Non-linear Perspective Widgets for Creating Multiple-View Images

Nisha Sudarsanam (Mindjet Corp)
Cindy Grimm (Washington Univ. in St. Louis)
Karan Singh (University of Toronto)

What is non-linear perspective?

Picasso's Guitar, Glass and Fruit Dish

Pearblossom Hwy. No. 2 (D.Hockney 1986) ©1986, D. Hockney, The J. Paul Getty Museum, Los Angeles.

Composition of linear perspective views

Initial Scene

Final Scene

View₂

View₃

Motivation

• Linear perspective is sometimes restrictive

Combine to make one view

User interface problem

What do you want to see where?

Our contribution

- Task breakdown for user
 - 3D selection of model subset
 - Desired viewing attributes
 - 2D placement in image
- Underlying framework for widget creation
 - Specify region of interest and fall-off
 - Support specific viewing effects
 - Automatic 2D placement algorithms

Previous work

- View transform as space deformation
 - "Bend" view rays in space
 - J. Brosz, F. Samavati, S. Carpendale, M. Sousa, "Single camera flexible projection", Npar 2007
 - V. Popescu, C. Mei, J. Dauble, E. Sacks, "An efficient error-bounded general camera model", DPVT 2006
 - Modify perspective view to curve space

Previous work

- Manual placement of cameras
 - Blend to get camera for each point in space
 - Karan Singh, "A fresh perspective", GI 2002
 - P. Coleman, K. Singh, L. Barrett, N. Sudarsanam, C. Grimm, "3D screen-space widgets for non-linear projection", Graphite 2005
 - Our rendering approach
 - Very flexible, user-intensive

Key differences

- Local deformation specified wrt global camera
 - Can change global camera

Key differences

- Use interactive widgets
 - Specifies a specific view transformation
 - Encapsulates input parameters
 - Can string widgets together

Unwrap widget

- 3D volume, view direction
 - Look down vector
 - Placed on side of screen (default)

Unwrap widget

- Keeps view direction as camera changes
 - May move on screen

Fisheye widget

Magnify selected region

m = 1.19

m = 1.45

m = 1.6

Clip widget

- Select area
 - Pulls to side

Clip widget

Panorama widget

Input is key frames

Chaining and multiple widgets

Framework

- 3D region of influence
 - Fall-off
- Changes to the camera
- Destination area
 - Relative to bbox
 - COP
- Destination size
 - Bbox of region

- E.g., box (clip)
- E.g., Zoom (fisheye)
- E.g., To side (unwrap)
- Same or smaller (most)

System help

- Automatic routines for determining best destination location, size
 - Implemented as a Center of Projection change
 - Based on projection of bounding boxes
- Automatic weight fall offs
 - Multiple widgets: average effect based on weights

Rendering

- GPU implementation
- Calculate camera for each vertex
 - Based on 3D influences, local camera changes
 - Average projection from each camera
- Use original camera for lighting

Conclusion

- Encapsulate specific changes in widgets
- Framework for making and combining the widgets
- Easy to use, but not as flexible

