
A New Input Device for 3D Sketching

Mark A. Schroering, Cindy M. Grimm, and Robert Pless
Washington University in St. Louis

{mas10,cmg,pless}@cse.wustl.edu

Abstract

We present a 3D input device consisting of a stiff
piece of paper which is tracked by a digital video
camera. The user can also draw on the paper using a
pen-like device. The user moves the paper to specify
the location of a virtual plane. By drawing on the
paper, the user can specify points in 3D space.

The primary technical contribution of this pa-
per is a new pose estimation algorithm suitable for
a hand-held, moving pattern. To demonstrate the
usefulness of the device we developed a sketching
application for simple characters. The characters
are constructed by sketching and joining together 3D
ellipses, much as traditional cartoon characters are
created in 2D using 2D ellipses.
Keywords: 3D User interface, sketching, ellipse,
tracking

1 Introduction

In this paper we present a 3D input device built from
a commodity digital video camera, a piece of card-
board, and a laser pen (see Figure 1). The user uses
the cardboard to specify a location and orientation
in space. They can then “draw” using the laser pen
to specify 3D points on the plane of the cardboard.
The advantage of this device is that it can be built
using items commonly found in the home or office,
making it accessible to a wide variety of users.

The primary technical contribution of this paper
is a new pose estimation technique that is robust to
low-quality cameras, changing lighting positions, oc-
clusions, and partial visibility. The calibration pat-
tern is a set of color-coded ellipses with a transparent
region in the middle for drawing. We compare the
accuracy of this pattern to the standard position es-
timation using a checkerboard [20].

We had several goals for this project. First, the
device must be robust to different working condi-
tions, including poor-quality cameras and changes in
lighting. Second, the calibration pattern must work
when partially occluded or when part of the pattern
is out of the camera’s field of view. The device must

Figure 1: The user holds the tracking pattern and
draws with a laser pointer. The screen shows a vir-
tual representation of both the plane in space (left)
and the input on the plane (right).

also use inexpensive equipment that is attainable by
most people.

We developed a sketching application to test the
usefulness of the device. The user sketches 3D el-
lipses which can be joined together to create simple
cartoon characters.

Section 2 discusses previous calibration work and
research on spatially-aware user interface designs.
Section 3 describes the tracking pattern, the virtual
camera model, and the tracking process. Section 5
discusses the technique used for tracking the laser
pointer. Section 6 describes the 3D shape sketching
application. Section 7 lists the results and analy-
sis from accuracy tests that were performed on the
system. We close with future work.

2 Previous work

Tracking a plane: The problem requires that we
track a planar object in the scene. This exact prob-
lem and several variants have been addressed in prior
literature, most commonly, in the context of cam-
era calibration. A calibration method implemented
in the OpenCV library [13] uses many images of a
black and white checkerboard, finds the corner points



for each image, and calculates both the intrinsic pa-
rameters of the camera (the calibration matrix), and
the extrinsic camera parameters (the relative orien-
tation of the camera and the plane). The VISUAL
PANEL [21] system tracks a flat cardboard pattern
without using any explicit calibration pattern. Be-
cause a pattern is not used, a more complicated com-
putational problem needs to be solved to determine
the position and orientation of the piece of card-
board.

In our case we have a camera whose intrinsic pa-
rameters are static, and we are primarily interested
in capturing the position and orientation of a plane
with a known pattern. Many techniques have been
proposed for this problem, including a differential
method which tracks continuous motions of a plane
using spatio-temporal image derivatives [2], and si-
multaneous estimation of both the position of a plane
and the texture pattern of that plane [4]. Other work
that explicitly uses ellipses as part of planar pat-
terns for calibration and pose estimation include [17]
which calculates a set of specific points using tangent
lines and intersection, Song [18], who uses an itera-
tive approach and requires a corresponding pair of
conics [16], and Kaminski [12], who reconstructs the
conic and the calibration parameters. Most related
to our solution is the single image direct methods of
computing planar pose. Much of this work is sum-
marized in [11], which integrates previous work into
a unified geometric framework which uses combina-
tions of point and line features.

Spatially-aware devices: Non-traditional user
interfaces, such as Graspable [6], Tangible [10], or
Manipulable [8] interfaces, have been shown to be
better than the traditional mouse and keyboard for
many applications. In these alternative interfaces,
the user picks up and manipulates a real 3D object.
Other examples of this type of interaction are inter-
face props used for neurosurgical visualization [9] and
BRICKS [7], a software and hardware framework for
quickly prototyping graspable user interfaces.

Most position-aware devices have been imple-
mented using specialized hardware, such as the
Polhemus FASTRAK six degree-of-freedom track-
ers [14]. Our device is not as general as the ones
listed above, but it also does not require specialized
hardware.

3 Drawing surface tracking

The core technical challenge of this project is the
computer vision algorithm for tracking the drawing
surface. Tracking is theoretically well understood
in the computer vision community. First, a track-

Figure 2: Tracking pattern with chromaglyphs

ing pattern is built with easily recognizable features.
Second, these features are found in the 2D video im-
age stream. Third, the perspective transformation
that takes the 3D pattern features to the 2D image
features is calculated.

We designed our tracking pattern to be robust to
lighting conditions, poor-quality cameras, and par-
tial occlusions. The pattern can also be built by a
naive user with low-cost materials. The pattern is
built using ellipses that are detectable under differ-
ent illumination conditions. Our application requires
a minimum of three ellipses to be detected.

The input to this process is a video stream of
the tracking pattern on the back of the drawing sur-
face. Each image is scanned to find the pixels that
lie on the ellipse borders. The equations of the el-
lipses are then calculated using these boundary pixel
points. The ellipse equations are used in a minimiza-
tion search to find the rotation and translation of the
digital camera relative to the drawing surface. The
translation and rotation of the drawing surface can
then be determined.

3.1 Tracking pattern

We considered several properties when designing the
pattern. First, the pattern features must be easily
distinguishable under different lighting conditions.
Second, the pattern must be asymmetric, or differ-
ent poses will have the same appearance. Third,
the tracking pattern must work when partially oc-
cluded. Lastly, there must be sufficient space left on
the drawing surface for sketching.

To satisfy these constraints, the decision was



Table 1: Camera parameters

Parameter Description

Intrinsic (u0, vo) Center of the image
projection

(α, β) Combination of the focal
length, the aspect ratio,
and the scale up to image
coordinates.

γ The skew in the camera

Extrinsic R Camera’s rotation matrix

T Translation of the camera.

made to use eight chromaglyphs [19] arranged
around a drawing surface (see Figure 2). The points
D1−4 represent the corners of the drawing space. A
chromaglyph is composed of N discs, each with a
unique color, chosen from a set of M prototype col-
ors [19]. For this application N = 2, and M = 4.
The permutations of the disc color uniquely identify
the glyph. The number of chromaglyphs was chosen
so that only 1/4 of the pattern needs to be visible.
The location of the chromaglyphs on the pattern al-
lows for a transparent drawing region in the center
of the pattern.

3.2 Camera model

We use the standard virtual camera model, whose
parameters are summarized in Table 1. The intrinsic
parameters are those that specify the camera itself.
For our application, calculating exact intrinsic pa-
rameters is less important because we are interested
in the relative movement of the plane. The extrinsic
parameters describe the spatial relationship between
the camera and the world. These parameters change
as the camera’s position and orientation change. The
virtual camera model does not include distortion pa-
rameters because it does not affect relative changes
in orientation and position. For example, the change
in position may not be exactly correct, but moving
the paper a little more moves the virtual paper a
little more.

The camera model provides a function, V (p), that
converts points in the world frame to points in the
image frame. The function takes a point in the world
frame, p, as input and returns a 2D image point,
q. The function uses a perspective transform, C,
which is composed of the intrinsic parameters. The
extrinsic parameters form a rotation plus translation
matrix, [R|T ]. The following equations show how
V (p) transforms p to q:

 u
v
w

 = P [R|T ]p (1)

q = (u/w, v/w) (2)

3.3 2D feature detection

In this section, we describe how to find the fea-
tures in the 2D image. The projection of the pat-
tern causes the 3D circles to project as ellipses. The
image is scanned to find the pixels that lie on the
ellipse boundaries. The color of the pixels along the
ellipse borders are used to determine which ellipse
was found. The border points are then passed to an
ellipse-fitting routine.

3.4 Image Scanning

Image scanning is used to find the points in the im-
age that fall on the borders of the chromaglyphs.
The scanning classifies features in the image by color
ratios. The colors chosen for the chromoglyphs are
located in different corners of the color space [19].
Each color has a maximum or minimum concentra-
tion of red, green, or blue. Because of this, the colors
are still distinguishable under different illumination
conditions.

The scanning software acquires a buffer of pixel
color values from the digital camera. This buffer is a
snapshot of what the camera currently sees in its field
of view. Each pixel in the buffer is then assigned one
of the five prototype colors (red, green, yellow, black,
or blue). If the pixel color cannot be determined, it
is labelled as ‘unknown‘.

The scanning software picks a pixel that is one
of the four prototype colors as the starting point for
a flood-fill search. The search returns a connected
region of pixels that lie on the border of the ellipse.
For example, when a red pixel is found, the flood-fill
search will look for all of its neighboring red pixels
that border blue pixels (see Figure 3).

Since low-resolution cameras are being used, blur-
ring can occur along the ellipse borders. This causes
some of the pixel colors to be unidentifiable and are
marked as being ‘unknown‘. When one of these un-
known pixels is found during the flood-fill search, a
color check of the unknown pixel’s neighbors is per-
formed. If one of the unknown pixel’s neighbors is a
different color, then it can be assumed that this pixel
lies on the border. This technique allows for a thin
line of blurring along the ellipse borders.

We first search for the outer border points. When
the flood-fill search is complete, the center of the



Figure 3: The red pixels that border the blue pixels
are detected.

ellipse is calculated using the outer border points.
This is also the center of the inner ellipse. The color
of the inner ellipse is then identified by the center
point’s color. The color of the outer and inner discs
provide the identity of the chromaglyph. A flood-fill
search is then performed on the inner circle to obtain
the inner ellipse border points.

The entire image is scanned in this fashion to
identify all of the chromaglyphs that are in the field
of view. When the scanning is finished, the border
points for the visible ellipses are passed to the ellipse
fitting algorithm.

3.4.1 Ellipse fitting

Once an ellipse’s border points have been identified,
we can fit an ellipse to them. There are many ap-
proaches to ellipse fitting. The method used here is
the one developed by Fitzgibbon, Pilu and Fisher [5],
which treats the ellipse fitting as an eigenvalue prob-
lem. A general conic has the following form:

Fe(x, y) = ax2 + bxy + cy2 + dx + ey + f (3)

Fitzgibbon’s method adds restrictions to force the
conic to be an ellipse. The fitting is performed on
each set of border points, which produces up to 16
sets of ellipse equation coefficients. These equations
are used in the camera parameter search stage.

3.5 Camera parameter search

The final step is to search for the camera pose that
maps the 3D circles (z = 0) to the ellipses found in
the image. We pick a set of points, Pe, that lie on
the 3D circles to use for the search (see Figure 2).
We used eight points per ellipse.

As the drawing surface is oriented in front of the
camera, the tracking pattern that the camera sees

gets warped. The point Pe on the circle is mapped
to a 2D image point, qe using the camera model func-
tion, V , described in section 3.2. If T and R repre-
sent the camera’s true orientation, then the points
should lie close to the ellipses found in the image
scanning step. This means that the ellipse equation,
Fe(x, y), should evaluate to a value that is close to
zero when using these points.

The goal of the search is to find the values of T
and R that minimize (Fe)2. We created an error
function, E(T,R), that we are trying to minimize.
For each ellipse that was visible in the image, the
function converts its corresponding border points in
the world frame, Pe, to 2D points in the image frame.
The corresponding ellipse function Fe(x, y) is then
evaluated for each of these converted 2D points. The
results are squared and summed for all eight points.
The equation for E(T,R) is as follows:

minE(T,R) = min
n∑

e=1

8∑
i=1

[Fe(V (Pei))]2 (4)

where n ≤ 16 is the number of ellipses found in the
image scan. We require a minimum of three and
use a maximum of eight to reduce computation time.
The search begins with a guess at the values of T
and R (either the previous rotation and translation,
or a default camera location with no rotation). If
E(T,R) does not evaluate to a value that is close to
zero, then T and R need to be modified in some way.
A Simplex Search [15] is used to minimize E(T,R).
We represent R as three consecutive rotations around
the x, y, and z axes.

The number of iterations needed to find the min-
imum in the initial search is approximately one hun-
dred. Subsequent searches are started using the pre-
vious values for T and R; they converge with about
thirty iterations. If the display surface’s orientation
does not change much, the search takes about ten
iterations.

4 Drawing surface’s position

In the previous sections, the drawing surface is as-
sumed to be stationary and located at z = 0. T
and R represent the transformation that moves the
camera relative to the drawing surface. In the sam-
ple drawing application, the camera is assumed to
be stationary and the drawing surface moves rela-
tive to the camera. Here we describe how to find the
transformation for the drawing surface.

The rotation of the drawing surface is simply
R−1. The correct translation of the drawing sur-



face is not T−1; we want the relative movement of
the plane, not the absolute position. We take the
camera’s view axis and intersect it with the draw-
ing surface to find the focal point of the camera.
As the plane is moved, the focal point will change
as well. We store the original focal point, forig, is
stored at the beginning of the program execution.
The simplex search is performed and the new focal
point, fnew, is retrieved from the camera model. The
drawing surface’s translation, Tv, is then equal to
−(fnew − forig). The final transformation to orient
the drawing surface relative to the camera can be
expressed in matrix form as [R−1|Tv].

5 The laser pen

We use a laser pointer to sketch on the display sur-
face. The inner region of the display surface is trans-
parent, which allows a laser pointer to shine through
and be detected by the camera. When the pen is
on it produces a bright red spot in the transparent
region. The image scanning routine finds the loca-
tion of this red dot in the 2D image. This location
is then converted to a 3D world coordinate using the
position and orientation of the drawing surface.

After the camera’s position is calculated we can
map the 3D corner points of the drawing area, D1−4,
to 2D image points using the camera model’s conver-
sion function, V . All red pixels are tested to see if
they fall within the quadrilateral defined by the cor-
ner points. The centroid of these pixels, Ppen, is used
as the 2D pen point. Once Ppen is found, we calcu-
late the corresponding 3D point by taking a ray L
from the camera’s position E through the point Ppen

(see Figure 4). The value for E is obtained from the
camera model. Because the plane lies at z = 0 we
know that:

P3D = E + (−Ez/Lz)L (5)

This 3D point, P3D, corresponds to the point
when the drawing surface is at z = 0 in the world
frame. The point needs to be transformed to the
current location of the drawing surface in the World
Frame. To do this, we multiply P3D by the transfor-
mation matrix, [R−1|Tv], that we found in Section 4.
Now we can track the laser pointer as it moves in the
World Frame.

6 Drawing application

This section describes a drawing application that
uses the 3D input device. The drawing application
allows the user to make characters by sketching el-
lipses. A virtual rendering of the drawing surface
and the 3D scene are shown on the monitor.

Figure 4: Tracking the laser pointer in 3D space.

Table 2: 3D Input Device Events to Mouse Events

Mouse Event 3D Input Device Event

Mouse Button Down When the laser pointer is
turned on for the first time.

Mouse Move When the laser pointer is on
and the location changes.

Mouse Button Up When the laster pointer is
turned off after being on.

6.1 Virtual display windows

The virtual display consists of two windows that are
displayed on the computer monitor. The first win-
dow is a re-creation of the 2D drawing surface (see
Figure 5). The user sees the cross-section of any
shapes that the drawing surface is currently inter-
secting. While the user is drawing with the laser
pointer, a trace of the pointer’s movement is ren-
dered on the virtual surface with a series of yellow
dots.

The other window shows the 3D virtual scene.
In this window, the user can see the virtual draw-
ing surface’s orientation in 3D space relative to the
world. The virtual drawing surface’s position and
orientation in the world frame is calculated by ap-
plying the transformation matrix, [R−1|Td], to the
virtual drawing surface’s starting position (see Sec-
tion 4).

6.2 Character creation

Because this application does not use a mouse, the
typical mouse events have to be mapped to the ac-
tions of the 3D Input Device. Table 2 lists the map-
ping of the typical mouse events to 3D Input Device
events.



Figure 5: Left: Pie menus. Middle: The virtual plane in the scene. Right: The drawing surface.

The drawing application receives the 3D points
from the 3D input device as Mouse Move events.
These points indicate where the laser pointer is at
in the world frame (see Section 4). The drawing
application renders these points as small dots that
appear in the window with the virtual drawing sur-
face. These points provide feedback that lets the user
know what kind of shape is being drawn.

When the application receives the Mouse Button
Up event from the input device, it fits an ellipsoid to
the 3D points. This ellipsoid is then rendered in the
virtual scene. The user can join ellipsoids to create
3D characters. The characters can also be saved to
a file and opened later for editing.

6.3 Pie menus

Pie menus [3] are used in the drawing application
to allow the user to change program settings and
perform certain actions (see Figure 5). Each piece
of the pie is a single menu action. Some actions
bring up sub-menus that appear on top of the parent
menu. The sub-menu is simply another pie menu
that appears on top of the parent menu. The pie
menu is brought up by shining the laser pointer in
the lower left corner of the drawing region.

The user can select between the different menu
items by turning on the laser pointer and moving it
to the location of that item in the pie menu. While
the user is moving the active laser pointer around,
the 3D Input Device will be sending Mouse Move
events to the drawing application. The currently
selected menu item will be highlighted. When the
desired menu item is highlighted, the user turns off
the laser pointer. This triggers the Mouse Button Up
event in the drawing application. The selected menu

Figure 6: Results from Accuracy Test

item is then executed.

7 Accuracy tests

7.1 Accuracy

The accuracy of the image scanning, ellipse fitting,
and camera parameter searching was tested using a
simulated version of the calibration pattern. A vir-
tual camera is positioned at different orientations to
view the display surface. The actual values for T
and R are known in this case. The camera takes a
snapshot of the scene and the ellipse search is per-
formed. The starting point for the search is always
T = (0, 0, 5), R = (0, 0, 0). The rotation angles were
varied from 0 to 5 degrees, the x, y translation from
-1 to 1, and the z translation from 4 to 6. The tests
were run on a set of 1,000 camera positions. The
following error measurements were calculated:

• Tx,y,z, Rx,y,z Error - Difference between the
known and the converged camera parameters.
The rotation values are given in degrees.

• E(T,R) - Value of E(T,R) after the search.

Figure 6 show the average values for Tx,y,z Er-
ror per the number of ellipses that were detected in



Figure 7: Results from Accuracy Test

Figure 8: Results from Accuracy Test

the image for that camera position. Figure 7 shows
average values of Rx,y,z in the same format as the
first graph. The last graph, Figure 8, shows the
results when evaluating E(T,R) using both sets of
converged values for T and R.

One can see from the graphs that the average er-
ror gradually decreases as the number of ellipses in-
creases. This would be expected since an increase
in the number of ellipses provides the calibration
method with more data to use in the minimization
of the error function.

7.2 Real world tracking

The accuracy of the ellipse search calibration method
was compared to the OpenCV method [13]. A 5 ×
7 checkerboard pattern was placed in the center of
the calibration pattern. The ellipse search and the
OpenCV calibration methods were then performed
on a set of 10 images of size 640 × 480 pixels. The
10 images were snapshots from the digital camera
of the drawing surface at different orientations (see
Figure 9).

E(T,R) was evaluated with the values of T and R
found from both the ellipse search and the OpenCV
method. The 3D coordinates of the 24 interior
checkerboard corner points were measured. These
points were then converted to 2D points in the Image

Table 3: Real world tracking results

Avg Min Max Dev

E - Ell 8.0e−6 4.5e−6 1.1e−5 2.4e−6

E - OCV 8.0e−5 3.1e−5 1.6e−4 5.2e−5

Px Err Ell 8.19 6.69 9.68 2.11

Px Err OCV 0.60 0.59 0.60 0.001

Figure 9: Real world tracking test images.

Frame using V () with the values of T and R from the
ellipse search and the OpenCV methods. These 2D
points were then compared to the 2D corner points
that were found in a scan of the image.

Table 3 provides a summary of the results from
this test. The average value of E(T,R) was lower for
the ellipse search method than the OpenCV method.
While the average pixel distance for the checkerboard
corners is lower for the OpenCV method than for the
ellipse search method.

Figure 9 shows four of the input images used in
the test. The green dots on the image represent the
corner points that were converted to 2D image points
using the ellipse search values for T and R. The red
dots are the points that were converted using the
OpenCV values for T and R.

7.3 Performance

The current system runs at approximately 10 fps on
a 356MHZ Pentium, using 120 × 160-sized images.
The current bottleneck is the image scanning rou-
tine; hence the small image sizes.



8 Future work

The primary bottleneck is the image-scanning rou-
tine; a faster algorithm would allow us to use higher-
resolution images. We would also like to incor-
porate prediction [1], which would speed-up both
the 2D image scanning and the camera parameter
search. More advanced prediction would also result
in smoother tracking.

References

[1] Ronald Tadao Azuma. Predictive tracking for
augmented reality. Technical Report TR95-007,
Univ. North Carolina, Chapel Hill, 22, 1995.

[2] Jose Miguel Buenaposada and Luis Baumela.
Real-time tracking and estimation of plane pose.
In ICPR, pages 697–700, 2002.

[3] J. Callahan, D. Hopkins, M. Weiser, and
B. Schneiderman. An empircal comparison of
pie menus versus linear menus. Proceedings of
ACM Chi’88 Conference on human factors in
computing systems, pages 95–100, 1988.

[4] F. Dellaert, C. Thorpe, and S. Thrun. Super-
resolved texture tracking of planar surface
patches, 1998.

[5] Andrew W. Fitzgibbon, Maurizio Pilu, and
Robert B. Fisher. Direct least square fitting of
ellipses. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 21(5):476–480, 1999.

[6] George W Ftizmaurice and William Buxton.
An empirical evaluation of graspable user inter-
faces: Towards specialized, space-multiplexed
input. In Computer Human Interaction, pages
43–50, 1997.

[7] George W Ftizmaurice, Hiroshi Ishii, and
William Buxton. Bricks: Laying the founda-
tions for graspable user interfaces. In Computer
Human Interaction, pages 1–8, 1995.

[8] Beverly L Harrison, Kenneth P Fishkin, Anuj
Gujar, Carlos Mochon, and Roy Want. Squeeze
me, hold me, tilt me! an exploration of ma-
nipulative user interfaces. In Computer Human
Interaction, pages 17–24, 1998.

[9] Ken Hinckley, Randy Pausch, John C Goble,
and Neal F Kassell. Passive real-world interface
props for neurosurgical visualization. In Com-
puter Human Interaction, pages 452–458, 1994.

[10] H. Ishii and B. Ullmer. Tangible bits: Towards
seamless interfaces between people, bits, and
atoms. In Computer Human Interaction, pages
234–241, 1997.

[11] Q. JI, M. COSTA, R. HARALICK, and
L. SHAPIRO. An integrated linear technique for
pose estimation from different features, 1999.

[12] Jeremy Yermiyahou Kaminski and Amnon
Shashua. On calibration and reconstruction
from planar curves. In ECCV (1), pages 678–
694, 2000.

[13] Opencv: http://www.intel.com/research/mrl
/research/opencv/.

[14] Polhemus: http://www.polhemus.com/home.htm.

[15] William H. Press, Saul A. Teukolsky, William T.
Vetterling, and Brian P. Flannery. Downhill
simplex method in multidimensions. In Numer-
ical Receipes in C, pages 408–412, 1992.

[16] Long Quan. Conic reconstruction and corre-
spondence from two views. IEEE Transactions
on Pattern Analysis and Machine Intelligence,
18(2):151–160, 1996.

[17] C A Rothwell, A Zisserman, C I Marinos,
D Forsyth, and J L Mundy. Relative motion
and pose from arbitrary plan curves. Image and
Vision Computing, 10(4):251–262, 1992.

[18] D M Song. Conics-based stereo, motion esti-
mation, and pose determination. International
Journal of Computer Vision, 10(1):7–25, 1993.

[19] Andrei State, Gentaro Hirota, David T. Chen,
William F. Garrett, and Mark A. Livingston.
Superior augmented reality registration by inte-
grating landmark tracking and magnetic track-
ing. Computer Graphics, 30(Annual Conference
Series):429–438, 1996.

[20] Zhengyou Zhang. Flexible camera calibration
by viewing a plane from unknown orientations.
In ICCV, pages 666–673, 1999.

[21] Zhengyou Zhang, Ying Wu, Ying Shan, and
Steven Shafer. Visual panel: Virtual mouse,
keyboard and 3d controller with an ordinary
piece of paper. In Perceptive User Intefaces,
2001.


