

Media and Machines

Parameterization with Manifolds

Cindy Grimm

Cindy Grimm

Manifold

- What they are
 - Why they're difficult to use
- When a mesh isn't good enough
 Problem areas besides surface models
- A simple manifold
 - Sphere, torus, plane, etc.
- Using the manifold for parameterization
 - Fitting to existing meshes
 - *Basic tools

What is a manifold?

- Surface analysis tool
 - Developed in the 1880's
 - Describe surface as a collection of overlapping disks
 - Infinite number
 - Atlas
 - Pages are disks
 - World is surface

Formal definition

Modia

- Given: Surface S of dimension m embedded in \Re^n
- Construct a set of charts, each of which maps a region of S to a disk in \Re^m
 - Mapping must be 1-1, onto, continuous
 - Every point in S must be in the domain of at least one chart
 - Collection of charts is called an atlas
- Note: A surface is manifold if such an atlas can be constructed

Additional definitions

M 71

Media and Machines

 α_2

 α_{2}

- Co-domain of chart can also be called a chart
- Define the overlap U_{ij} to be the part of chart i that overlaps with chart j. May be empty.
- Transition function ψ_{ij} maps from U_{ij} to U_{ji} .

 α_0^{-1}

 ψ_{01}

S

 α_1

 ψ_{02}

Going the other way

- Given a set of charts and transition function, define manifold to be quotient
 - Transition functions
 - Reflexive $\psi_{ii}(x) = x$
 - Transitive $(\psi_{ik}(\psi_{kj}(x)) = \psi_{ii}(x))$
 - Symmetric $\psi_{ii}(\psi_{ji}(x)) = x$
 - Quotient: if two points are associated via a transition function, then they're the same point
 - Chart points: chart plus (x,y) point
 - Manifold points: a list of chart points

Manifold definitions

- Define S, define atlas
 - Overlaps, transition functions secondary
- Define chart domains, overlaps, transition functions
 - Manifold defined by quotient
 - No geometry

Adding geometry

Media and Machines

- Define an embedding for each chart
 - C^k , e.g., spline patch $E_c : \mathfrak{R}^m \to \mathfrak{R}^n$
- Define chart blend function
 - Zero outside of chart $B_c: S \to \Re$
 - Partition of unity

$$B_c(p) = \frac{\hat{B}_c(\alpha_c(p))}{\sum \hat{B}_{c'}(\alpha_{c'}(p))}$$

Washington University in St. Louis SCHOOL OF ENGINEERING & APPLIED SCIENCE

Adding geometry, cont.

Media and Machines

• Final surface is a blended sum of chart embeddings

 $E: S \to \Re^n$ $E(p) = \sum B_c(\alpha_c(p)) E_c(\alpha_c(p))$

Previous work

- Grimm '95
 - Mesh: one chart for each vertex, edge, face
 - N different transition function types
 - Vertices of valence 4
- Navau and Garcia, 2000
 - Planar mesh: Map to plane
 - General mesh: Use subdivision to separate extraordinary vertices
 - Specific flattening of extraordinary vertices into plane
- Lewis and Hughes '96
 - Complex plane, "unwrap" faces around vertex

Cindy Grimm

Why is this hard?

- Finding charts, transition functions that are correct is hard
 - Start with mesh
 - Combinatorial or number of charts explosion
 - No linear set of functions (?)
 - Start with points
 - Analytic function?

Why not just a mesh?

An

- Surface modeling: smooth, locally parameterized, analytical
- Functions on meshes
 - Texture synthesis, reaction-diffusion
 - Curvature calculation
 - Visualization of data on surface
 - Fluid flow: 2D vector drawing routines
- Manifolds have in-built notion of local neighborhood, moving along surface

A simple manifold

AM

- Define one manifold for each genus
 - Push geometric complexity into embedding
 - Charts simple (unit square), few in number
 - Substantial chart overlap
 - Transition functions simple
 - Define by mapping to and from a canonical surface (plane, sphere, torus, etc.)
- Simplifies defining functions on manifold

- Manifold definition for sphere, plane, torus, n-holed torus
- Embedding functions for manifold
- "Fitting" a manifold to an existing mesh
 - 1-1, onto mapping from mesh to manifold

Plane manifold

Media and Machines

- One chart (unit square)
- One transition function (identity)

Sphere manifold

- S is the unit sphere
- 6 charts, one for each direction
 - Mapping functions are variations of
 - $(\cos(\theta) \cos(\phi), \sin(\theta) \cos(\phi), \sin(\phi))$
 - Inverse functions are found by arcsin, arctan
 - $\phi = asin(z), \theta = atan2(y,z)$

Sphere manifold

Media and Machines

Chart (squares), edge, and corner indices

Cindy Grimm

A single chart on the sphere viewe

A single chart on the sphere viewed from the side and top

Top cap

Torus manifold

Media and Machines

- S is torus of inner radius 0.25, outer 1.25
 - $S(\theta,\phi) = (1.5 + \cos(\theta)\cos(\phi), 1.5 + \sin(\theta)\cos(\phi), \sin(\theta))$
 - Domain 0,2pi X 0,2pi
- 9 charts, each shifted and scaled portion of 2pi domain

Torus chart

Media and Machines

• N-copies of torus, with one edge identified in opposite direction

Embeddings

Media and Machines

- Hierarchical splines
 - Spline surfaces have different sized non-zero domains $E_c(x, y) = \sum s_i(x, y)$

• Radial basis functions

$$E_{c}(u,v) = \left((x_{0} + x_{1}u + x_{2}v) + \sum w_{i}\phi(||(u,v) - c_{i}||) \right)_{x,y,z}$$

Tessellation

- Triangulate interior of each chart, stitch together along boundary edges
- Further split faces if needed
 - Area taken up in final embedding

Media and Machines

Chart interior

Washington University in St.Louis School of Engineering & Applied Science

Media and Machines

Mapping from mesh to manifold

- 1-1, onto function
- Map vertices first
- Map faces using barycentric coords
 - Requires that there exist a chart such that all three vertices of face map into that chart
 - Plane, torus : usual barycentric coords
 - Sphere: spherical barycentric coords

Mapping vertices

- Graph partition problem
- Divide mesh into n regions (for n charts) that meet with correct topology
 - Project region into interior of chart
- Criteria:
 - No folding (star of vertex forms convex polygon in chart)
 - Roughly same number of faces in each chart
 - Each face has one chart it maps into

Sphere algorithm

- Grow top cap (disk)
- Grow bottom cap
- Join boundary with four edges
 - Shortest path
 - Vertices must be accessible

Media and Machines

Washington University in St.Louis School of Engineering & Applied Science

Sphere algorithm, cont.

AT

Media and

Machin

- Project each region onto chart
- Run Floater's algorithm to place vertices in chart
 - Least squares problem
 - Boundary points are fixed
 - $Loc(v_i) = (u,v)$

$$v_i - \sum_j v_j = 0$$

Sphere algorithm, cont.

- Adjust projection until criteria met
 - Get disk of faces in chart
 - Grow (or shrink) placement based on percentage of faces
 - Reproject
 - Move vertices towards centroids

Media and Machines

Plane algorithm

Media and Machines

- Map boundary vertices to boundary of chart
 - Interior vertices mapped to centroid of vertex star
 - Floater's algorithm

Torus algorithm

- Want three rings in 2 directions
 - Grow four disks, seeded far apart
 - One half of loop goes through one disk, other half through adjacent disk
 - Disks meet in two disjoint regions
 - Grow two annuli out from disk
 - Parallel loop
 - Grow one disk faster
 - Repeat

Four disks, path through green disk plus path through blue disk makes loop

Media and Machines

Washington University in St. Louis School of Engineering & Applied Science

Torus algorithm, cont.

- Three paths between loops
 Total of 9 shortest paths
- Given 9 initial regions, adjust

Media and Machines

Algorithm analysis

- Best suited for 500-10,000 vertices
- Not guaranteed to reach solution
 - "narrow" spots, not enough vertices around tube
 - Use subdivision to produce more vertices
 - Solution exists
- Alternative approaches
 - Use progressive meshes to simplify to base case
 - Initial vertex mapping
 - Add vertices back in

Fitting embeddings

- Embedding function can be arbitrarily complex
 - Not uniform
- Radial basis functions
 - Uneven distribution is not a problem
 - Function complexity grows with number of points
- Hierarchical splines
 - Need to find best patch placement

Media and Machines

Washington University in St.Louis School of Engineering & Applied Science

- One equation each for x,y,z
- N vertices mapped to chart implies N basis functions
- Set coefficients so surface passes through N points
 - Linear equations

$$E_{c}(u,v) = \left((x_{0} + x_{1}u + x_{2}v) + \sum w_{i}\phi(||(u,v) - c_{i}||) \right)_{x,y,z}$$

Media and

Machingo

Fitting hierarchical splines

- Error metric
 - Add patch where error is bad
 - Distance from surface to mesh
 - 1-1 onto mapping
- Grid domain and evaluate at grid squares
 - Max(error at square, vertices in square)
 - Add patch over largest contiguous set of bad squares
 - Max and average thresholds

Hierarchical splines, cont.

- Add patches until error metric below threshold
 - Find contiguous bad squares
 - Fit patch to remaining error
 - Domain based on bad squares
 - Fit to evenly spaced points in domain
- Refit with all patches simultaneously

Media and

Washington University in St.Louis School of Engineering & Applied Science

Media and Machines

Cindy Grimm

Washington University in St. Louis School of Engineering & Applied Science

Summary so far

- Establish 1-1, onto correspondence between mesh and manifold
- Can construct embedding to create smooth surface
 - Approximate mesh (splines)
 - Exact fit (radial basis functions)

Basic tools (in progress)

AM

- Functions on manifold
 - Ratio of parameter area to surface area
 - Evenly distribute points on surface
 - Vector field in parameter space
 - "up", fluid flow, user-defined, principle curvature
 - Continuous as possible
 - Evenly spaced stripes
 - BRDF

Basic tools (in progress)

- Surface traversal
 - Given a set of points, produce an ordering
 - Texture synthesis
 - Upper left points already visited
 - Spiral
 - Along flow paths
- Texture mapping
 - Uniform/non-uniform density of pixels
 - Original mesh

Cindy Grimm

Conclusion

- Manifolds have potential as parameterization tool
 - Meshes, implicits, patch collections
 - Function display on surface, non-photorealistic renderings, growing plants on surfaces
- Simple manifolds with easy-to-use tools
 Computationally simple

Other future work

- Surface modeling interface
- Link between subdivision surfaces and manifolds
- N-holed torus mapping to mesh

