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ABSTRACT

This paper proposes objective functions for dynamic multi-

channel access (DMA) networks that enable spectrum users

(SUs) to assess, locate, and exploit available spectrum

opportunities effectively, thereby maximizing the SU’s re-

wards measured in terms of the average received through-

put. We show that the proposed objective functions are:

near-optimal, as they achieve high rewards; scalable, as

they perform well in small- as well as large-scale DMA net-

works; learnable, as they allow SUs to reach up near-

optimal rewards very quickly; and distributive, as they are

implementable by requiring local information sharing only.

KEYWORDS: Multichannel access; dynamic network re-

source sharing; elastic traffic; wireless networks.

1. INTRODUCTION

Dynamic multichannel access (DMA) capability empow-

ers spectrum users (SUs) to seek, locate, and use avail-

able spectrum bands (or channels) dynamically and oppor-

tunistically. DMA is promoted by FCC as a potential so-

lution to the spectrum shortage problem [1] that FCC has

recently observed [2]. As a result, there have been numer-

ous publications addressing various DMA challenges, rang-

ing from protocol and algorithm design [3–5] to channel se-

lection and prediction technique development [6–8]. More

recently, there have also been some research efforts on the

development of learning-based techniques that also enable

effective DMA by learning directly from interaction with

the environment [9–11]. These techniques rely on learning

algorithms (e.g., reinforcement learners [12]) to learn from

past and present interaction experience to decide what to do

best in the future. In essence, learning algorithms allow SUs

to learn by interacting with the environment, and use their

acquired knowledge to select the proper actions that max-

imize their own objective functions, thereby “hopefully”

maximizing their long-term cumulative received rewards.

The key challenge that we address in this work is that when

SUs’ private objective functions are not carefully coordi-

nated, learning algorithms can lead to poor overall perfor-

mance. In other words, when SUs aim at maximizing their

intrinsic (not carefully designed) objective functions, their

collective behavior often leads to worsening each other’s

long-term cumulative rewards, a phenomenon known as the

“tragedy of the commons” [13]. Therefore, it is imperative

that objective functions be designed carefully so that when

SUs maximize them, their collective behavior does not re-

sult in worsening each other’s performance.

In this paper, we derive efficient SU objective functions

that are aligned with system objective, so that when SUs

maximize them, their collective behaviors also lead to good

system-level performance, thereby resulting in increasing

each SU’s long-term received rewards. Specifically, we

propose objective functions that are (i) near-optimal, in

that they allow SUs to achieve rewards close to the maxi-

mal/optimal achievable rewards, (ii) scalable, in that they

perform well in systems with a small as well as a large num-

ber of SUs, (iii) learnable, in that they allow SUs to reach

up near-optimal rewards very quickly, and (iv) distributive,

in that they are implementable in a decentralized manner by

relying on local information only.

The rest of the paper goes as follows. In Section 2, we

describe our system model. Section 3 states our motiva-

tion and objective. In Section 4, we present our proposed

techniques. In Section 5, we derive upper bounds on the

maximal achievable rewards. In Section 6, we evaluate the

proposed functions. Finally, Section 7 concludes the paper.

2. SYSTEM MODEL

We assume that spectrum is divided into m non-overlapping

spectrum bands (or channels). We consider a time-slotted

system, where SUs are assumed to arrive and leave at the

beginning and at the end of time slots. An agent is a group

of two or more SUs who want to communicate together.



In order to communicate with each other, all SUs in the

group must be tuned to the same band. At the end of

each time step, by means of a reinforcement learning al-

gorithm [12], each agent selects the “best” available spec-

trum band, and uses it during the next time step. At each

time step, each agent receives a service that is passed to it

from the DMA system. One possible service metric is the

amount of throughput that the visited spectrum band offers

the agent. Another possible metric is the reliability of the

communication carried on the spectrum band, which can be

measured through, for example, SNR (signal to noise ra-

tio), PSR (packet success rate), etc. What service metric

to use and how to quantify it are beyond the scope of this

work. Here, we assume that once the agent switches to a

particular band, the received service level can immediately

be quantified by monitoring the metric in question. Here-

after, we then assume that each band j is characterized by

a value Vj that represents the maximum/total service level

that the band can offer.

In this paper, we consider the elastic traffic model, where

the agent’s received reward (i.e., satisfaction) increases pro-

portionally to the service it receives from using the spec-

trum band so long as the received quality-of-service (QoS)

level is higher than a certain (typically low) threshold R.

But when the received QoS level is below the threshold R,

the agent’s reward decreases rapidly (e.g., exponentially)

with the received QoS level; i.e., the reward/satisfaction

goes almost immediately to zero when the received QoS

level is below R. This traffic model is suitable for elastic

applications, such as file transfer and web browsing, where

the higher the received service quality level, the better the

quality/reward perceived by these applications. But when

the received QoS level is below a certain low threshold (i.e.,

R), the quality of these applications becomes unacceptable.

Formally, the reward rj [nj [t]] (also often referred to simply

as rj [t] for simplicity of notation) contributed by band j at

time step t can be written as:

rj [nj [t]] =

{
Vj/nj[t] if nj [t] ≤ Vj/R

Re
−β

nj [t]R−Vj

Vj otherwise
(1)

where nj [t] denotes the number of agents that choose band

j at time step t, and β is a reward decaying factor. Note that

here we assume that the total service level Vj offered by

any band j is split equally among all the nj [t] agents that

use band j at time t.

From the system’s perspective, the system or global reward

can be regarded as the sum of all agents’ received rewards.

Formally, at any time step t, the global reward G[t] is

G[t] =

m∑

j=1

nj [t]rj [nj [t]] (2)

where m is the number of spectrum bands. The per-agent

average reward r̄[t] at time step t is then

r̄[t] =

∑m

j=1 nj [t]rj [t]
∑m

j=1 nj [t]
(3)

3. MOTIVATION AND OBJECTIVE

The goal of this work is to design efficient objective func-

tions for agents, so that when agents aim to maximize them,

their collective behaviors lead to good system-level perfor-

mance, thereby resulting in increasing each agent’s long-

term received rewards. Hereafter, let gi denote agent i’s
objective function. Although the objective functions (gi for

agent i) that we derive in this paper are designed to be used

by any learning algorithm, throughout this work, we choose

to use the ǫ-greedy Q-learner [12] (with a discount rate of 0

and an ǫ value of 0.05) to evaluate the effectiveness of our

developed functions. At each episode (or time step) t, each

agent i aims then at maximizing its own private objective

function gi[t] using its own Q-learner.

At the end of every episode, each agent selects and takes the

action with the highest entry value with probability 1 − ǫ,
and selects and takes a random action among all possi-

ble actions with probability ǫ. After taking an action, the

agent then computes the reward that it receives as a re-

sult of taking such an action (i.e., as a result of using the

selected band), and uses it to update its Q-table. A ta-

ble entry Q(a) corresponding to action a is updated via

Q(a) ← (1 − α)Q(a) + αu, where α (here, the value of

α is set to 0.5) is the learning rate, and u is the received

reward from taking action a. All the results presented in

this paper are based on this Q-learner. Readers are referred

to [12] for more details on the Q-learner.

3.1. Motivation

The key question that arises naturally is which objective

function gi should each agent i aim to maximize so that

its received reward is maximized? There are two intuitive

choices that one can think of. One possible objective func-

tion choice is for each agent i using band j to selfishly go

after the intrinsic reward rj contributed by the band j as de-

fined in Eq. (1); i.e., gi = rj for each agent i using band

j. A second also intuitive choice is for each agent to max-

imize the global (i.e., total) rewards received by all agents;

i.e., gi = G for each agent i as defined in Eq. (2), hop-

ing that maximizing the overall received rewards will even-

tually lead to maximizing every agent’s long-term average

received rewards.
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Figure 1. Per-agent average achieved reward r̄[t] as a

function of episode t under the two private objective

functions: intrinsic choice (gi = rj) and global choice

(gi = G) for R = 2, β = 2, Vj = 20 for j = 1, 2, . . . , 10.

For illustration purposes, we plot in Fig. 1 the per-agent

average received reward r̄[t] (measured and calculated via

Eq. (3)) under each of these two private objective function

choices. In this experiment, we consider a DMA system

with a total number of agents equal to 500 and a total num-

ber of bands m equal to 10. There are two important ob-

servations that we want to make regarding the performance

behaviors of these two objective functions, and that con-

stitute the main motivation of this work. First, note that

when agents aim to maximize their own intrinsic rewards

(i.e., gi = rj for each agent i using band j), the per-agent

average received reward presents an oscillating behavior: it

ramps up quickly at first but then drops down rapidly too,

and then starts to ramp up quickly and drop down rapidly

again, and so on, which explains as follows. With the in-

trinsic objective function, an agent’s reward, by design, is

sensitive to its own actions, which enables it to quickly de-

termine the proper actions to select by limiting the impact

of other agents’ actions, thus learning about good spectrum

opportunities fast enough. However, agents’ intrinsic ob-

jectives are likely not to be aligned with one another, which

explains the sudden drop in their received reward right after

learning about good opportunities.

The second observation is regarding the second objective

function choice, G. Observe that, unlike the intrinsic func-

tion, when each agent i sets its objective function gi to the

global reward function G, this results in a steadier perfor-

mance behavior where the per-agent average received re-

ward increases continuously, but slowly. With this func-

tion choice, agents’ rewards are aligned with one another

by accounting for each other’s actions, and thus are less (or

not likely to be) sensitive to the actions of any particular

agents. The alignedness feature of this function is the rea-

son behind the observed monotonic increase in the average

received reward. However, the increase in the received re-

ward is relatively slow due to the function’s insensitivity to

one’s actions, leading to slow learning rates.

Therefore, it is imperative that private objective functions

be designed with two (usually conflicting) requirements in

mind: (i) alignedness; when agents maximize their own

private objectives, they should not end up working against

one another; instead, their collective behaviors should result

in increasing each agent’s long-term received rewards, and

(ii) sensitivity; objective functions should be sensitive to

agents’ own actions so that proper action selections allow

agents to learn about good opportunities fast enough.

3.2. Objective

Our goal here is to design efficient coordination techniques

for large-scale DMA networks. Specifically, we devise pri-

vate objective functions with the following design require-

ments. First, they should be optimal in that they should

enable agents to achieve high rewards. Second, they should

be scalable in that they should perform well in DMA sys-

tems with a small as well as a large number of agents. Third,

they should be learnable in that they should enable agents to

find and locate spectrum opportunities quickly. Fourth, they

should be distributive in that they should be implementable

in a decentralized manner.

Before delving into our function design, we want to empha-

size that the focus of this work is not on learning, but rather

on designing objective functions that can be used by any

learners.

4. PRIVATE OBJECTIVE FUNCTIONS

For a private objective function to lead to a good overall sys-

tem performance, two requirements must be met. First, we

must ensure that an agent aiming to maximize its own pri-

vate objective function also leads to maximizing the global

(total achievable) rewards, so that its long-term average re-

ceived rewards are indeed maximized. This means that the

agents’ private objective functions need to be aligned or fac-

tored with the global reward function G. Intuitively, the

more aligned an agent’s objective function, the more likely

it is that a change of state will have the same impact on both

the agent’s (i.e., local) and the total (i.e., global) received

rewards.

Second, we must ensure that each agent can discern the im-

pact of its own actions on its private objective function, so

that a proper action selection allows the agent to quickly

learn about good spectrum opportunities. This means that



the agent’s private objective function should be more sen-

sitive to its own actions than the actions of other agents.

Intuitively, more sensitive or learnable objective function

means that it is easier for an agent to achieve higher re-

wards.

The challenge in designing objective functions for large-

scale DMA systems is then to find the best tradeoff/balance

between alignedness and sensitivity. Doing so will ensure

that agents can learn to maximize their own objectives while

doing so will also lead to good overall system performance;

i.e., their collective behaviors will not result in worsening

each other’s received rewards. Throughout, let gi denote

the objective function of agent i that we aim to derive in

this work.

In general, a highly aligned (or factored) private objec-

tive function will experience low sensitivity (or learnabil-

ity), and a highly learnable function will have low factored-

ness [14]. Let us visit again the observed behaviors of the

global reward function, illustrated in Section , to understand

the intuition behind the design of our proposed functions.

Recall that (as observed earlier in Section ) when agents

set the global reward G as their objective functions (i.e.,

gi = G for each agent i), their collective behaviors did

indeed result in increasing the total system achievable re-

wards (though very slowly, see Fig. 1), because agents’ pri-

vate objectives are aligned with system objective. The issue,

however, is that because G depends on (is impacted by) all

agents, it is too difficult for an agent (using G as its objec-

tive function) to discern the effects of its own actions on its

private objective, resulting then in low learnability.

The key observation leading to the design of our functions

is that by removing the effects of all agents other than agent

i from the function G, the resulting agent i’s private objec-

tive function will have higher learnability than G, yet with-

out compromising its alignedness quality. Formally, these

functions can be written as

Di(z) ≡ G(z)−G(z−i) (4)

where z represents the full system state (i.e., joint move of

all agents in the system), and z−i specifies the parts of the

system state controlled all agents other than agent i; i.e.,

z−i represents the parts of the state on which agent i has no

effect. These difference functions have also been shown to

lead to good system performance in other domains, such as

multi-robot control [15] and air traffic flow regulation [16].

First, note that these proposed functions (Di for agent i)
are fully factored, because the second term of Eq. (4) does

not depend on agent i’s actions. On the other hand, they

also have higher learnability than G, because subtracting

this second term from G removes most of other agents’ ef-

fects from agent i’s objective function. Intuitively, since

the second term evaluates the value of the system without

agent i, subtracting it from G provides an objective function

(i.e., Di) that essentially measures agent i’s contribution to

the total system received rewards, making it more learnable

without compromising its factoredness quality.

By substituting Eq. (2) into Eq. (4), explicitly noting the

time dependence t, and for clarity, removing the implicit

dependence on the full state z, the objective function Di for

agent i selecting band j at time t can then be written as:

Di[t] =nj [t]rj [nj[t]]− (nj [t]− 1)rj [nj [t]− 1] (5)

It is important to note that, by taking away agent i from the

second term of the function Di, the terms corresponding to

all spectrum bands k, except the band j that agent i is us-

ing, cancel out. This explains why Di (as shown in Eq. (5))

depends on band j only. Therefore, the proposed function

Di is simpler to compute than the global function G. More

importantly, it is fully decentralized as agents implement-

ing/using it as their objectives need to gather and share in-

formation only with the agents that belong to the same band.

This constitutes one important property among others (to be

described later) that this proposed function has.

5. OPTIMAL ACHIEVABLE REWARDS

In this section, we derive a theoretical upper bound on the

maximum/optimal achievable rewards. This upper bound

will serve as a means of assessing how well the developed

objection functions perform when compared not only with

the two intuitive objective functions (intrinsic rj and global

G), but also with the optimal achievable performances.

Without loss of generality and for simplicity, let us assume

that Vj = V for j = 1, 2, · · · ,m. Let n denote the total

number of agents in the system at any time. First, note that

when n ≤ mV
R

, the maximum global achievable reward is

simply equal to mV (assume n ≥ m), which corresponds

to having each band contain no more than V
R

agents. There-

fore, in what follows, we assume that n > mV
R

, and let

c = V
R

, which denotes the capacity (in terms of number of

supported agents) of each spectrum band.

Now, we start by proving the following lemma, which will

later be used for proving our main result.

LEMMA 1: The global received reward of an DMA system

reduces less when a new agent joins a more crowded spec-

trum band than when it joins a less crowded band.



Proof. Recall that when a band j has n′ > c agents, its

reward is Gj(n
′) = n′Re−β(n′

c
−1). If a new agent joins

this band, the new reward becomes Gj(n
′ + 1) = (n′ +

1)Re−β(n′+1
c

−1). First, it can easily be shown that when

n′ > c ≥ 1, Gj(n
′) > Gj(n

′ + 1); i.e., the reward when

joining band j decreases by ∆j(n
′) ≡ Gj(n

′) − Gj(n
′ +

1). Now we can easily see that ∆j(n
′) decreases when n′

increases. Hence, the greater the number n′ (i.e., the more

crowded the band), the smaller the decrease in reward.

THEOREM 1: When there are n agents in the system, the

global reward reaches its maximal only when m− 1 bands

(out of the total m bands) each has exactly c agents, and the

m-th band has the remaining n− c(m− 1) agents.

Proof. Let k = n − mc, and let us refer to the agent dis-

tribution stated in the theorem as C. Note that C corre-

sponds to when m− 1 bands each has exactly c agents and

the other m-th band has the remaining c + k agents (since

n − c(m − 1) = c + k). We proceed with the proof by

comparing C with any possible distribution C′ among all

possible distributions. Let c + k1 be the number of agents

in the most crowded band in C′, c + k2 be the number of

agents in the second most crowded band in C′, and so forth.

We just need to deal with the bands that each contains more

than c agents. If there are p bands each containing more

than c agents, then we know that
∑p

i=1 ki ≥ k.

For each band having c+ k′ agents, let ǫi be the amount by

which the global reward is reduced when agent i joins the

band for i = 1, 2, · · · , k′. From LEMMA 1, it follows that

ǫi > ǫi+1 > 0, for all i = 1, 2, · · · , k′ − 1.

Note that for the distributionC, the global reward is reduced

by t =
∑k

i=1 ǫi, and for C′, it is reduced by t′ =
∑k1

i=1 ǫi+
∑k2

i=1 ǫi+ · · ·+
∑kp

i=1 ǫi. It remains to show that t′− t > 0
for any C′ 6= C. We consider three different scenarios:

• k1 > k: Here, we have

t′ − t =

k1∑

i=k

ǫi +

k2∑

i=1

ǫi + · · ·+

kp∑

i=1

ǫi

which is greater than zero.

• k1 = k: In this scenario, we have

t′ − t =

k2∑

i=1

ǫi + · · ·+

kp∑

i=1

ǫi

which is also greater than zero.

• k1 < k: In this scenario, we have

t′ − t =

k2∑

i=1

ǫi + · · ·+

kp∑

i=1

ǫi

︸ ︷︷ ︸

part a

−

k∑

i=k1

ǫi

︸ ︷︷ ︸

part b

Since k1+k2+ · · ·+kp ≥ k, the number of ǫi terms in

part a is greater than the number of terms in part b.
From LEMMA 1, we know that the largest term in

part b is ǫk1 , which is smaller than the smallest term

ǫk2 in part a. Hence, part a is greater than part b,
and thus t′ − t is greater than zero.

In all scenarios, we showed that t′ − t > 0. Therefore, the

global reward for any distribution C′ is smaller than that

for the distribution C; i.e., C is the distribution that corre-

sponds to the maximal global achievable reward.

COROLLARY 1: The per-agent average achievable reward

is at most (m− 1)V/n+ (R− (m− 1)V/n)e−β(nR
V

−m).

Proof. The proof follows straightforwardly from THEO-

REM 1 by calculating the global achievable reward for the

derived optimal agent distribution.

Note that this upper bound (that we derived and stated in

COROLLARY 1 is the maximum/optimal average reward

that an agent can achieve (it is a theoretical upper bound).

In the next section, we will evaluate the performances of the

proposed objective functions in terms of their achievable re-

wards, and compare them against these optimal achievable

performances.

6. PERFORMANCE EVALUATION

We now compare the performances of the proposed ob-

jective functions in terms of the per-agent average achiev-

able rewards with the optimal achievable rewards calculated

through COROLLARY 1 as well as with those achievable

under each of the two intuitive functions rj and G. In what

follows, we set R = 2, β = 2, and V = 20.

6.1. Optimality

We first begin by considering the same experiment, con-

ducted in Section , where the total number of agents is set

to 500, and that of bands is set to 10. In Fig. 2, we show

the per-agent average achievable reward normalized w.r.t.

the optimal achievable reward under each of the three func-

tions: intrinsic (gi = rj), global (gi = G), and proposed



(gi = Di). The figure clearly shows that the proposed func-
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Figure 2. Per-agent average achieved reward

normalized w.r.t. maximum achievable reward under

intrinsic function (gi = rj ), global function (gi = G),

and proposed function (gi = Di).

tion Di achieves substantially much better performances

than the other two. In fact, when using Di, an agent can

achieve up to about 90% of the total possible, achievable

reward, whereas it only can achieve up to about 20% when

using any of the other two functions. Another distinguish-

ing feature of the proposed Di function lies in its learnabil-

ity; that is, not only does Di achieve good rewards, but also

does so quite fast, as the received rewards ramp up rapidly,

quickly reaching near-optimal performance.

6.2. Scalability

We also study the proposed function with regard to another

performance metric: scalability. For this, we plot in Fig. 3

the per-agent average achievable reward under each of the

three studied objective functions when varying the number

of agents, n, from 100 to 800 while keeping the number of

bands m = 10 the same. Observe that Di outperforms the

other two functions substantially when it also comes to scal-

ability. Note that Di achieves high rewards, even for large

numbers of agents, whereas the achievable reward under ei-

ther of the other two functions drops dramatically with the

number of agents. We therefore conclude that the proposed

functionDi is very scalable, and works well in systems with

small as well as large numbers of agents.

6.3. Agent Distribution

In this section, we want to further investigate the behav-

iors of agents in terms of their distribution/repartition across

the m available spectrum bands. More specifically, we

compare the actual/measured distribution of agents as a

result of using the proposed objective functions with that
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Figure 3. Per-agent average achieved reward

normalized w.r.t. maximum achievable reward under

intrinsic (gi = rj ), global (gi = G), and proposed

(gi = Di) functions for various numbers of agents.

ideal/theoretical distribution derived in Section . Recall that

the ideal/theoretical agent distribution, as stated in THEO-

REM 1, corresponds to the repartition that leads to the max-

imum achievable rewards. Therefore, comparing the agent

distribution led to under Di to the theoretical one reflects

on how well Di performs.

To illustrate, we plot in Fig. 4 the actual, measured distri-

bution of the n = 500 agents across the m = 10 bands

at different times (i.e., every 250 episodes) under the three

studied objective functions. Note that in the case of rj
(Fig. 4(a)) and G (Fig. 4(b)), agents are (approximately)

equally distributed among the 10 bands (≈ 50 agents/band),

and at all times. But when using Di (Fig. 4(c)), 9 bands out

of 10 each contains about 10 agents, which represent the

capacity c = V
R

, and the rest (≈ 410 agents) are in the 10th

band. It is important to note that this corresponds to (or

very close to) the optimal agent distribution that we derived

in THEOREM 1. Thus, the proposed function, Di, when

used as an objective function, leads to a near-optimal agent

distribution, yielding then near-optimal achievable rewards

(as observed in previous sections).

7. CONCLUSION

This paper derives scalable and distributed private objec-

tive functions for supporting elastic traffic in multichannel

access networks. Spectrum users can rely on any learning

algorithms to maximize these proposed objective functions,

thereby ensuring near-optimal performances in terms of the

long-term average received rewards. We showed that these

proposed functions (i) receive near-optimal rewards, (ii)
are highly scalable as they perform well for small- as well

as large-scale systems, (iii) are highly learnable as rewards
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(c) Objective function: Di

Figure 4. Distribution of the 500 agents among the

m = 10 different bands. Each bar corresponds to one

band.

reach up near-optimal values very quickly, and (iv) are dis-

tributive as they require information sharing only among

users belonging to the same spectrum band.
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