
1 INTRODUCTION

Engineering and scientific phenomena are often
studied with the aid of mathematical models designed
to simulate complex physical processes.  In the nu-
clear industry, modeling the movement and conse-
quence of radioactive pollutants is extremely impor-
tant for environmental protection and facility control.
One of the steps in model development is the determi-
nation of the parameters most influential on model re-
sults.  A sensitivity analysis of these parameters is not
only critical to model validation, but also serves to
guide future research toward increasing model accu-
racy.

This paper is a comparative study of a few of the
sensitivity analysis methods deemed appropriate for
an atmospheric tritium dose model (Hamby 1993).
The work is intended to demonstrate the calculational
rigor and compare parameter sensitivity rankings re-
sulting from the various techniques.

2 SENSITIVITY ANALYSIS: THE METHODS
EMPLOYED

2.1 Partial Rank Correlation

Strong correlations between input parameters may
influence input/output correlations.  Partial correlation
coefficients (PCC) are calculated to account for cor-
relations among other input variables (IAEA 1989).
Given random variables X1 and X2 as input and the
output variable Y, a partial correlation coefficient is a
measure of the correlation between X1 and Y, for ex-
ample, while eliminating indirect correlations due to
relationships that may exist between X1 and X2 or X2
and Y.  The PCC is defined as

rX1Y |X 2
=

rX1Y − rX1X 2
rX2 Y

(1−rX1X 2

2 )(1− rX2Y
2 )

, (1)

where the notation rX1Y|X 2
represents the partial corre-

lation coefficient for X1 and Y while accounting for
the effects of X2.  The parameters of the generic
model considered herein are assumed to be independ-
ent and no correlations have been assigned.  There-
fore, (1) reduces to,

rX1Y |X 2
=

rX1Y

(1− rX2Y
2 )

(2)

where, again, X1 and X2 represent any two input vari-
ables and Y represents the output variable. The square
of the partial correlation coefficient is useful in deter-
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rankings based on the relative values of the partial cor-
relation coefficients will not change from the rankings
determined based on the simple correlation coeffi-
cients. Therefore, with no correlations existing be-
tween input parameters, there is no need for calculat-
ing partials to determine sensitivity rankings.

The rank transformation is applied to partial corre-
lation as a test of monotonicity between input and
output variables while accounting for relationships
between input parameters.  The partial rank correlation
(PRCC) is widely utilized for sensitivity studies.  The
PRCC is reportedly more powerful at indicating the
sensitivity of a parameter that is strongly monotonic
yet highly nonlinear (Downing et al. 1985).  The
PRCC is used in this study as one method of deter-
mining model sensitivity.

2.2 Regression methods

Regression methods are often used to replace a
highly complex model with a simplified response sur-
face (Helton et al. 1991).  The response surface is
simply a regression equation that approximates model
output using only the most sensitive model input pa-
rameters.  Stepwise regression procedures are utilized
to ensure that the final regression model provides for
the best fit of raw data.  The stepwise regression may
involve higher ordered equations, quadratic terms, and
parameters as functions of other parameters. The
generalized form of a simple regression equation is,
ˆ Y = b0 + bkZk

k

(3)

where each Zk is a predictor variable and a function of
(X1, ....., Xn) and each bk is a regression coefficient.
The use of the regression technique allows the sensi-
tivity ranking to be determined based on the relative
magnitude of the regression coefficient.  This value is
indicative of the amount of influence the parameter
has on the whole model.  Because of units and the
relative magnitude of parameters, a standardization
process is sometimes warranted.

Standardization takes place in the form of a trans-
formation by ranks or by the ratio of the parameter’s
standard deviation to its mean.  The effect of the stan-
dardization is to remove the influence of units and
place all parameters on an equal level.  The calculation
of a rank regression coefficient is a fairly simple pro-
cedure, however, the standardized regression coeffi-
cient (SRC) is slightly more rigorous and is achieved
by,

( ˆ Y − Y )
s

= bksk

s
 
 

 
 k

(Zk − Z k)
sk

(4)

where each Zk is a function of (X1, ..., Xn), s is the
standard deviation of the output, and sk is the standard
deviation of the inputs.  If each Zk is a function of
only one parameter in X, then the value of bksk/s is the
standardized regression coefficient for parameter Xk,
where k = 1 to n.

2.3 Partitioning techniques

These statistical tests involve some form of dividing
or segmenting input parameters into two or more em-
pirical distributions based on an associated partition-
ing of the output distribution (Crick et al. 1987).  The
tests are utilized to compare the characteristics of the
input distributions created by the partitioning.

Standard parametric tests are not reasonable on in-
put data sets generated by random sampling methods
because of our limited knowledge of the input vari-
ables and their associated distributions. Nonparamet-
ric statistical tests, therefore, are used where the data
are considered to be distribution-free. The convention
stated earlier, that Y is a function of X, is no longer
appropriate; a new notation is used and specified for
each test. The two partitioning techniques considered
here, the Smirnov test and the Cramer-von Mises test,
operate on ranks of the raw data.

The Smirnov test operates on the two empirical dis-
tributions S1(X) and S2(X), generated as a result of
partitioning the input parameter values.  The degree of
similarity between distributions, measured by the test
statistic, is used to indicate the degree of sensitivity
between the input and output values.

The Smirnov test statistic can be measured directly
as the greatest vertical distance between two distribu-
tion functions plotted on the same graph or the test
statistic can be calculated using,

)()(sup 211 XSXST −= (5)
where “sup” is the abbreviation for supremum and
the equation represents the greatest absolute differ-
ence between S1(X) and S2(X) (Conover 1980).

The Cramer-von Mises test is very similar to the
Smirnov test in that its purpose is to determine
whether two empirical distributions are statistically
identical.  The computation of the test statistics is
slightly more complicated, yet there is little difference
in the test’s power compared to the Smirnov statistic
(Conover 1980). The Cramer-von Mises statistic, T2,
is the sum of all squared vertical distances between the
two empirical distributions,
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where the values of n and m are the number of sam-
ples utilized to estimate the distributions.  It is ex-
pected that the parameter rankings based on the Smir-
nov and Cramer-von Mises tests will be very similar
since the two tests show little difference in their statis-
tical power.  In either case, a large statistic is indicative
of a larger difference in the two empirical distributions
generated by the division of input data based on some
output criteria. This large difference indicates a greater
correlation between the independent and dependent
variables.

For this example, the output data have been parti-
tioned at the 90th percentile to show how the rank or-
der may change when analyzing conditionalized out-



put.  Input values resulting in a given output then will
be used to generate the Smirnov and Cramer-von
Mises test statistics. Partitioning the data at some
other point, i.e. the mean, may result in a different
ranking.

2.4 Variance-based sensitivity analysis techniques

In ANOVA-like sensitivity analysis techniques (see
(Archer et al., 1997) for a review) the total variance V
of the model output is apportioned to all the input
factors iX , i =1,2,…,k as
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and so on. In the above formulas, Y denotes the output
variable, iX  denotes the ith input factor,

)( *
ii xXYE =  denotes the expectation of Y condi-

tional on iX  having a fixed value 
*
ix , and

))xXY(E(VV *
iii ==  stands for variance over all

the possible values of iX . Conditional variances iV
are estimated for the purpose of sensitivity analysis
where the sensitivity index iS  for the factor i is given

by VVi / . The reason for that is intuitive: if the inner
mean varies considerably with the selection of a par-
ticular value 

*
ix  for iX , while all the effects of the

ijsX j ?,'  are being averaged, then surely factor iX

is an influential one. Estimation procedures for iS  are
classical FAST (Fourier Amplitude Sensitivity Test)
(Cukier et al. 1973), the method of Sobol’ (Sobol’
1990), and others (Iman and Hora 1990; McKay
1996).

Higher order sensitivity indices, responsible for inter-
action effects among factors, are usually not estimated
as in a model with k factors, the total number of terms
in the decomposition (7) is as high as 2k-1. However
interactions may have a strong impact on the output
uncertainty especially when k is large and factors are
varied on a wider scale, as happens in numerical mod-
elling.

The ))(( *
ii xXYEV =  estimate, although powerful,

does not satisfy the requirements for a quantitative
global sensitivity analysis method: it falls short of ac-
counting for interactions. A global method should be
efficient, i.e. capable to cope with the curse of dimen-
sionality mentioned above.

An example of global method is the extended FAST
(Saltelli et al. 1999), which is capable of estimating the
total sensitivity index, TiS , defined as the sum of all
effects (first and higher order) involving factor

iX (see Saltelli 1999 in these Proceedings). The com-

putation of the total sensitivity indices TiS  makes the
analysis affordable. Further, the extended FAST
method allows the simultaneous computation of the first
and total effect indices.

2.5 A special technique: the extended FAST

In the extended FAST each uncertain input factor iX

is associated to a frequency iω , and a set of stan-
dardised parametric equations

)arcsin(sin)(sin 1
2
1 ssGX iiii ωω π+== (8)

allows each factor to be explored globally across its
range of variation, as the parameter s is varied over

);( ππ− . The parametric equations define a curve that
systematically explores the unit hypercube

=Ω (X| ),...,1;10 kiX i =≤≤ , from which stan-
dard samples of non-correlated input factors that are
uniformly distributed in the range [0,1] can be gener-
ated. Using the space-filling parametric curve given in
(8) summary statistics on the output can be computed,
by integrating either along the curve itself instead over
Ω .

To evaluate the pair of indices (Si,STi) for the factor i, a
curve is defined by choosing a ‘high’ value for the
frequency iω , associated to iX  and a set of ‘low’

values for the other frequencies, }{ )( i−ω , usually
1}{ )( =−iω , which are associated to the remaining fac-

tors )( i−X . A better coverage of the complementary

space )( i−X  (the index -i stands for ‘all but i’) can be

obtained using a different strategy (Saltelli et al.
1999), which consists in adopting different frequen-
cies for the factors )( i−X

), provided that they are

similar and, in any case, much lower than iω . The

output ))(),...,(),(( 21 sXsXsXfY k=  is evalu-
ated along the curve and is considered as a function of



s. The spectrum )(2 ωΛ  of )(sf  at each frequencyω
is computed as 222 BA +=Λ , where  
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are integrals numerically evaluated over s. The above
integrals are computed using quadrature formulas that
operate on a set of N points, which are selected along
the curve and are equally spaced. N is related to the
frequency iω through the Nyquist theorem

12 +? iMN ω , where M, usually set to 4, is the
number of higher harmonics considered in the com-
putation of sensitivities. Hence, fixing iω , the mini-
mum number of points along the curve is determined.
With N points on a curve is possible to derive esti-
mates for iD , )( iD −  and D :
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Finally, iŜ and TiŜ  are obtained, respectively, by
DDi
ˆˆ

 and DD i
ˆˆ1 )(−− . To estimate the pair of sensi-

tivity indices for another factor j, a permutation of the
frequencies is necessary, because a ‘high’ frequency
value must be assigned to the factor of interest. This
computation requires a new sampling of the input
space Ω . Hence, the total cost of the analysis for
computing all the pairs of indices is Nk ↔ .

3 The simulation model

The sensitivity of a tritium dose model to nineteen
input parameters has been determined using five dif-
ferent methods generally accepted as appropriate for
simple multiplicative and additive models.  The sensi-
tivity methods include partial rank correlation, stan-
dardized regression techniques, two data partitioning
methods, and the extended FAST procedure.  The
model on which these techniques were executed is de-
scribed below.

Total atmospheric radiation dose to a downwind re-
ceptor is the sum of the inhalation and ingestion
pathway doses, given a known concentration of at-
mospheric tritium, Ca,

Dtotal = DFCaRfw

H
?

(1.5BH

Rfw

+1000(Up fp ) +1000(Ul fl ) +

(2.74FbfbQbe
−λtb Ub) +(2.74Fm fmQme−λt mUm ))

where the constants account for unit conversions.  Pa-
rameter characteristics are given in Table 1.  The five
additive components in the set of parentheses repre-
sent the five primary exposure pathways of 1) inhala-
tion, 2) produce consumption, 3) leafy vegetable con-
sumption, 4) beef consumption, and 5) milk
consumption, respectively.

Table 1. Parameter distribution characteristics for the
atmospheric tritium dose model.
__________________________________________

Dist. Std.
No. Param. Type* Units MeanÜ Dev.ß

_________________________________________
Ca constant Bq/g 100 -
λ constant 1/d 1.54x10-4 -

1 H N g/m3 11.3 0.53
2 DF LN Sv/Bq 2.2x10-11 1.6
3 fw T - 0.86 0.77; 0.95
4 R N - 0.54 0.1
5 fb U d/kg - 0.002; 0.02
6 fm U d/L - 0.002; 0.02
7 Qb N kg/y 19 4.2
8 Qm N kg/y 13 2.9
9 Fb T - 0.75 0; 1
10 Fm T - 0.56 0; 1
11 tb LN d 6.4 1.4
12 tm LN d 3.1 1.5
13 B N m3/y 8500 1700
14 Ub LN kg/y 79 2.0
15 Um LN L/y 77 2.1
16 Up LN kg/y 150 2.0
17 Ul LN kg/y 47 1.8
18 fp T - 0.75 0.5; 1
19 fl T - 0.75 0.5; 1
__________________________________________
*Distribution type: N=normal; LN=lognormal; T=triangular;
U=uniform
ÜArithmetic mean for normal, geometric mean for lognormal, and
mode for triangular distributions
ßStandard deviation for normal, geometric standard deviation for
lognormal, and minimum and maximum values for triangular and
uniform distributions

The radiation dose to downwind receptors from re-
leases of tritium is calculated by this method at many
nuclear facilities in the United States, and throughout
the world.  It is the same specific-activity method pre-
scribed by the U.S. Nuclear Regulatory Commission
(1977).

4 RESULTS

The sensitivity rankings for each test are presented
in Table 2, with the top 5 parameter rankings given in



bold. The differences in ranks are clearly visible, how-
ever, the same parameters consistently appear as those
which are more influential on model results.

Table 2. Sensitivity rankings of the nineteen parame-
ters in the atmospheric tritium dose model. Total sen-
sitivity indices by the extended FAST are given in the
last column.
__________________________________________

Param. PRCC SRC Smirnov Cramer FAST TiŜ
__________________________________________
H 13 17 18 16 8 .08
DF 1 2 2 2 1 . 7 8
fw 14 19 9 10 15 .06
R 3 5 5 5 8 .08
fb 10 18 13 13 15 .06
fm 7 13 11 8 7 .09
Qb 8 7 12 12 19 .04
Qm 17 11 17 18 8 .08
Fb 17 14 8 7 18 .05
Fm 17 14 16 17 4 .13
tb 14 10 15 15 8 .08
tm 14 12 10 11 13 .07
B 3 3 4 4 3 .19
Ub 5 4 7 9 13 .07
Um 10 7 6 6 15 .06
Up 2 1 1 1 2 .30
Ul 5 16 13 14 8 .08
fp 10 6 3 3 6 .12
fl 8 9 19 19 4 .13
__________________________________________

In the last column of Table 2 the estimates of total

sensitivities, TiŜ , obtained by using the extended
FAST, are given. These estimates are much more in-
formative than simple qualitative parameters’ ranking.
The computational cost of this analysis can be quanti-
fied in N*k=1843 model executions, where k=19 and
N has been fixed to 97. Extended FAST also allows
estimating sensitivities when parameters are grouped
according to different logical levels. For instance, in
this study the 19 parameters could be partitioned into
the five primary exposure pathways plus another
group accounting for dose unit conversion (the pa-
rameter DF alone). The results would be a set of total
sensitivity indices for the six groups.

5 DISCUSSION

The five sensitivity methods presented herein pro-
vide similar results in terms of rank-ordered parame-
ters.  No two techniques offer the same result, how-
ever, the methods are consistent in indicating that the
most influential input parameters are DF , pU , and
B .  Significant discrepancies in rank order are gener-
ally not present.  However, the results from the condi-

tionalized sensitivity analyses, Smirnov and Cramer-
von Mises tests, show that the model becomes more
sensitive to some parameters (e.g., pf  and bF ) when

the output is conditionalized on the high estimates
(90th percentile) of atmospheric tritium dose. This
suggests that, for routine assessments, one set of pa-
rameters is most important, while for worst-case sce-
narios, a different group of inputs may dominate the
uncertainty in the dose calculation.
Extended FAST ranks lf  as the fourth most impor-
tant parameter, whereas the other methods attribute a
lower rank to lf  (see Table 2). This means that lf
contributes to the model output uncertainty through

interactions with other parameters. In fact, the TiŜ ’ s
provided by FAST account for interaction effects
among parameters, while the other sensitivity methods
presented herein do not supply this information. An
indicator of how far the model is from being additive
is given by −

i
iS1 , which is 0.21 in this study. This

means that 21% of the output variance V is accounted
for by interactions among the parameters.

Percentile cobweb plots (Cooke 1998) for the out-
put of atmospheric tritium dose and the nineteen input
parameters were generated and are given below for
output groups of 0-5, 50-55, and 95-100th percentiles,
respectively.  These plots are intended to provide a
visual indication of the important parameters for a
given output range. Each line represents one iteration
of the tritium dose calculation, with a data point at
each parameter indicating its value (in percentile) for
that calculation. A qualitative assessment of parameter
sensitivity is conducted by noting areas of high and
low density of intersecting lines.

Based on the results of Table 2, the model is most
sensitive to parameters 2, 4, 13, and 16.  The cobweb
plots, however, seem to indicate that parameters 3, 11,
and 12 are important for very low values calculated for
dose (0-5th percentile), and parameters 14, 16, and 17
are important for very high calculated dose values (95-
100th percentile). Intermediate values of dose, as
shown by the 50-55th percentile plot, do not seem to
suggest that any particular parameter is highly influ-
ential.
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Figure 2. Cobweb plots for the 19 input parameters
and output percentile ranges of 0-5, 50-55, and 95-
100th percentile, respectively.
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