3D Screen-space Widgets for Non-linear Projection

Patrick Coleman, Karan Singh (Univ of Toronto) Nisha Sudarsanam, Cindy Grimm (Washington Univ in St. Louis) Leon Barrett (Univ of Calif, Berkeley)

What is non-linear perspective?

•Perception uses *locally* linear perspective

- Depth, placement in scene
- Fovea only encompasses a small number of degrees
 - 3D sense built out of saccades
- Artists use this fact to make better use of 2D canvas
 - Local perspective maintained
 - Continuity between local perspectives

Marie Cassett

What does this mean?

Mechanics

- •Define more than one camera C_i
- •Define region of influence of each camera w_i
- Use blended combination of cameras
 - Different camera for each vertex
 - (Dual of free-form deformation)
 - Blend matrices, projected point, camera parameters...

$$v' = (\sum w_i C_i) v$$

Karan Singh, A Fresh Perspective, Graphics Interface 2002

It's all in the user interface...

Each camera has 11 degrees of freedom

- 6 for pose (position, orientation)
- 5 internal (zoom/focal length, center of projection, skew, aspect ratio)
- •Using n cameras implies 11n parameters...
 - One mouse

Some observations

- Scene should have some coherency
 - Dominant (default) view
- •Other cameras are small, local changes to default view
 - Bow the wall out
- Changes happen in screen space
 - Can be sketched
 - Simple geometry

Basic approach

•Use geometric proxies

Lines, points, boxes

Image-space change controls camera change

- Point moves, camera pans
- Also controls region of influence of new camera

Flow

User picks default view (may pick more than one)

- Draws geometric proxies
 - Defines 3D and 2D geometry
- User edits 2D proxies
 - System solves for new cameras
 - Displays result

Changing weight of camera

•User can then edit the region of influence of each camera

• 3D implicit volume

Graphite 2005, 12/1/2005

Remainder of talk

Description of geometric proxies

- Simple (lines, points)
- Combined
- Special purpose (fish-eye, panorama)

Mechanics of camera solving

Simple proxies

Point

Causes camera pan

Line

- Moving causes pan
- Changing orientation rotates camera
- Changing size changes
 zoom

Complex proxies

Wedge (two lines)

- Position, orientation, size as before
- Angle changes perspective

Complex proxies, cont

•Two lines

- Position, orientation, size as before
- Changing relative size (rotation)
- Changing relative angle (perspective)

Complex proxies, cont

•Cube edge

Complex proxies, cont.

Bounding box

- Size:
 zoom
- Position: pan

Mixing proxies

Wedge plus bounding box

- Wedge controls orientation
- Bounding box controls size, position

Wedge and wedge

Line and wedge

• • •

•Still solves for single camera

Continuous camera change

•Fish-eye

- Two boxes, outer controls region of influence
- Inner controls amount of zoom
- Zoom smoothly

Continuous camera change

Line to curve

- Sequence of position, orientation changes
 - Line segments
- Project point to line to determine how much to pan

Solver

Proxy + edit defines allowable camera changes

- E.g., pan allows only translation in film plane
- Proxy defines error metric
 - E.g., point constraint is distance of projected point from desired image point
- •Find camera that minimizes error metric
 - Simplex, or amoeba, solver

Inverse kinematics approach: Through the Lens Camera Control, Gleicher, Siggraph 1992

Camera degrees of freedom

Translate in film plane direction

- Proxy moved in image plane
- Focal length
 - Change in scale
- Translate in/out
 - Proxy changed perspective
- Rotate/spin around look vector
 - Proxy rotated in film plane
- Rotate left/right, up/down
 - Asymmetric change in proxy

User control

Camera parameters to interpolate

Skew, center of projection, aspect ratio
Importance of matching each geometric proxy
Region of influence of camera
Grouping of proxies

Summary

Non-linear projection difficult to control

- Tool box for specifying camera changes
 - Image-based
 - Default view editing

Proxies also provide natural region-of-influence

Still cumbersome

Future work

Sketch-based, global widgets

