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1 INTRODUCTION

Mathematical models, designed to simulate complex physical processes, are often used in scientific and engineering
studies.  For example, modeling the movement and consequence of radioactive pollutants is extremely important in
the nuclear industry for environmental protection and facility control.  One of the steps in model development is the
determination of the parameters most influential on model results.  A sensitivity analysis of these parameters is not
only critical to model validation and uncertainty, but also guides future research.

The following is an assessment of several sensitivity analysis methods.  It demonstrates calculational rigor and
provides a comparison of parameter sensitivity rankings resulting from various sensitivity analysis techniques.  The
methods under comparison here have been summarized elsewhere [4]. An atmospheric tritium dosimetry model [3]
is used as an example, but the techniques described can be applied to many different modeling problems.

2 SENSITIVITY ANALYSIS METHODS

The results of the application of ten sensitivity analysis techniques on an atmospheric tritium dose model [3] are
presented. The sensitivity methods include the utilization of the following one-at-a-time sensitivity measures: partial
derivatives (PD), one standard deviation increase and decrease of inputs (±SD), a 20% increase and decrease of
inputs (±20%), and a sensitivity index (SI).  The sensitivity measures investigated that utilize an array of input and
output values generated through random sampling include: an importance index (II), a relative deviation of the
output distribution (RD), a relative deviation ratio (RDR), partial rank correlation coefficients (PRCC), standardized
regression coefficients (SRC), and rank regression coefficients (RRC).  A Latin hypercube sampling procedure was
used to generate an input array to the 21-parameter dose model with a sample size of 1000 [3].

In the dose model used here, parameter sensitivity is simplest to achieve by first aggregating the mathematical
model, i.e., algebraically combining exposure pathway models, evaluating the resulting equation using best-estimate
parameter values, and assessing the relative contribution to dose via each pathway component.  Total atmospheric
tritium dose to a downwind receptor is the sum of the inhalation and ingestion pathway doses and is given by,
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where the constants account for unit conversions.  Definitions of parameter distributions are given in Table 1.  The
five components in the right set of brackets represent the five exposure pathways: milk consumption, beef
consumption, produce consumption, leafy vegetable consumption, and inhalation; respectively.  It is immediately
apparent that the model will be sensitive in some degree to three of the parameters in the left set of brackets (Te, C

a,
and M) since their values influence all pathway dose estimates.  The three remaining parameters in the left brackets
(fw, Rpa, and H) cancel in the inhalation portion of the equation, therefore, they are expected to be sensitive
parameters, but to have less influence than Te, C

a, and M, since all pathway dose estimates are not affected by their
values.



Table 1.  Parameter definitions and applicable exposure pathway models.
_________________________________________________________

Description Parameter
_________________________________________________________

Average annual concentration of tritium Ca

Effective biological half-life of tritium Te

Mass of soft tissue in adult male M
Average annual absolute humidity H
Percent water in vegetation fw

Ratio of plant to atmospheric tritium Rpa

Consumption rate of milk Um

Fodder ingestion rate (milk cattle) Im

Feed-to-milk transfer factor fm

Fraction of fodder from pasture (milk cattle) fpm

Milk transport time (milking to consumption) tm

Consumption rate of beef Ub

Fodder ingestion rate (beef cattle) Ib

Feed-to-beef transfer factor fb

Fraction of fodder from pasture (beef cattle) fpb

Beef transport time (slaughter to consumption) tb

Consumption rate of produce Uv

Fraction of produce from home garden fv

Consumption rate of leafy vegetables Ul

Fraction of leafy vegetables from home garden fl

Annual average breathing rate of adult male BR
_________________________________________________________

There are several statistical tests that involve some form of dividing or segmenting input parameters into two or
more empirical distributions based on an associated partitioning of the output distribution [2].  In this example, for a
given parameter, all input data associated with a dose below a specific partitioning point are said to belong to one
random sample while input data associated with a dose above the same partitioning point belong to a second random
sample.  These two random samples are then used to generate the empirical distributions.  Means, medians,
variances, and other characteristics of these distributions are compared to determine whether the distributions are
statistically identical.  Since their results are specific to the partitioning point, the sensitivity tests performed on the
segmented data are not compared to the tests discussed above.  The author has compared rankings for the Smirnov,
Cramer-von Mises, Mann-Whitney, and Squared Ranks tests elsewhere [5].

3 RESULTS

Sensitivity results for each test have been obtained.  Since one sensitivity method does not stand out as being
universally accepted as the "correct" method, a "composite" sensitivity ranking has been determined.  For the sake
of comparing methods, the composite sensitivity ranking is based on the sum of ranks over all ten methods.  The
parameter with the lowest total rank is considered to have the greatest sensitivity.  Iman and Conover [6] have
presented a measure of "top-down correlation" for similar problems.

The relative performance of each method was determined by comparing the method-specific sensitivity ranking to
the composite ranking.  A "performance index" was calculated for this comparison.  The performance index is a test
of trend and is the sum of the squared-differences of the compared ranks, the T statistic in Spearman's ρ [1]. A
smaller value for the index indicates a better trending of the method-specific and composite rank orders.  The
composite sensitivity ranking and the method performance ranking are shown in Table 2.  Parameters are listed in
decreasing order of sensitivity and the sensitivity techniques are listed in order of increasing performance index.
Sensitivity ranks of the top ten parameters for each method are given in the table.



Table 2. Sensitivity ranking based on overall rank, listed in order of the composite ranking.

Parameter SI RD RRC ±SD PRCC RDR PD ±20% SRC II

Biological half-life 2 1 2 2 2 1 2 2 2
Atmospheric concentration 1 2 1 1 1 2.5 2 2 5
Produce consumption rate 3 3 3 3 3 9 8.5 8.5 1 2
Mass of soft tissue 4 4 4 4 4 2.5 2 2 7
Plant/Atm HTO ratio 6 5 5 6 5.5 4 5 5.5 6
Breathing rate 5 6 6 5 5.5 5 7 7 3
Meat consumption rate 8 8 8 10 7.5 4 3
Leafy veg. consumption rate 7 7 7 9 7.5 4
Frac. Produce from garden 10 10 10 7 8 8.5 8.5 8
Milk consumption rate 9 9.5 1
Feed-to-milk transfer factor 9 9 10 5
Absolute humidity 7 5 4
Frac. from pasture (milk) 7
Percent water in vegetation 6 5 5.5
Feed-to-meat transfer factor 9 8 6
Frac. leafy veg. from garden
Beef cow ingestion rate
Milk cow ingestion rate 9.5
Frac. from pasture (beef) 8
Beef transport time 10
Milk transport time 9

Performance index 29 30 152 190 202 291 371 378 524 1404

The test of trend using Spearman's ρ also was used to calculate a performance index and to compare sensitivity ranks
between methods.  These comparisons show which tests behave similarly and which tests appear to be inappropriate
for sensitivity analysis, at least for the type of model considered in this work.  Smaller values indicate better trending
of ranks and greater parity between methods.  As an example, the performance index for the comparison between
the ±20% and PD methods is 1.5, indicating remarkable agreement between the two rank orders.

4 DISCUSSION

As stated earlier, the performance of each method is measured by how closely the method-specific sensitivity rank
compares to the composite rank.  The performance index (PI) indicates that the SI and RD methods produce ranking
results that are most similar to the composite rank (refer to Table 2).  It is encouraging to see that all methods
(except the importance index) produce the same general ranking of parameter sensitivity.  The importance index is
meant to be used with simple additive or multiplicative models; it is apparently not appropriate as a sensitivity
measure for the model used in this example.  The SI method chooses all of the top ten sensitive parameters while the
RD method chooses the top six parameters in the composite order.  The first five methods choose the top six
parameters, but not necessarily in the composite order.

A performance index was calculated for each combination of ten sensitivity techniques discussed to provide a
comparison between sensitivity methods.  Small values of PI indicate similar sensitivity rankings.  The partial
derivative method is the most fundamental of the local sensitivity analysis techniques.  It is appropriate only for



relatively small changes (on the order of several percent) in the input parameter.  It is not surprising, therefore, that
sensitivity ranks based on the PD and ±20% methods result in very similar orders.  The standard deviation
increments (±SD) can at times be quite large, therefore, the ±SD ranks are not as similar.  The RDR method acts
globally, yet produces rankings similar to PD and ±20%.  As suggested by Table 2 and confirmed by the
performance index, rankings obtained from the sensitivity index (SI) and the relative deviation (RD) are quite
similar.  And, to a lesser degree, the SI and RD methods produce results similar to the ±SD method.  Parameter
sensitivity ranks based on the rank regression coefficient (RRC) are similar to the rankings from the SI, ±SD, and
PRCC techniques.  The importance index (II), meant for simple multiplicative models, produces results unlike any
of the other methods; its utility is questionable.

5 CONCLUSIONS

A number of sensitivity analysis techniques have been presented.  The majority of the techniques result in similar
rankings of the top several sensitive parameters.  Since the actual ranking is not as important as the general ranking,
most of the techniques would be appropriate for sensitivity analysis for the type of model considered in this report.
The criterion most important, therefore, is the ease with which the sensitivity method can be performed.  With the
proper software, all methods presented here are relatively easy to execute.  Given a moderate number of parameters
and a hand calculator, however, the sensitivity index is the easiest and most reliable sensitivity measure.  The SI can
be calculated without detailed knowledge of the parameter distribution and without the use of random sampling
schemes or large computer programs.

The relative deviation (RD) is a reliable measure of parameter sensitivity.  Calculation of the RD is quite simple if a
sampling technique is employed and the output values are stored for the statistical analysis.  This analysis requires a
one-at-a-time approach, however, and can be labor intensive.  Estimating sensitivity based on the relative deviation
ratio (RDR) is not recommended since its results are less reliable and it requires more calculational rigor than the
RD.

Rank regression coefficients are easily obtained with the use of commercially available software.  An electronic
spreadsheet and the SAS statistical package were utilized for this analysis.  The calculation of sensitivity rankings
by varying the parameter over its standard deviation (±SD) is as simple as calculating the sensitivity index with the
exception that some knowledge of the parameter distribution must be available.  Varying the input parameter by a
standard amount (±20%) is an easy test to perform, but its reliability is less desirable than the simpler SI method.

The simplest approach to conceptualize is the one-at-a-time method where sensitivity measures are determined by
varying each parameter independently while all others are held constant.  These sensitivity techniques, however,
become rather time intensive with large numbers of parameters.  The most fundamental of sensitivity techniques is
the direct method of using partial differentials to calculate the rate of change in the model output with respect to a
given input parameter.  The one-at-a-time techniques are valid only for small variability in parameter values and the
partials must be recalculated for each change in the base-case scenario.
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