Decorating implicit surfaces, H. Pederson, Siggraph 95 pages 291-300. Computes (approximate) geodesics on the iso surface and uses these to create patches/iso parameter lines.

  • Scatter a bunch of points on the surface that are equidistant.
  • Shortest graph paths will now be (approximately) shortest paths, i.e., geodesics.
  • Use piece-wise linear approximations of the curve.
  • Minimize the covariant derivative (D alpha' / dt ) = alpha''(t) - N(t), i.e., how much the second derivative is twisting off the iso-parameter line.
  • To compute the interior iso-parameter lines, place a vector field on the patch. Minimize the difference in the angles between adjacent points, i.e., make the arrows point in the same direction. Boundary points are fixed.
  • Use the flows to place the geodesics.
  • Now make the isoparameter lines evenly spaced (minimize Green-Lagrange tensor).