
CGI 09 manuscript No.
(will be inserted by the editor)

Adaptive Smooth Surface Fitting with Manifolds

Cindy Grimm, Tao Ju, Ly Phan, John Hughes

Abstract We present a smooth, every-where Ck, analytic
surface representation for closed surfaces of arbitrary topol-
ogy. We demonstrate fitting this representation to meshes of
varying resolutions and sampling quality. The fitting process
is adaptive and provides controls for both the average and
the maximum allowable error. The representation is suitable
for applications which require consistent parameterizations
across different surfaces.

Keywords manifolds · surface fitting · analytic surface

1 Motivation

We present a smooth, every-where Ck, analytic surface rep-
resentation for closed surfaces of arbitrary topology. In or-
der for a representation to be useful we need to be able to
build surfaces from data. In this paper, we show how to fit
our representation to an input mesh of the same topology,
taking advantage of the adaptive nature of the representa-
tion to better control both average and maximum fit levels.
Most fitting approaches typically minimize just the average
error; this can lead to areas which are inadequately repre-
sented, even though the average is still low. We address this
by allowing the user to specify both a desired average and
maximum error.

1.1 Overview

In our representation the surface is defined as an embed-
ding of a global domain of the desired topology, such as
a sphere or torus. The embedding is created by locally de-
scribing what the surface should look like and blending the
results together. Unlike splines, the continuity of the surface

is maintained by the blending process, not constraints be-
tween the local descriptions. This means these local surface
pieces can be added, changed, or deleted without needing to
re-establish continuity constraints.

More specifically, we define a general method for defin-
ing local, planar parameterizations on each of the basic global
domain topologies (sphere, torus, or n-holed torus). This pa-
rameterization is a C∞, invertible map from part of the global
domain to a disk in the plane. The embedded surface is cre-
ated by writing an embedding function for each of these lo-
cal parameterizations, then blending them together based on
how they overlap in the global domain.

Our surface representation naturally supports additional
data sets with different resolution requirements by simply
defining new local data descriptions on the global domain.
The correspondence between the additional data and the ge-
ometry is maintained through the global domain.

Fig. 1 A) Defining a surface us-
ing our representation. Surface
is an embedding of a global do-
main (in this case a circle). The
embedding is defined by several
local embeddings (two shown)
which are blended together.

To build our surface rep-
resentation from a data set
we use a modified least-
squares based approach. The
input data is a manifold
mesh of the desired topol-
ogy. The fitting process has
two steps: 1) Build a map-
ping between the global do-
main and the mesh. 2) Adap-
tively cover the domain (and
mesh) with local parameter-
izations, each of which is fit
to the corresponding part of
the input mesh. This fitting process is entirely local and does
not require any geometric constraints between overlapping
parameterizations. We control the quality of the fit through
the size of the local parameterizations.
Contributions: Building a Ck analytic surface model from a
mesh. The surface is guaranteed to have the same topology

2

as the input mesh. The model and fitting process have the
following properties:

– Adaptive surface reconstruction with explicit control over
both average and maximum allowable error.

– Explicit control over the region of influence of an indi-
vidual chart.

– Parameterization adjustment without fold-over.
– Embedding of an n-holed torus mesh into a 4n-sided

polygon in the Poincaré disk.

The paper is organized as follows: We first define the
surface representation in Section 3. In Section 4 we show
how to adapt a least-squares approach to adaptively fit our
representation to a data set. Section 4.4 defines how to build
blend functions with specific supports. We close with re-
sults.

2 Previous work

A full review of all surface representation techniques is be-
yond the scope of this paper; we focus on methods that are
analytical and parametric. We break these methods into two
groups, those that use a global domain and those that define
the surface domain through local parameterizations.
Global domains: One approach is to build an affine param-
eterization from the entire input mesh. Unless the mesh is
planar or toroidal this requires punching a small number of
holes in the mesh before creating the affine mapping. The
advantage of this approach is that the domain is very simple
and easy to build a surface using, for example, T-Splines [1–
3] or triangular splines [4]. A similar approach uses a poly-
cube [5] as a base domain; again, the domain has a small
number of discontinuities. For all of these approaches, some
form of geometric patching is added to fix the surface around
the discontinuities. The T-Splines provided limited adaptive
refinement by adding more control points.

A second approach is to use a smooth global domain,
such as the sphere or tiled hyperbolic plane, and define a
general technique for building local parameterizations over
that domain. This is the approach taken here. Earlier work
used this approach for the sphere, tiled plane, and tiled hy-
berbolic plane, but with a fixed set of a small number of
parameterizations [6]. In [7] this was extended to creating
arbitrary local parameterizations, but only for the sphere.

Other work [8–11] has used the tiled hyperbolic disk for
n-holed surfaces by mapping an input mesh to the disk, cut-
ting where necessary to produce the tiling. None of these
approaches produced satisfactory analytic surfaces from the
tiling, much less fitted surfaces.
Local domains: B-Splines are a well-established approach,
but because they are planar, other surface topologies must be
built using multiple patches. Early work [12] relied on hand-
segmentation to divide the surface into patches, then fit each

a) Tiling plane

b) Tiling hyberbolic

 disk

a a-1

b-1

b

a a-1 b-1

b a a-1

b-1

b

a-1

b

a

b-1

d

c

d-1

c-1

Front

Back

c)

a a-1

b
b-1

Fig. 2 a) Tiling the plane to make a torus. Top: Gluing the square to-
gether along a and a−1, then b and b−1, to make a torus. b) Tiling the
Hyberbolic disk with an 8-sided polygon. c) Showing a single copy of
the polygon τ wrapped onto the vase mesh.

patch through a relaxation method. Guaranteeing continuity,
particularly greater than C1, between patches while fitting
is still an open area of research [13], although commercial
software exists [14] that is fairly reliable.

Subdivision surfaces [15–19] remove the need for ex-
plicitly maintaining continuity, but while regular areas of
the subdivision mesh can be approximated by splines, the
surface is not everywhere analytic.

Several manifold-based approaches exist that build the
domain by defining local charts and their overlaps [20–22].
The topology of the domain is defined by a mesh. Charts
are built for some (or all) of the elements of the mesh, with
the chart overlaps defined by the element adjacencies. The
domain is defined by explicitly defining transition functions
that glue the charts together.

None of the above approaches allow for control over the
maximum error, and only the T-Splines approach has sup-
port for adaptively adjusting the fitted surface.

3 Surface representation

The surface representation consists of three parts. The first
is an explicit representation of the global domain D for each
genus (sphere, torus, or n-holed tori, Figure 2) [23]. The sec-
ond part is a general mechanism for creating a local parame-
terization on the domain. The local parameterization is bro-
ken into two steps; the first step maps from the domain D to
the plane, the second step adjusts the mapping with an affine
transformation (see Figure 3). The third part is the building
of the surface (or other function) itself. The domain D is
embedded by defining blend functions and embeddings for
each of the individual local parameterizations. These indi-
vidual embeddings are blended together (using the overlap
information and blend functions) to produce the final sur-
face. This is analogous to the spline approach, except we are
blending functions instead of control points.
The domains: We use a unit sphere for surfaces that are
topologically spheres. For n-holed tori we tile the hyperbolic

3

Plane Unit circle Domain

Fig. 3 Constructing chart functions for the spherical (top) and tori
(bottom) cases. MD maps from the domain to the plane, MW rotates
and scales the area of interest (blue dots) to fit in the circle. Yellow
arrows are Eigen vectors, red dots are the chart boundary mapped back
to the domain.

disk with a 4n-sided polygon (Figure 2b). For n = 1 this
simplifies to the tiled Euclidean plane (Figure 2a).
The local parameterizations: To create a local parameteri-
zation we define a mapping function αc that takes a portion
Dc ⊂ D of the domain to a region c in the plane. To simplify
matters, in this paper we always use a unit disk centered at
the origin for all of our regions c, although c can actually be
any shape. Dc, αc, and c are collectively referred to as being
a chart.

The local parameterization, depicted schematically in Fig-
ure 3, consists of a domain D-dependent map MD from D to
the plane, followed by a rotation, translation, and scale MW ,
i.e. αc = MW ◦MD. Both MD and MW must be invertible over
the area of interest. The map MD is used to select where the
center of the chart is located, while MW adjusts the orienta-
tion and size of the chart’s domain, Dc, which is defined as
Dc = (M1

D ◦M−1
W)(c).

For the sphere, MD is a rotation of the sphere, followed
by a stereographic projection [7]. For the torus, MD is a
translation, re-centering the tiled plane at the given point.
For n-holed tori, MD is a Linear Fractional Transform. Let
p = r(cosθ + isinθ) be the desired center of the chart. Then
the centering transform is:

MD =
[

cos−θ + isin−θ 0
0 1

][
1 −r
−r 1

]
(1)

Note that αc is valid for a substantial portion of D; we
restrict the mapping to αc(c) when embedding to control
how much of D (and hence the surface) the chart covers.

Transition functions between chart i and j are built by
composition αi ◦α

−1
j . Since the chart functions are C∞ and

invertible, the transition functions are as well, yielding a C∞

manifold structure.

3.1 Defining a function on the domain

For each chart we create an embedding function Ec and a
blend function Bc. The embedding function describes what
the surface should look like locally, while the blend function
defines the influence of the chart’s embedding function.

a)

D(p)

Ears

Head

b)

c)

Fig. 4 Fitting process. a) Embed the mesh in the domain. b) Partition
the mesh (and the domain) into charts. c) Fit each chart to its corre-
sponding part of the mesh.

The embedding functions Ec are polynomials that map
c to R3; we use a polynomial degree of four, which is suf-
ficient to provide flex in the surface. The blend functions
Bc are Ck smooth “bumps” which are one at the origin and
zero, along with the first k derivatives, at the boundary (see
Section 4.4).

The global function is a blended combination of the local
functions. Given a point p ∈ D:

E(p) = ∑c Bc(αc(p))Ec(αc(p))
∑c Bc(αc(p))

(2)

where we define Bc(αc(p)) to be zero if p /∈ Dc. We ensure
that the denominator is non-zero by ensuring that ∑c Bc is
non-zero everywhere. The continuity of Ec depends on the
minimum continuity of its constituent parts. In this paper the
αc and Ec functions are both C∞; the blend functions are C2.
Unlike splines, changing the continuity of the blend function
does not dramatically change the visual appearance of the
surface because it only slightly alters the blend function’s
shape.

4 Fitting to a mesh

In this section we describe how to fit our representation to a
manifold mesh of the desired topology. The fitting proceeds
in two steps (see Figure 4):

– Let D be the domain with the same topology as the in-
put mesh. Create a 1-1, onto mapping between the input
mesh and D by embedding the mesh into D.

– Create an initial set of Nc charts that cover D by parti-
tioning the mesh. Each chart covers its partition and a
bit more. Adaptively add charts until the fit error is be-
low the user-specified average and maximum error.

The user provides four parameters that control the chart
placement. The first two are the desired average Ea and max-
imum Em allowable point error. The second two are the de-
sired average Ena and maximum Enm allowable normal vari-
ation. We now discuss these steps in detail.

4

a

b

a-1 b-1

Tracing and labeling the loops Disk

Cut along c

and glue a’s

b Z

R
b-1

L
c

r-1 c-1

Cut along r

and glue b’s
r a

b

a-1

b-1

a

b
Z

a-1

R

b-1

c

r-1 a
b

Z

R

b-1

L

c

c-1

a-1 r-1

L

vs

vs
vs

vs

vs

Fig. 5 Left: Tracing along the loops to cut the mesh into a disk. Cut along a, then b, then a−1, then b−1. Right: Fixing an existing disk so that one
hole (aba−1a−1) is correctly labeled. Repeat on the remaining LRZ boundary.

4.1 Embedding the input mesh

The goal of the embedding step is to distribute the vertices
in the domain, respecting the local neighborhood connectiv-
ity. Like most parameterization algorithms the relative local
geometry placement in the domain should be similar to the
geometry in 3D (relative edge lengths and angles).

For the sphere we use Saba’s approach [25], although
any other approach woud work as well. For the toroidal case
we start with Erickson’s approach [26,27] which creates an
initial 2n loops (two for each hole) through a vertex Vs. We
then change the labeling of these loops to match our 4n-
sided polygon labeling.

First cut the mesh open along the loops, starting at vs
and tracing along the edges in the loops. This tracing pro-
cess will visit each loop twice, the second time in the re-
verse direction. Label each part of the boundary with its
corresponding loop a,b, . . ., labeling the second occurrence
as a−1,b−1, For our global domain we need the bound-
ary labeled as aba−1b−1, . . . ,yzy−1z−1. Slice the disk and
re-glue it together (see Figure 5) until the loops are in the
correct order.

Slicing proceeds by finding a pair of labels of the form
abZa−1Rb−1L, where Z,R and L are (possibly empty) pieces
of the boundary. Cut along a path from the end of a to the
end of b−1 and glue the removed piece back together along
a. Next, cut from the end of a to the beginning of a−1 and
glue the disk back together along b. The result is the cor-
rect labeling for one hole; repeat until all holes are correctly
labeled. This disk is embeded in the polygon by matching
corners and edges.

Guaranteeing no fold-overs: When iteratively adjusting po-
sitions we constrain the movement of each vertex to a safe
region. For the sphere this safe region is built in the fol-
lowing way. For each triangle adjacent to the vertex, build
three planes. Each plane passes through the origin and the
mid-points of two adjacent triangle edges. Define the plane
normal so that the vertex is on the positive side of the plane.
The safe region is the union of all of these half-spaces. For
the toroidal case the planes are all perpendicular and can be
replaced by lines [29].

4.2 Placing charts

The goal of the chart placement algorithm is to cover the
mesh with as few charts as possible while enforcing that
each chart be adequately fit to its corresponding part of the
mesh. The charts must also overlap so that there is a smooth
transition from one chart to the next.

The algorithm proceeds by placing an initial set of charts
then adaptively adding charts where the fit is not good enough.
To ensure coverage we partition the mesh into regions, one
for each chart. To ensure overlap, we expand each region by
one ring of faces. The chart is responsible for covering this
expanded region.

A chart is specified by its location (MD) and its scale and
orientation (MW). We place each chart so that its center is at
the center of the region, then adjust MW until the chart just
covers the assigned region.

The algorithm has three components: How to place the
region centers, how to build the regions, and how to cal-
culate MD and MW . We use Lloyd’s [30] algorithm, which
evenly distributes points on the mesh using voronoi relax-
ation, to determine the centers of the regions. The regions
themselves are then determined by doing a voronoi tessella-
tion in the domain D. Finally, we use an optimization proce-
dure to “shrink wrap” each chart around its region.
Placement: We use binary search on the number of centers,
aiming for 70% of the mesh being adequately fit. These cen-
ters are uniformly distributed on the mesh using Lloyd’s al-
gorithm. We then iteratively add more centers both between
the centers of adjacent, poorly fitted charts, and at the edge
of isolated, poorly fit ones. Only these newly added cen-
ters, and the centers of the poorly fitted charts, are allowed
to move in subsequent Lloyd relaxation steps. This process
stops when there are no more poorly fitted charts or when
there is no place to add new centers.
Making regions: We could use the voronoi regions pro-
duced by previous step as our regions. This often, however,
results in crescent-shaped regions in the domain in places
like the base of the bunny’s ear. Therefore, we do a voronoi
tessellation using geodesic distance in domain space, us-
ing the centers (mapped to D) that were found in the pre-
vious step. We then add one more ring of faces around each
voronoi region.

5

Making charts: Let D be the function that maps the mesh
to the domain D, and Rc be the region centers found by the
Lloyd’s algorithm. Set MD so that αc(D(Rc)) is the origin.
Let D({P}c) be the set of domain points found by mapping
the region’s vertices and boundary-edge mid-points to the
domain. We next solve for the affine map MW that “shrink
wraps” the chart’s boundary around D({P}c).

First, map the points to the plane using MD ({pc} =
MDc({P}c)). Next, use Principal Components Analysis on
the {pc} points to find an initial scale and orientation. Set
MW to rotate the first Eigen vector to the x axis and set the
scales to be the Eigen values. The initial translation is set to
zero because the chart is already roughly centered. Finally,
optimize over the rotation and translation in order to mini-
mize the area of M−1

W (c). At each iteration, use binary search
to find the smallest x and y scale such that MW (pc)⊂ c. This
avoids the problem of trying to include that constraint in the
optimization term.

4.3 Chart fitting

The embed function E is a K degree polynomial. We use as a
starting point the standard approach of solving for the coeffi-
cients using a least-squares approach, where each row repre-
sents a point constraint. We modify this to allow weighting
for each row and to allow face normal constraints. A face
normal constraint n is added by constraining the dot product
of the face normal and the derivative at the face’s centroid
to be zero. To set the length of n, fit E using only the point
constraints. Set n’s length to be one over the (unnormalized)
length of E’s surface normal at that point.

For our point constraints we take all of the vertices in the
region, plus the midpoints of the edges that lie on the bound-
ary of the region. This helps to counteract the fact that inte-
rior points have more influence. The weights for the point
constraints are initially set to 1/Np, where Np is the number
of point constraints.

For our normal constraints we take all of the face nor-
mals in the region, plus the normals at the midpoints of
the edges that lie on the boundary. The initial weights for
the normal constraints are Ea/Nn, where Ea is the average
allowed point error and Nn is the number of normal con-
straints.

This approach solves for the solution with the minimum
root mean squared error (RMS). Unfortunately, it often does
so by increasing the error to the boundary points, resulting
in a surface which has a good RMS, but possibly high max-
imum error (see Figure 6). We therefore allow average error
to increase if it means decreasing the error at any points with
large error. We describe two optimization approaches that
accomplish this, one of which is relatively fast and involves
iteratively adjusting the weights in the matrix, the second
which is slower and is a general optimization.

Fig. 6 Left: Fitting to just the points. Middle: Fitting to the points and
normals with adjusted weights. Right:) Non-linear optimization. Cir-
cled area shows a normal which is initially flipped.

Iterative weighting: The iteration proceeds as follows. At
each step, the weights of each constraint are adjusted, and
the surface is re-fit. We cap the number of iterations at twenty
because, after experimentation with several data sets, we
never say improvement after this. Let l = ||E(u,v)−P|| >
Em and δp = 2/Np. Then the weight is changed by:

δw =

{
δp +δp

l−Em
Em

l ≥ Em

δp
l−Ea

Em−Ea
Em > l > Ea

(3)

We update the normal constraint weights in a similar fash-
ion, letting δp be 2Em/Nn. Additionally, if the dot product
is negative, we add additional point constraints to unfold
the surface there. For face normals, we add three points sur-
rounding the face centroid. For edge normals, we add four
points, two on the edge surrounding the mid point, the other
two part way into the faces on either side (see Figure 6, mid-
dle).
General optimization: The above approach works in most
cases, but can have trouble unfolding edges. In these cases
we apply a general solver with these terms:

Average terms: For the point constraints, we calculate
the average error εa and weight it by the average desired
error, yielding εa/(2Ea). For the normal constraints, we cal-
culate the average dot product error εna and then take (1−
εna)/2. We weight both average terms by 1/2 to emphasize
the maximum error.

Maximum terms: For the point constraints, we add 1 +
min(1, l − Em)/(10Em), where l is the distance to the de-
sired point, for every point where l > Em. For the normal
constraints, we add 1 +(1− d)/2 where d is the dot prod-
uct, for every point where d < Enm.

4.4 Shaped blend functions

The partition process (Section 4.2) tries to assign regions
to charts so that, when mapped to the chart, the regions are
as close to the shape of the chart as possible. We can fur-
ther control the region of influence of the chart by using

6

b) Shrunken region c) Delaunay triangulation d) Circle covering e) Shaped function a) Region in chart

Fig. 7 Building a Shaped Blend Function. Red boundary: The expanded region of the mesh that the chart covers, mapped to the domain of the
chart. Cyan boundary: The region shrunk by moving 1/4 in on each edge that touches the boundary. In c) we sample the chart and region boundary
and create a Delaunay triangulation of the original region which completely encloses the shrunken region. d) Each Delaunay triangle generates a
circle. A subset of these circles, who’s union covers the shrunken region, are selected. e) The resulting blend function.

shaped blend functions, matching the function’s support to
the shape of the region.

To ensure that our manifold embeddings are valid, we
must ensure that the blend function supports overlap — ev-
ery point on the mesh is covered by one (or more) non-zero
blend functions. We guarantee this by ensuring that each
shaped blend function covers its part of the mesh plus (at a
minimum) approximately 3/4 of the ring around the region.
This puts the total overlap between two adjacent charts at
roughly 11/2 faces.
Definition: Our shaped blend functions consist of the sum
of individual circular “bumps”:

B̂c(s, t) = ∑
i

wiβ (
(s− si)2 +(t− ti)2

r2
i

) (4)

β (d) =
{

0 d > 1
1−10d3 +15d4−6d5 d ≤ 1

(5)

where (si, ti,ri) is a circle centered at (si, ti) with radius ri,
and wi is a constant that scales the height of the bump. All of
the circles must be contained within the domain of the chart.
β is a polynomial which is 1 when d = 0, 0 when d = 1, and
the first and second derivatives at 0 and 1 are both 0. This
provides C2 continuity. Continuity Ck (including C∞) can be
achieved by changing β [21].
Construction: Refer to Figure 7. Sample both the boundary
of the region and the chart to create a Delaunay triangula-
tion. Take only the triangles that cover the interior of the
region. Each of these triangles represents a possible circle
we can use (the circle that passes through the triangle’s ver-
tices). Clearly, the union of all of these circles covers the
region because each circle covers its corresponding triangle.

Rather than use all of the circles we take a subset of
them. Take the boundary of the region and shrink it slightly
by moving it 1/4 in. Greedily choose circles which cover the
most of the remaining uncovered part of the boundary, until
all of the shrunken boundary is covered. To ensure that there
are no gaps in the interior of the region, all circle-circle inter-
sections that lie in the shrunken region must also be covered
by some other circle. This guarantees that the boundary of
the union of the circles lies outside of the shrunken region.

To guarantee that the circles do not extend outside of the
circle’s domain first increase the size of the chart slightly
so that the region boundary is at least 0.05 from the chart’s
boundary. Sample the boundary so that the samples are closer
to each other than they are to the chart’s edge. This pre-
vents the circles from expanding past the region boundary
and crossing the edge.
Weights: Once we have our circles we pick a weight wi for
each one so that the shape of Equation 5 is as “bump-like”
as possible, and so that the derivatives of Bc are as small
as possible. We accomplish this using a constrained least-
squares approach, solving for positive weights that minimize
the derivatives while making Bc(0,0) = 1.

4.5 Additional steps

We can optionally adjust the parameterization to reduce the
error in the tangent plane direction. We fit the surface, then
for each data point find the closest point on the fitted surface.
This defines the desired parameter point in the domain for
that data point. We then iteratively move the domain points
towards their desired locations while preventing fold-overs
(Section 4.1).

To reduce the number of shaped blend functions we check
to see if the chart can adequately fit the region of D it cov-
ers; if so, we replace the shaped blend function with a single
circle which exactly covers the chart. For the fit check, we
use one point per vertex covered by the chart, and one point
per face. We additionally add 16 point constraints for the
boundary by mapping evenly spaced samples on the chart’s
boundary back to the mesh.

5 Results and remarks

Figure 10 illustrates the effect of changing both the desired
fit Ea and the mesh resolution. Figure 11 compares our method
with GeoMagic’s results. Figures 8 and 9 show one and two-
holed tori examples, respectively. Note on color: Gray to
white is below Ea, blue-yellow is between Ea and Em, and

7

red is greater than Em. The input parameters and output re-
sults for all figures are summarized in Table 1. Max con-
straints are not met when it is not possible to fit a polynomial
to the face plus the one ring neighborhood. The accompany-
ing video shows the places were the maximum constraints
were not met. All normals used in rendering are computed
analytically.

Running times are on the order of a few minutes to a few
hours, depending on the density of the mesh, the desired er-
ror, and the quality of the parameterization. Polynomials are
less sensitive than spline patches to “skew” in the parameter-
ization, but can still fail even when the geometry is relatively
flat. Adjusting the parameterization (Section 4.5) greatly re-
duces the tangential error, and hence the number of needed
charts, but is fairly expensive computationally (4988 to 3960
for the rocker arm). Similarly, weighted fitting (Section 4.3)
is expensive, but can significantly drop the number of charts
needed for the same level of fit (866 to 477 for the low-res
bunny, 3960 to 1825 for the rocker arm).

We primarily envision using this representation where
subsequent processing depends on smooth surfaces [31] or
for consistently parameterizing similar surfaces. For surfaces
that have sharp features, such as CAD/CAM objects, it is
possible to define an embedding function which explicitly
models the tangent discontinuity, using, for example, a spline
surface with collapsed knots.

In conclusion, we have presented a technique for adap-
tively placing charts over a surface based on user-specified
average and maximum errors. The resulting surface is an-
alytic and locally parameterizable. The technique is robust
to different sampling patterns (contours and poorly shaped
triangles).

Acknowledgments: This work was funded in part by
NSF grants CCF 0702662 and CCF 0429856.

Data Inputs Outputs
Data Nv Ea Charts Shp Pt Norm
Bones 49701 3.3 3009 0 1.2, 20 0.63, 112
Bunny 1502 1 477 56 .67, 0 0.97, 14

1502 .1 2940 86 .16, 112 0.99, 2
15002 1 5945 28 .47, 0 0.97, 333
15002 .1 10075 59 .12, 17 0.99, 10

Garg 10002 1 4513 50 .3, 0 0.95, 37
Vase 1476 1 812 100 .4, 0 0.92, 18
Rocker 10044 .2 5066 48 .2, 44 0.99, 2
Buste 5002 1 2719 74 .3, 0 0.97, 9
Bimba 4502 .2 3731 64 .2, 4 0.97, 21

7502 5 9206 64 .8, 0 0.86, 1458

Table 1 Nv is the number of vertices. Ea is the average point error,
as a percentage of the diagonal of the bounding box. For all surfaces,
Em = 3Ea, Ena = 0.9, Enm = 0.6, polynomial degree is 4. Ena = 0.9,
except bones, which was Ena = 0.6, Enm = 0.3. Charts is the number
of charts, shp is the percentage of shaped blend functions. The point
averages are given as a percentage of the bounding box diagonal. The
max values are the number of constraints which were not met.

References

1. Y. He, K. Wang, H. Wang, X. Gu, and H. Qin, “Manifold T-spline,”
in GMP ’06, pp. 409–422, 2006.

2. J. Zheng, Y. Wang, and H. S. Seah, “Adaptive T-spline surface
fitting to z-map models,” in GRAPHITE ’05, pp. 405–411, 2005.

3. W.-C. Li, N. Ray, and B. Lévy, “Automatic and interactive mesh
to t-spline conversion,” in SGP 06: Symposium on Geometry Pro-
cessing, pp. 191–200, Eurographics Association, 2006.

4. X. Gu, Y. He, and H. Qin, “Manifold splines,” in SPM ’05, pp. 27–
38, 2005.

5. H. Wang, Y. He, X. Li, X. Gu, and H. Qin, “Polycube splines,” in
SPM ’07, pp. 241–251, 2007.

6. C. Grimm and J. Hughes, “Modeling surfaces of arbitrary topol-
ogy using manifolds,” Computer Graphics, vol. 29, July 1995.

7. C. Grimm, “Spherical manifolds for adaptive resolution surface
modeling,” in Graphite, Nov. 2005.

8. H. Ferguson and A. Rockwood, “Multiperiodic functions for sur-
face design,” Computer Aided Geometric Design, vol. 10, pp. 315–
328, Aug. 1993.

9. A. Rockwood and H. Park, “Interactive design of smooth genus n
objects using multiperiodic functions and applications,” Interna-
tional J. of Shape Modeling, vol. 5, pp. 135–157, 1999.

10. J. Wallner and H. Pottmann, “Spline orbifolds,” Curves and Sur-
faces with Applications in CAGD, pp. 445–464, 1997.

11. X. Gu and S.-T. Yau, “Global conformal surface parameteriza-
tion,” in SGP ’03, pp. 127–137, 2003.

12. V. Krishnamurthy and M. Levoy, “Fitting smooth surfaces to dense
polygon meshes,” in SIGGRAPH ’96, pp. 313–324, 1996.

13. X. Shi, T. Wang, P. Wu, and F. Liu, “Reconstruction of convergent
g1 smooth b-spline surfaces,” Comput. Aided Geom. Des., vol. 21,
no. 9, pp. 893–913, 2004.

14. Geo, “Geomagic commercial software.”
15. A. Lee, H. Moreton, and H. Hoppe, “Displaced subdivision sur-

faces,” in SIGGRAPH ’00, (New York, NY, USA), pp. 85–94,
ACM Press/Addison-Wesley Publishing Co., 2000.

16. N. Litke, A. Levin, and P. Schröder, “Fitting subdivision
surfaces,” in VIS ’01, (Washington, DC, USA), pp. 319–324, IEEE
Computer Society, 2001.

17. W.-K. Jeong and C.-H. Kim, “Direct reconstruction of a displaced
subdivision surface from unorganized points,” Graph. Models,
vol. 64, no. 2, pp. 78–93, 2002.

18. M. Marinov and L. Kobbelt, “Optimization methods for scattered
data approximation with subdivision surfaces,” Graph. Models,
vol. 67, no. 5, pp. 452–473, 2005.

19. M. Halstead, M. Kass, and T. DeRose, “Efficient, fair interpola-
tion using catmull-clark surfaces,” in SIGGRAPH ’93, pp. 35–44,
1993.

20. C. Grimm, D. Laidlaw, and J. Crisco, “Fitting manifold surfaces to
3d point clouds,” Journal of Biomechanical Engineering, vol. 124,
pp. 136–140, February 2002.

21. L. Ying and D. Zorin, “A simple manifold-based construction of
surfaces of arbitrary smoothness,” ACM Transactions on Graph-
ics, vol. 23, pp. 271–275, Aug. 2004.

22. J. C. Navau and N. P. Garcia, “Modeling surfaces from meshes of
arbitrary topology,” Computer Aided Geometric Design, vol. 17,
pp. 643–671, August 2000. ISSN 0167-8396.

23. C. Grimm, “Parameterization using manifolds,” International J. of
Shape Modelling, vol. 10, pp. 51–80, June 2004.

24. C. Grimm, “Simple manifolds for surface modeling and parame-
terization,” Shape Modelling International, May 2002.

25. S. Saba, I. Yavneh, C. Gotsman, and A. Sheffer, “Practical spher-
ical embedding of manifold triangle meshes,” Shape Modelling
International, pp. 256–265, June 2005.

26. J. Erickson and K. Whittlesey, “Greedy optimal homotopy and ho-
mology generators.,” in SODA, pp. 1038–1046, 2005.

8

a) Loops on input mesh b) Embedding with partitions c) Charts d) Surface

Fig. 8 a) Initial cut loops on input mesh. b) Embedding of mesh into torus domain, colored by partition. c) Charts on domain, shrunk to 1/4 size.
d) Reconstructed surface, colored by chart center.

c) Cut loops d) Parameterization f) Surface a) Tv & Tf (grey) b) Initial loops

Front

Back

Fig. 9 2-holed tori. a) Initial loops b) Fixed loops. c) The mesh after cutting and relaxation (70 iterations). Chart coverage, right: blue dots are
chart centers, colors indicate chart order. d) The reconstructed surface, colored by chart.

Fig. 10 Top: low-res bunny. Bottom: hi-res bunny. Left: 1% error. Right 0.1%error. Shown is the original mesh, the output surface colored by chart
and with chart centers, and reflection and shaded renderings.

GeoMagic
NURBSManifolds

Data

Fig. 11 The bones of the hand constructed from CT scans. Left: Our reconstruction, average absolute error 0.16. Middle: Example data showing
contour structure. Right, NURBS surfaces constructed using commercial software (Geomagic), average error 0.13.

9

27. C. Grimm and J. Hughes, “Parameterizing n-holed tori,” Mathe-
matics of Surfaces X, pp. 14–29, Sept. 17-19th 2003.

28. M. S. Floater, “Parametrization and smooth approximation of sur-
face triangulations,” Computer Aided Geometric Design, vol. 14,
no. 3, pp. 231–250, 1997.

29. P. V. Sander, S. J. Gortler, J. Snyder, and H. Hoppe, “Signal-
specialized parametrization,” in EGRW ’02, pp. 87–98, Euro-
graphics Association, 2002.

30. S. LLoyd, “Least square quantization in pcm,” IEEE Trans. In-
form. Theory, pp. 129–137, 1982.

31. G. E. Marai, C. Grimm, and D. Laidlaw, “Arthrodial joint mark-
erless cross-parameterization and biomechanical visualization,”
IEEE Transactions on Visualization and Computer Graphics, ac-
cepted pending revisions, 2007.

32. M. Desbrun, M. Meyer, and P. Alliez, “Intrinsic parameterizations
of surface meshes,” Computer Graphics Forum, vol. 21, pp. 209–
218, 2002.

