Parameterization with Manifolds

Cindy Grimm
Manifold

- What they are
 - Why they’re difficult to use
- When a mesh isn’t good enough
 - Problem areas besides surface models
- A simple manifold
 - Sphere, torus, plane, etc.
- Using the manifold for parameterization
 - Fitting to existing meshes
 - *Basic tools
What is a manifold?

• Surface analysis tool
 – Developed in the 1880’s
 – Describe surface as a collection of overlapping disks
 • Infinite number
 – Atlas
 • Pages are disks
 • World is surface
Formal definition

- Given: Surface S of dimension m embedded in \mathbb{R}^n
- Construct a set of charts, each of which maps a region of S to a disk in \mathbb{R}^m
 - Mapping must be 1-1, onto, continuous
 - Every point in S must be in the domain of at least one chart
 - Collection of charts is called an atlas
- Note: A surface is manifold if such an atlas can be constructed
Additional definitions

• Co-domain of chart can also be called a chart

• Define the overlap U_{ij} to be the part of chart i that overlaps with chart j. May be empty.

• Transition function ψ_{ij} maps from U_{ij} to U_{ji}.
Going the other way

- Given a set of charts and transition function, define manifold to be quotient
 - Transition functions
 - Reflexive $\psi_{ii}(x) = x$
 - Transitive $(\psi_{ik}(\psi_{kj}(x)) = \psi_{ii}(x)$
 - Symmetric $\psi_{ii}(\psi_{ji}(x)) = x$
 - Quotient: if two points are associated via a transition function, then they’re the same point
 - Chart points: chart plus (x,y) point
 - Manifold points: a list of chart points
Manifold definitions

- Define S, define atlas
 - Overlaps, transition functions secondary
- Define chart domains, overlaps, transition functions
 - Manifold defined by quotient
 - No geometry
Adding geometry

• Define an embedding for each chart
 – C^k, e.g., spline patch \(E_c : \mathbb{R}^m \rightarrow \mathbb{R}^n \)

• Define a proto-blend function for each chart
 – C^k, \(k \) derivatives zero by boundary, non-zero on interior, e.g., spline basis function \(\hat{B}_c : \mathbb{R}^m \rightarrow \mathbb{R} \)

• Define chart blend function
 – Zero outside of chart \(B_c : S \rightarrow \mathbb{R} \)
 – Partition of unity
 \[
 B_c(p) = \frac{\hat{B}_c(\alpha_c(p))}{\sum \hat{B}_c(\alpha_c'(p))}
 \]
Adding geometry, cont.

- Final surface is a blended sum of chart embeddings

\[E : S \rightarrow \mathbb{R}^n \]
\[E(p) = \sum B_c(\alpha_c(p))E_c(\alpha_c(p)) \]
Previous work

- Grimm ’95
 - Mesh: one chart for each vertex, edge, face
 - N different transition function types
 - Vertices of valence 4
- Navau and Garcia, 2000
 - Planar mesh: Map to plane
 - General mesh: Use subdivision to separate extraordinary vertices
 - Specific flattening of extraordinary vertices into plane
- Lewis and Hughes ’96
 - Complex plane, “unwrap” faces around vertex
Why is this hard?

• Finding charts, transition functions that are correct is hard
 – Start with mesh
 • Combinatorial or number of charts explosion
 • No linear set of functions (?)
 – Start with points
 • Analytic function?
Why not just a mesh?

- Surface modeling: smooth, locally parameterized, analytical
- Functions on meshes
 - Texture synthesis, reaction-diffusion
 - Curvature calculation
 - Visualization of data on surface
 - Fluid flow: 2D vector drawing routines
- Manifolds have in-built notion of local neighborhood, moving along surface
A simple manifold

• Define one manifold for each genus
 – Push geometric complexity into embedding
 – Charts simple (unit square), few in number
 – Substantial chart overlap
 – Transition functions simple
 • Define by mapping to and from a canonical surface
 (plane, sphere, torus, etc.)

• Simplifies defining functions on manifold
Roadmap

- Manifold definition for sphere, plane, torus, n-holed torus
- Embedding functions for manifold
- “Fitting” a manifold to an existing mesh
 - 1-1, onto mapping from mesh to manifold
Plane manifold

- One chart (unit square)
- One transition function (identity)
Sphere manifold

- S is the unit sphere
- 6 charts, one for each direction
 - Mapping functions are variations of
 - \((\cos(\theta) \cos(\phi), \sin(\theta) \cos(\phi), \sin(\phi))\)
 - Inverse functions are found by arcsin, arctan
 - \(\phi = \text{asin}(z), \theta = \text{atan2}(y,z)\)
Sphere manifold

A single chart on the sphere viewed from the side and top

Chart (squares), edge, and corner indices

Cindy Grimm
Torus manifold

• S is torus of inner radius 0.25, outer 1.25
 – S(θ,ϕ)=(1.5 + cos(θ)cos(ϕ), 1.5 + sin(θ)cos(ϕ), sin(θ))
 – Domain 0,2π X 0,2π

• 9 charts, each shifted and scaled portion of 2π domain
N-holed torus

- N-copies of torus, with one edge identified in opposite direction
Embeddings

- Hierarchical splines
 - Spline surfaces have different sized non-zero domains
 \[E_c(x, y) = \sum s_i(x, y) \]

- Radial basis functions
 \[E_c(u, v) = \left((x_0 + x_1 u + x_2 v) + \sum w_i \phi(\| (u, v) - c_i \|) \right)_{x, y, z} \]
Tessellation

- Triangulate interior of each chart, stitch together along boundary edges
- Further split faces if needed
 - Area taken up in final embedding
Mapping from mesh to manifold

• 1-1, onto function
• Map vertices first
• Map faces using barycentric coords
 – Requires that there exist a chart such that all three vertices of face map into that chart
 – Plane, torus: usual barycentric coords
 – Sphere: spherical barycentric coords
Mapping vertices

- Graph partition problem
- Divide mesh into n regions (for n charts) that meet with correct topology
 - Project region into interior of chart
- Criteria:
 - No folding (star of vertex forms convex polygon in chart)
 - Roughly same number of faces in each chart
 - Each face has one chart it maps into
Sphere algorithm

- Grow top cap (disk)
- Grow bottom cap
- Join boundary with four edges
 - Shortest path
 - Vertices must be accessible

Cindy Grimm
Sphere algorithm, cont.

- Project each region onto chart
- Run Floater’s algorithm to place vertices in chart
 - Least squares problem
 - Boundary points are fixed
 - $\text{Loc}(v_i) = (u,v)$
 - Place interior vertices at centroid of vertex star

$$v_i - \sum_j v_j = 0$$
Sphere algorithm, cont.

- Adjust projection until criteria met
 - Get disk of faces in chart
 - Grow (or shrink) placement based on percentage of faces
 - Reproject
 - Move vertices towards centroids
Results

Cindy Grimm
Plane algorithm

• Map boundary vertices to boundary of chart
 – Interior vertices mapped to centroid of vertex star
 – Floater’s algorithm
Torus algorithm

• Want three rings in 2 directions
 – Grow four disks, seeded far apart
 – One half of loop goes through one disk, other half through adjacent disk
• Disks meet in two disjoint regions
 – Grow two annuli out from disk
 • Parallel loop
 • Grow one disk faster
 – Repeat

Four disks, path through green disk plus path through blue disk makes loop
Torus algorithm, cont.

• Three paths between loops
 – Total of 9 shortest paths
• Given 9 initial regions, adjust
Algorithm analysis

- Best suited for 500-10,000 vertices
- Not guaranteed to reach solution
 - “narrow” spots, not enough vertices around tube
 - Use subdivision to produce more vertices
 - Solution exists
- Alternative approaches
 - Use progressive meshes to simplify to base case
 - Initial vertex mapping
 - Add vertices back in
Fitting embeddings

- Embedding function can be arbitrarily complex
 - Not uniform
- Radial basis functions
 - Uneven distribution is not a problem
 - Function complexity grows with number of points
- Hierarchical splines
 - Need to find best patch placement
Fitting radial basis functions

• One equation each for x, y, z
• N vertices mapped to chart implies N basis functions
• Set coefficients so surface passes through N points
 – Linear equations

\[E_c(u, v) = \left((x_0 + x_1u + x_2v) + \sum w_i \phi(|| (u, v) - c_i ||) \right)_{x, y, z} \]
Fitting hierarchical splines

- **Error metric**
 - Add patch where error is bad
 - Distance from surface to mesh
 - 1-1 onto mapping
- **Grid domain and evaluate at grid squares**
 - Max(error at square, vertices in square)
 - Add patch over largest contiguous set of bad squares
 - Max and average thresholds
Hierarchical splines, cont.

• Add patches until error metric below threshold
 – Find contiguous bad squares
 – Fit patch to remaining error
 • Domain based on bad squares
 • Fit to evenly spaced points in domain
• Refit with all patches simultaneously
Results
Summary so far

• Establish 1-1, onto correspondence between mesh and manifold
• Can construct embedding to create smooth surface
 – Approximate mesh (splines)
 – Exact fit (radial basis functions)
Basic tools (in progress)

• Functions on manifold
 – Ratio of parameter area to surface area
 • Evenly distribute points on surface
 – Vector field in parameter space
 • “up”, fluid flow, user-defined, principle curvature
 • Continuous as possible
 – Evenly spaced stripes
 – BRDF
Basic tools (in progress)

- Surface traversal
 - Given a set of points, produce an ordering
 - Texture synthesis
 - Upper left points already visited
 - Spiral
 - Along flow paths
- Texture mapping
 - Uniform/non-uniform density of pixels
 - Original mesh
Conclusion

• Manifolds have potential as parameterization tool
 – Meshes, implicits, patch collections
 – Function display on surface, non-photorealistic renderings, growing plants on surfaces

• Simple manifolds with easy-to-use tools
 – Computationally simple
Other future work

• Surface modeling interface
• Link between subdivision surfaces and manifolds
• N-holed torus mapping to mesh