
A 3D Pattern for Post Estimation for Object Capture

Lei Wang, Cindy Grimm, and Robert Pless
Department of Computer Science and Engineering

Washington University
One Brookings Drive, St. Louis, MO, 63130

{lw3,cmg,pless}@cse.wustl.edu

Abstract

We describe a new pose estimation approach for a
3D object capture system. This 3D pose estimation
approach offers several advantages: increased visibil-
ity, robustness to lighting conditions, and improved
reliability with evenly distributed errors. The cali-
bration pattern is built using 3D conic features. We
use simplex search to find the camera position and
orientations that minimizes the error between the
projected 3D cone features and the corresponding 2D
image features. We demonstrate that our approach
is accurate, efficient and robust.
Keywords: CR Category: I.2.10 [Vision and Scene
Understanding]: Calibration, Object Capture, 3D
Pattern, Pose Estimation, Ellipse Fitting, Conic

1 Introduction

Our 3D calibration approach was motivated by the
need for robust camera calibration in a turntable-
based 3D object capture system. Since the objects
we intend to capture are not restricted to be Lamber-
tian, passive image-based modeling techniques are
preferred. Camera calibration is one of the most
critical aspects of image-based modeling. We de-
sire a highly detailed representation, especially for
fuzzy objects where it is important to capture small
details. This requires many images taken from dif-
ferent views in order to cover every aspect of the
object.

We use a turntable system (see Figure 1) to ac-
quire the raw images of one object from any angle in
the upper hemisphere. The system has a turntable,
which rotates through 360 degrees, and a camera
arm which rotates through 90 degrees. We know the
approximate position and orientations of the cam-
era from the motors; we use a calibration pattern to
achieve more accurate pose estimation.

Depending on the required detail of the object, we

Figure 1: Turntable System.

may need anywhere from hundreds to thousands of
pictures to reconstruct the virtual model. Because of
this, the camera calibration has to be entirely auto-
matic. The calibration pattern must also be visible
from the entire hemisphere and robust to different
lighting conditions. Furthermore, since each view of
the object contributes equally to the virtual shape,
we want equal reliability for every view. Finally, the
pattern must be easy to build and detect. The 3D
calibration pattern we designed is a truncated cone
with two ellipses (see Figure 2). Image processing
detects the projected 2D ellipses. We perform a non-
linear search to find the translation and rotation of
the camera so that the projected 3D ellipses match
the detected 2D ellipses.

During the raw image capture phase, the camera
lens is fixed and not re-focused or zoomed. There-
fore, we only need to calculate the intrinsic parame-
ters for the camera once at the start of the capture
process. We calculate the extrinsic parameters for
every image.

In Section 2, we discuss related work and how
we adapted traditional approaches to meet our own
needs. In Section 3, we introduce our 3D pattern and



how to build it. In Section 4, we focus on feature de-
tection techniques such as color detection, boundary
detection, pixel grouping and fitting algorithms. In
Section 5, we describe the approach used for solving
for the intrinsic parameters. In Section 6, we discuss
how to solve for the extrinsic parameters. We close
with accuracy tests and results.

2 Previous Work

The pinhole camera model defines the relationship
between a 3D point M and its 2D image projection
m as:

sm = A RT M (1)

where

m = [u v 1]T (2)
M = [x y z 1]T (3)

s is a scale factor, and A is the intrinsic camera ma-
trix and RT is the extrinsic camera matrix. The ma-
trix A represents how a point in camera coordinates
is projected onto the camera image plane. The ma-
trix RT represents the transformation between world
coordinates and camera coordinates. Camera cali-
bration is the process of solving for both A and RT ,
and pose estimation is the process of solving for RT
based on a given A.

The most common method for solving for the in-
trinsic matrix uses multiple images of a planar cali-
bration pattern consisting of a checkerboard [9]. This
calibration method also calculates the pose estima-
tion parameters RT — the relative position and ori-
entation of the camera and the checkerboard pattern.
Other work that explicitly uses ellipses as part of
planar patterns for calibration and pose estimation
include Rothwell [6], who calculates a set of specific
points using tangent lines and intersection, Song [7],
who uses an iterative approach that requires a corre-
sponding pair of conics, and Ji [3] who considers el-
lipses as one of many geometric primitives (the oth-
ers are points and lines) and gives a least squares
solution for arbitrary sets of matched primitives.

A planar pattern’s 2D features can be difficult
to extract from oblique camera angles (below 30 de-
grees). This means that one 2D planar pattern has
approximately 1/8 sphere visibility. Non-planar pat-
terns can be accurately measured from a larger set
of viewpoints. For instance, Gortler [2] used three
orthogonal planar patterns in the scene. This in-
creased the visibility to 1/4 sphere, but it is still
far from our hemisphere requirement. Using more

planar patterns also introduces other issues like oc-
clusion, pattern identification, and so on. Another
drawback of using a planar pattern is that the accu-
racy of the feature detection depends upon the view-
point. Generally, when the camera moves away from
the perpendicular position, reliability goes down.

Existing approaches also use specific points as the
mapping feature when solving for camera calibra-
tion. This requires that these points be accurately
detected, which can be difficult under changing light-
ing conditions. A better approach is to use areas of
color-contracting regions [8].

Our approach differs from previous work in that
we use a truncated 3D cone as the calibration pat-
tern and two ellipses as the mapping features. There
are several reasons choosing this pattern. First, the
cone has hemisphere visibility in term of detecting
the 2D features. Although the cone might be oc-
cluded by the object from some viewpoint, we are
able to obtain the entire 2D features by ellipse fit-
ting to the visible part of the ellipses. Second, we
use the visible potion of the ellipse shape as our 2D
feature which means many pixels contribute to the
2D feature detection. Finally, we adopt the stable
color ratio technique to ensure robustness to differ-
ent lighting conditions.

3 Calibration Pattern

Now let us look at the 3D calibration pattern in
detail. The pattern is a truncated cone with two
marked ellipses (refer to Figure 2). The parameter-
ized function for the cone with radius r and base
angle β is:

c(t, θ) = (rt sin θ, rt cos θ, r(1− t) tan β) (4)
t ∈ [0, 1], θ ∈ [0, 2π) (5)

The ellipse features are the red-green or green-
blue boundaries shown on the cone. The position
and orientation of the cone in 3D world coordinates
is shown in Figure 2. Recall that a conic is the inter-
section of the cone and a plane. A general equation
for a plane is:

ax + by + cz + d = 0 (6)

For the red-green boundary plane, we chose the fol-
lowing plane equation:

0x + y − 5z tan−1 β + 2r = 0 (7)

Substituting equation 7 into equation 5 and solving
for t:

t =
3

5 + cosθ
(8)



Figure 2: 3D pattern: From left to right: A diagram of cone. A 2D diagram of the “unwrapped” cone. A
picture of the actual 3D cone. A picture of the 2D unwrapped cone which we printed out and used to build
the 3D cone.

Substituting t into equation 5, we obtain the follow-
ing 3D ellipse, parameterized by θ ∈ [0, 2π]:

e(θ) = (
3r sin θ

5 + cos θ
,

3r cos θ

5 + cos θ
,
r tanβ(2 + cos θ)

5 + cos θ
) (9)

We define the green-blue boudary in a similar
manner.

How do we build the pattern? If we cut the cone
and lay it flat we get a fan which is a 2D planar
pattern. We build the 3D pattern by wrapping a 2D
planar pattern into the 3D shape. For our choices of
β and r the fan occupies 180 degrees of the circle;
different choices of β and r will result in wider or
narrower angles. The fan can be parameterized by a
radius s and an angle φ:

f(s, φ) = (s ∈ [ri, l], φ ∈ [0, 180]) (10)

where l is the length of the edge from the apex of the
cone to its base and ri is the inner radius of the fan.
ri is determined by where the cone is truncated.

The unwrapped 3D ellipse can be parameterized
by φ and a changing radius based on φ:

e2(φ) = (h(φ), φ) (11)

We first find the radius h in terms of the cone
parameter θ. On the cone, the ratio of h’s z value
over the height of the cone is the same as its ratio to
l.

hz = (r tanβ − z)/sinβ (12)

We know from the cone equation that

z = r(1− t) tan β (13)

By substituting in z, we have:

hz(t) = rt cos−1 β (14)

Substituting equation 8 into equation 14, we ob-
tain:

h(θ) =
3r

cosβ(5 + cosθ)
(15)

The angle φ of the fan is related to the angle θ of
the cone by the following equation:

θ =
φ

cosβ
(16)

To obtain the explicit 2D function of one un-
wrapped ellipse we have:

h(φ) =
3r

cos β(5 + cos(φ/ cos β))
(17)

To simplify the pattern we choose β to be 60 de-
grees. This makes ri = r. Equations for our un-
wrapped cone boundaries are:

l0 = r (18)

l1 =
6r

5 + cos 2φ
(19)

l2 =
12r

7 + cos 2φ
(20)

l3 = 2r (21)
φ ∈ [0, π) (22)

Using these equations, we generate the image of
the unwrapped cone and print out the pattern on
hard paper. We paste it onto a stiff board and wrap
it around to obtain the physical 3D truncated cone.
To stablize the cone, we paste circular boards at the
top and the bottom of the cone.

4 2D feature detection

In this section we describe how to find the 2D ellipses
in the images. Recall that the ellipses are defined by



Figure 3: Feature detection. From left to right: Original image. Initial classification. After erosion and
dilation. Fitting ellipses.

the color boundary between two colors. To detect
the boundary, we need to color classify the pixels,
identify the boundary pixels, and then fit them to
get the 2D ellipse equation.

Our color classifier uses color ratios which are ro-
bust under different lighting conditions [8]. The red
ratio value is defined by:

rv =
R

R + G + B
(23)

and similarly for green and blue. If the color ra-
tio value is larger than some threshold, we classify
it as that color. Even for images taken under dif-
ferent lighting, the threshold is almost constant (see
Figure 3). We use a flood-fill algorithm to create
connected regions of similar colors. The boundary
pixels are those that lie between two regions.

The simplest method to find the boundary is to
look for the pixels that are relatively close to both
boundary colors. To speed up this process, we only
look at pixels in the connected region.

Some pixels are mis-labeled because of noise or
because the object is colored. To eliminate small
noisy regions, we perform erosion then dilation. We
also use the estimates of the camera’s position and
orientation to estimate where the object and pattern
might be in the image.

We use a linear least squares algorithm to fit a
conic to the boundary pixels. A conic is represented
by the following implicit function:

E(x, y) = Ax2 + Bxy + Cy2 + Dx + Ey + F (24)

Each pixel results in one linear equation. To pre-
vent the zero solution, we add one additional con-
straint forcing the sum of the coefficients to be non-
zero. We typically have hundreds of pixels. The
result of fitting is shown in Figure 4.

Note that we do not require that the fitted conic
be an ellipse, although the projection of the 3D el-
lipse is a 2D ellipse. We restrict our search error

function to the visible portion of the ellipse. This
means that the conic only needs to fit in the area
where we have boundary pixels.

5 Intrinsic Parameters

We use Zhang’s [9] algorithm to calculate the intrin-
sic parameters at the beginning of a capture session.
We color one white space yellow in order to uniquely
determine the orientation of the pattern.

The checkerboard coordinate system should be
the same as the cone’s coordinate system. We put
the checkerboard on top of the truncated cone and
line up the x and y coordinates relative to a physi-
cal mark on the cone. We first take one run of the
checkerboard and the cone, randomly pick some pic-
tures from the set, and solve for the intrinsic param-
eters. Keeping exactly the same configuration of the
system, we replace the checkerboard with the desired
object, and capture the desired image set. We then
solve for the extrinsic parameters for each image in
the set.

6 Pose Estimation

Using a 3D pattern leads to a nonlinear pose esti-
mation problem. To solve the nonlinear problem, we
minimize a cost function representing the accuracy
of the current estimation. Because the cost space is
not uniform, we use simplex search.

There are six parameters we need to adjust.
There are three parameters represent the rotation
in the x, y, and z axes. There are three parameters
represent the translation in the x, y, and z axes.

To calculate our cost function we begin by taking
100 points evenly distributed along each of the two
3D ellipses. We project these points to the image
plane using our current camera pose estimate:

V (P ) = (u/w, v/w) (25)



Figure 4: Pose estimation. Left: Original guess.
Right: Final fit.

where m = [u v w]T comes from equation 1. We
then eliminate any points that do not lie near our
boundary pixels. Our cost function is then:

Err(T,R) =
∑

i

Erg(V (Pi))2 + (26)∑
j

Erb(V (Pj))2 (27)

where Erg and Erb are the two ellipses found in the
2D feature detection stage.

We obtain initial estimates of the camera’s posi-
tion and orientation from the turntable angle θ and
the camera arm angle φ (see Figure 1). The camera
is assumed start at (0, 0, 0), oriented down the z−
axis. We first translate the camera to the end of the
arm (0, 0,−z), rotate it around the y− axis by φ,
then around the z− axis by θ.

The initial guess is usually very close to the cor-
rect answer (see Figure 4). We run the simplex
search until the cost is below some threshold (10−6).
The search converges in ten to twenty steps.

7 Results and conclusions

The metric we used to check the accuracy of the
calibration is the geometric pixel error of both the
checkerboard corners and the ellipses. For the
checkerboard, the distance is the Euclidean distance
between the projected corners and the detected cor-
ners. For the ellipse, the distance is the average
geometric distance from the projected one hundred
boundary points to the detected ellipse. We com-
pute the geometry distance from a point to an ellipse
based on the approach introduced in “3D Game En-
gine Design” [1].

We show our approach is efficient and accurate
by testing it on a virtual turntable system where
both the camera and the pattern are known. Ta-
ble 1 presents the performance of the simplex search.

arm angle
turntable ang. 0–30 30–50 50–80
0−−90 2.6 2.3 2.8
90−−180 2.8 2.5 2.8
180−−270 2.4 2.0 3.0
270−−360 2.4 2.5 2.6

Table 1: Virtual pixel accuracy by arm and turntable
angle

The average error is the geometric distance from the
known projected points to the detected ellipse. The
table is divided by arm angle (across) and turntable
angle (down). This shows that with an ideally ac-
curate and noise-free virtual setup we can use our
pattern and approach to yield a reasonably accurate
calibration result.

To determine the accuracy in the real world sit-
uation, we compare the results of the traditional
checkerboard approach and our approach. In our
test, the simplex search converged in ten to twenty
steps.

Table 2 compares the checkerboard calibration
and our calibration from different camera arm angles.
The left table shows results for the checkerboard cal-
ibration and the right table shows results for our 3D
pattern calibration. We show the accuracy of both
the checkerboard distance and the ellipse distance.

Table 3 compares the checkerboard calibration
and our calibration from different turntable angles.
The left table shows results for the checkerboard cal-
ibration and the right table shows results of our 3D
pattern calibration. We show the accuracy of both
the checkerboard distance and the ellipse distance.

From the comparison, we observe that although
our approach is based on the ellipse pattern, not only
is the ellipse distance minimized but also the checker-
board distance is small. The traditional checker-
board approach might yield a smaller checkerboard
distance, but the ellipse distance is worse. Also, we
notice that with the traditional approach, there is no
calibration data available when the arm angle is less
than 30 degrees, while with our approach, we main-
tain a similar accuracy level at all arm angles and
turn table angles.

In conclusion, we have shown that using this 3D
calibration pattern efficiently achieves reliable post
estimation for all view points from the hemisphere.



arm angle 0–30 30–50 50–80
checkerboard — 5.3 3.3

ellipses 3.0 2.3 3.1
arm angle 0–30 30–50 50–80

checkerboard — 3.0 1.2
ellipses — 2.9 3.4

Table 2: Results of the real-world test sorted by
arm angle. Geometric error on checkerboard cor-
ners and ellipses Top: based on the checkerboard
approach. Bottom: based on our approach.

turntable ang. 0–90 90–180 180–270 270–360
checkerboard 5.1 4.6 4.8 4.4

ellipses 2.9 2.3 3.1 2.7
turntable ang. 0–90 90–180 180–270 270–360
checkerboard 2.1 4.6 1.1 1.0

ellipses 3.4 3.7 4.1 3.7

Table 3: Results of the real-world test sorted by
turntable angle. Geometric error on checkerboard
corners and ellipses Top: based on the checker-
board approach. Bottom: based on our approach.

References

[1] David Eberly. 3D Game Engine Design. Morgan
Kaufmann Publishers, 2001.

[2] Steven J. Gortler, Radek Grzeszczuk, Richard
Szeliski, and Michael F. Cohen. The lumi-
graph. In Proceedings of SIGGRAPH 96, Com-
puter Graphics Proceedings, Annual Conference
Series, pages 43–54, New Orleans, Louisiana, Au-
gust 1996. ACM SIGGRAPH / Addison Wesley.
ISBN 0-201-94800-1.

[3] Q. Ji, M. Costa, R. Haralick, and L. Shapiro. An
integrated linear technique for pose estimation
from different features, 1999.

[4] Jeremy Yermiyahou Kaminski and Amnon
Shashua. On calibration and reconstruction from
planar curves. In ECCV (1), pages 678–694,
2000.

[5] Long Quan. Conic reconstruction and corre-
spondence from two views. IEEE Transactions
on Pattern Analysis and Machine Intelligence,
18(2):151–160, 1996.

[6] C A Rothwell, A Zisserman, C I Marinos,
D Forsyth, and J L Mundy. Relative motion and
pose from arbitrary plan curves. Image and Vi-
sion Computing, 10(4):251–262, 1992.

[7] D M Song. Conics-based stereo, motion esti-
mation, and pose determination. International
Journal of Computer Vision, 10(1):7–25, 1993.

[8] Andrei State, Gentaro Hirota, David T. Chen,
William F. Garrett, and Mark A. Livingston.
Superior augmented reality registration by inte-
grating landmark tracking and magnetic track-
ing. Computer Graphics, 30(Annual Conference
Series):429–438, 1996.

[9] Zhengyou Zhang. Flexible camera calibration by
viewing a plane from unknown orientations. In
ICCV, pages 666–673, 1999.


