
fosters a thought in the expert’s mind that the vertical ridges could be
separated to form a new cluster. The expert also believes that there
could be less prominent layers in the borders of the ear. Being unsure
about the constraints, the expert provides a uniform scatter/gather con-
straint table of size 2 × 3 indicating that he desires three clusters out
of the two clusters. Our scatter/gather clustering provides the result
shown in Fig. 1(b). The partitioning of Fig. 1(b) was able to pick
up two border layers, but the vertical ridges now diminish inside the
surrounding cluster. At this point, the expert believes that it is more
important to reveal the shape of the vertical ridges rather than discov-
ering the layers in the boundary. The expert now provides an S/G con-
straint table to merge two boundaries (light blue and red), and split the
mid region of the ear (yellow) into two clusters. The resulting clusters
are shown in Fig. 1(c) where the vertical ridges are well separated in
one cluster. The expert now desires to split the border into two layers
that he previously merged. Setting up an S/G constraint table of size
3× 4 as shown in the middle of (c) and (d) objects of Fig. 1, the user
obtains four clusters. These four clusters contain two layers of border
(green and red), vertical ridges (light blue), and the flat region of the
ear (yellow).

6 OTHER INTERACTION STYLES AND EXTENSIONS

We now outline some limitations to our current implementation and
possibilities for future work. The binary checboxes used in our scatter-
gather constraint table enforce an all-or-none distribution of points be-
tween clusters, i.e., the user cannot enforce a certain percentage of
data points from a cluster to be scattered or gathered. Mathematically,
this capability is easy to support since all our framework requires is a
normalized contingency table. Recall that we normalize the constraint
table so as to distribute the total probability mass uniformly across all
the columns/rows checked. If the user has specific feedback, that in-
formation can be used to reweight the contingency table. All that is

required is that the row-sums and column-sums (marginals) be nor-
malized to sum upto 1. Design of user interfaces that can elicit such
detailed feedback from the user is a direction of future work.

Secondly, with a large number of clusters, the scatter/gather con-
straint table can grow unwieldly. For the application described here,
the number of clusters is restricted to a small number, because experts
were primarily interested in discovering features corresponding to a
few regions of bat ears/noses, e.g., borders, washboard patterns, rip-
ples, ridges, and flat regions. For other applications (e.g., document
clustering, gene clustering, image segmentation), constraint tables can
become larger and difficult to fill out. One option we are exploring
is to provide higher level support for filling in the constraint table,
e.g., filling out the table diagonally, filling the checkboxes row or col-
umn wise, and arbitrarily focusing on sub-boxes to fill out a subset of
neighboring cells. We are also exploring avenues for gathering im-
plicit feedback about cluster restructurings from the user.

Finally, in clustering applications, user constraints can be provided
either at the instance-level or at the cluster level. With the instance-
level constraints, the user can directly manipulate the assignment of
the data points into clusters but with high-dimensional datasets, as the
number of data points in a cluster becomes large, direct instance-level
constraints might become cumbersome. The scatter/gather constraints
described in this paper are cluster-level constraints (i.e., clusters be-
ing broken up, clusters being aggregated) and can be considered as an
abstraction of the instance-level feedback. Determining how to effec-
tively incorporate user feedback at two different levels of abstraction
is a direction of future work.

7 CONCLUSION

We have described a novel approach to steer clustering results and
demonstrated its application to studying baffle shapes in the bat
biosonar system. Although we have not focused on this aspect here,
it is possible to plug-and-play many different clustering algorithms in-
side the scatter/gather framework. In [31], we have shown how spec-
tral clustering, coclustering, and clustering with instance-level con-
straints can be used along with a contingency table framework. The
only requirement is that the clusters be defined via proximity to pro-
totypes (which subsumes a large class of vector quantization algo-
rithms); the prototypes are then the variables that are optimized w.r.t.
the scatter/gather contingency table.

Our studies with users have revealed that domain experts are adept
at supplying scatter/gather tables and able to iteratively use them to ob-
tain desired outcomes. We also aim to explore additional applications
of our framework to new domains, and to identify more expressive
forms of user feedback that can be incorporated into our approach.
We also aim to characterize each cluster in the partitions and employ
automatic enrichment algorithms to classify new bat ears and noses.
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