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Abstract— We develop resource and service management
techniques to support spectrum users (SUs) with quality of
service requirements in large-scale distributed dynamic spec-
trum access (DSA) systems. The proposed techniques empower
SUs to seek and exploit spectrum opportunities dynamically
and effectively, thereby maximizing the long-term service sat-
isfaction levels that SUs receive from accessing and using the
DSA system. Our techniques are efficient in terms of optimality,
scalability, distributivity, and fairness. First, they enable SUs
to achieve high service satisfaction levels by quickly locating
and accessing available spectrum opportunities. Second, they
are scalable by performing well in systems with small as well
as large numbers of SUs. Third, they can be implemented in
a decentralized manner by relying on local information only.
Finally, they ensure fairness among SUs by allowing them to
receive equal amounts of service.

Keywords: Distributed resource allocation; management
techniques; dynamic spectrum access; cognitive networks.

I. INTRODUCTION

Dynamic spectrum access (DSA) has been recognized as

a key networking solution for solving the recently observed

shortage problem in spectrum supply [1–3]. It improves spec-

trum efficiency by allowing dynamic access and management

of spectrum resources by spectrum users (SUs) themselves

with no to little involvement of centralized regulatory bodies.

As a result of DSA’s apparent potential, there has been a

significant research interest in the development of learning

techniques to promote effective DSA [4–7]. Learning-based

techniques are of a particular interest to DSA because they

can easily be implemented in a decentralized manner without

requiring any prior knowledge of the dynamics and character-

istics of the DSA environment. Instead, these techniques rely

on learning algorithms (e.g., reinforcement learners [8]) to

learn from past and present interaction experience to decide

what to do best in the future. More specifically, learning

algorithms allow SUs to use their knowledge acquired from

these interactions with the environment to take the proper

actions that lead to maximizing the long-term amount of

service that the SUs receive from accessing the DSA system.

The challenge with learning techniques is that when SUs

do not choose and coordinate their objectives carefully, learn-

ing algorithms can eventually lead to poor overall system

performance. This is because the collective behavior of the

SUs aiming to maximize poorly designed objective functions

is likely to yield a low overall received system service,

thereby worsening the amount of service each SU receives.

It is, therefore, essential that SUs’ objective functions be

carefully designed so that when the SUs go after maximizing

them, their behavior as a whole leads to an efficient use of the

spectrum resources, thus in turn leading to the maximization

of the amount of service that each SU receives from accessing

the DSA system in the long term.

In this work, we propose efficient management techniques

that improve the spectrum resource utilization by maximizing

the total amount of service that a DSA system offers its

SUs. We consider a time-slotted DSA system with multiple,

non-overlapping spectrum bands, where SUs are assumed to

arrive and leave at the beginning and at the end of time

slots. We also consider that each SU implements and uses a

learning algorithm (e.g., a reinforcement learner [8]) to allow

it to maximize its own objective function, enabling it then to

locate and select the best available spectrum opportunities.

The proposed resource management techniques ensure that

the collective behavior of SUs aiming to maximize their own

objectives indeed leads to a good overall system performance,

resulting in maximizing the amount of service that each

SU receives in the long run.

Using simulations, we show that our proposed techniques

are optimal, scalable, distributive, and fair. First, they enable

SUs to achieve high service satisfaction levels by allowing

them to quickly locate and exploit available spectrum op-

portunities. Second, they are very scalable as they perform

well in systems with a small as well as a large number

of SUs. Third, they can be implemented in a decentralized

manner by relying on local information sharing only. Finally,

they ensure fairness among SUs by allowing them to receive

approximately equal amounts of service.

The rest of the paper is organized as follows. In Section II,

we present the model and describe the motivation of this

work. In Section III, we present our proposed resource and

service management techniques. In Section IV, we derive

the optimal performance behaviors. We evaluate the perfor-

mances of the proposed techniques, and compare them with

those achievable under existing approaches in Section V.

Finally, we conclude the paper in Section VI.



II. PROBLEM STATEMENT

When the members of a group of two or more SUs want

to communicate with each other, all members of the group

must first select and switch to the same spectrum band to

be able to carry out a communication among them; in the

remainder of the paper, we will refer to these groups as

agents. At each time step, each agent using a band receives

a service that is passed to it from that band. The amount

of service that the band offers an agent can be measured

in terms of, for example, amount of throughput, reliability

of the communication, the signal to noise ratio, the packet

success rates, etc. We assume that once the agent switches to

a particular band, it can immediately quantify and measure

the amount of service that it receives from using such a band.

The methods that agents use to quantify and measure the

service received as a result of using any particular band are

beyond the scope of this work. Throughout, let Vj be the

total amount of service that spectrum band j offers.

Although the proposed resource and service management

techniques can be used by all learning algorithms, we choose

to use throughout this work the ǫ-greedy Q-learner [8] with

a discount rate of 0 and an ǫ value of 0.05 for the purpose

of evaluating these proposed techniques. For more details on

the Q-learner, readers are referred to [8]. We want to mention

that this work in not on learning, but rather on developing

techniques that can be used by any learning algorithms.

A. Traffic Model

In this paper, we study the inelastic traffic model, in

which an agent receives a constant service satisfaction level

when the band it uses offers an amount of service that is

greater than a certain required threshold, Q, and receives an

almost zero service satisfaction level when the amount of

service offered by the band is below the threshold. Under

this inelastic traffic model, receiving an amount of service

less than what is required (i.e., Q) is not acceptable, while

receiving an amount higher than what is required is not

beneficial either, which explains why the service satisfaction

level remains constant. Formally, the service satisfaction

level, sj(t), any agent using band j receives at time step

t can be written as:

sj(t) =

{
1 if nj(t) ≤ Vj/Q

e
−β

nj(t)Q−Vj
Vj otherwise

(1)

where nj(t) is the number of agents using band j at episode

t, and β is a decaying factor. Note that when the number of

agents using band j is greater than cj ≡ Vj/Q, the service

satisfaction level decreases exponentially. This means that

none of the agents will be satisfied with the amount of service

they receive from band j if the band has more agents than

cj (cj here represents band j’s capacity; i.e., the maximum

number of agents that the band can support while satisfying

their required service levels).

For illustration purposes, we show in Fig. 1 the service

satisfaction level sj(t) each agent receives from using band

j as a function of the number of agents nj(t) using band j
for β = 20 and Vj/Q = 4.
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Fig. 1. Service satisfaction level: β = 20 and Vj/Q = 4 for all j =

1, 2, . . . , m.

From the system’s perspective, the global or system service

satisfaction level can be regarded as the sum of all agents’

service satisfaction levels. Formally, by letting m denote

the number of available spectrum bands, the global service

satisfaction level, G(t), at time step t can be expressed as

G(t) =
m∑

j=1

nj(t)sj(t) (2)

B. Motivation

The goal of this work is to develop efficient resource and

service management techniques for large-scale, distributed

DSA systems. Specifically, we aim to derive scalable and

distributed objective functions for SUs that are aligned with

system objective, so that when SUs (i.e., agents) aim to

maximize them, they indeed lead to the maximization of

their long-term received service satisfaction levels. By means

of any learning algorithm, these functions will enable SUs

to efficiently find and locate spectrum opportunities, thus

increasing the long-term service satisfaction level that each

SU can receive from accessing the DSA system. With this in

mind, the question that arises now is which objective function

gi should each agent i maximize so that its received service

satisfaction level is maximized?

Intuitively, one can think of two function choices. One

possible objective function choice is to have each agent i
using band j maximize its inherent service satisfaction level

sj received from band j as defined in Eq. (1); i.e., gi =
sj for each agent i using band j. A second also intuitive

choice is for each agent to maximize the global/total service

satisfaction levels that all agents receive; i.e., gi = G for each

agent i as defined in Eq. (2), hoping that maximizing the

global received service satisfaction levels eventually leads to

maximizing every agent’s long-term average received service

satisfaction level.

For illustration purposes, we measure and show in Fig. 2

the system/global service satisfaction levels received by all

agents under each of these two private objective function

choices. We consider a DSA system with n = 1600 agents
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Fig. 2. System service satisfaction level under the two private objective
functions: inherent choice (gi = sj) and global choice (gi = G) for m =

10, β = 2, and Vj/Q = 50 for j = 1, 2, . . . , 10.

and m = 10 spectrum bands. Now we make the following

two key observations. First, note that when agents aim to

maximize their own inherent received service satisfaction

level (i.e., gi = sj for each agent i using band j), the

global/system service satisfaction level received by all agents

presents an oscillating behavior: it ramps up quickly at first

but then drops down rapidly too, and then starts to ramp

up quickly and drop down rapidly again, and so on, which

explains as follows. With the inherent objective function,

an agent’s received service satisfaction level, by design, is

sensitive to its own actions, which enables it to quickly

determine the proper actions to select by limiting the impact

of other agents’ actions, thus learning about good spectrum

opportunities fast enough. However, agents’ inherent objec-

tives are not aligned with one another, which explains the

sudden drop in their received service satisfaction level right

after learning about good opportunities.

Second, observe that, unlike the inherent function, the

global function choice (i.e., when each agent i sets its

objective function gi to the global service satisfaction level

function G) results in a steadier performance behavior where

the system received service satisfaction level increases con-

tinuously, but slowly. With this function choice, agents’ ob-

jectives are aligned with one another by accounting for each

other’s actions, and thus are less sensitive to the actions of

any particular agents. The alignedness feature of this function

is the reason behind the observed monotonic increase in

the overall system performance. However, the increase in

the performance is relatively slow due to the function’s

insensitivity to one’s actions, leading to slow learning rates.

Therefore, objective functions must be designed with two

conflicting requirements in mind: (i) alignedness; when

agents maximize their own private objectives, their collective

behavior should indeed result in increasing each agent’s long-

term received service satisfaction level, and not in worsening

it, and (ii) sensitivity; objective functions should be sensitive

to agents’ own actions so that proper action selections allow

agents to learn about good opportunities fast enough.

III. DISTRIBUTED RESOURCE AND SERVICE

MANAGEMENT TECHNIQUE

The challenge in designing objective functions for

DSA systems is to find the best balance between alignedness

and sensitivity. Doing so will ensure that agents can learn

to maximize their own objectives while also achieving good

overall system performance; i.e., their collective behavior will

not worsen each other’s received service satisfaction level.

Throughout, gi denotes the objective function of agent i that

we aim to derive in this work.

A. Difference Objective Functions

Recall that, as illustrated in Section II-B, when agents set

the global service satisfaction level, G, as their objectives

(i.e., gi = G for each agent i), their collective behaviors

did indeed result in increasing the total (system) service

satisfaction levels, because agents’ private objectives are

aligned in this case with that of the system. However, because

G depends on all agents, it is too difficult for agents (using G
as their objective functions) to discern the effects of their own

actions on their objectives, resulting then in low learnability

rates. The authors in [9] address the above issue by proposing

the difference objective functions, which provide a good

balance between alignedness and sensitivity, leading to good

system performance. The basic idea is that by removing the

effects of all agents other than agent i from the function G,

the resulting difference objective function will have higher

learnability (or sensitivity) than G, yet without compromising

its alignedness quality. These difference functions have been

shown to perform well in various domains, such as multi-

robot coordination [10] and air traffic control [11], and can

formally be written as

Di(t) ≡ G(t) −G−i(t) (3)

where G−i(t) is the system service satisfaction level at time

step t when agent i is absent from the system. Intuitively,

since the second term evaluates the system satisfaction level

without agent i, subtracting it from G provides an objective

function that essentially measures agent i’s contribution to

the total received system service satisfaction level, making it

more learnable without compromising its alignedness level.

The difference function Di can be thought of as the individ-

ual or agent contribution to the system.

Now by substituting Eq. (2) into Eq. (3), Di for agent i
selecting band j at time t can then be written as:

Di(t) = nj(t)sj(nj(t))−(nj(t)−1)sj(nj(t)−1) (4)

B. Team Contribution Objective Functions

We now present our proposed functions. Our key idea is

that instead of removing the impact of all agents other than

agent i from the global service satisfaction level G (which

led to the difference objective function design), we consider

removing the impact of only those agents that may not be

aligned with the agent itself. That is, in terms of contribution,



we propose that an agent’s objective function accounts for not

only its contribution, but also for the contributions of all the

agents that are aligned with it; i.e., those which share with

it the resource. More specifically, we propose that when the

agents sharing a particular band/resource make, as a team,

a positive contribution to the overall system performance,

each agent in the team gets rewarded the team contribution;

i.e., the sum of all agents’ contributions. But when the team

contribution is negative (i.e., the resource is overcrowded,

and hence none of the agents sharing it meet their required

service levels), each agent in the team gets rewarded its own

(negative) contribution only. The intuition is that when a

group of agents (sharing a particular resource) succeed, they

should celebrate their success as a team, but when they fail,

each individual is only responsible for its own failure.

The proposed functions can then be thought of as the team

or resource contribution to the entire system, and hence, they

will be termed as team (or resource) contribution objective

functions. Formally, when agent i chooses band j, its team

contribution function can be written as

Ti(t) =

{ ∑nj(t)
k=1 Dk(t) if nj(t) ≤ Vj/Q

Di(t) otherwise
(5)

where again nj(t) is the number of agents using band j at

episode t and Di(t) is the individual contribution function of

agent i using band j, given in Eq. (4). Note that because Di

is the same for all agents sharing spectrum band j, Eq. (5)

can be rewritten as

Ti(t) =

{
nj(t)Di(t) if nj(t) ≤ Vj/R
Di(t) otherwise

(6)

It is important to note that, by taking away agent i from

the second term of the function Di (Eq. (3)), the terms

corresponding to all spectrum bands k, except the band j that

agent i is using, cancel out. This explains why Di, as shown

in Eq. (4), depends on band j only. Therefore, the proposed

function Ti is simpler to compute than the global function

G. More specifically and importantly, it is fully decentralized

as agents implementing/using it as their objectives need to

gather and share information only with the agents that belong

to the same band. This is one important property among few

others (to be described later) that this proposed function has.

IV. OPTIMAL SERVICE SATISFACTION

In this section, we theoretically derive the maxi-

mum/optimal achievable service satisfaction level. This

derivation will serve as a means of assessing how well the

developed objection functions perform when compared not

only with existing objective functions, but also with the

optimal achievable performances.

Without loss of generality and for simplicity, let us assume

that Vj = V for j = 1, 2, · · · ,m. Let n denote the total

number of agents in the system at any time. In what follows,

we assume that n > mV
Q

(when n ≤ mV
Q

, the problem is

trivial), and let c = V
Q

, which denotes the capacity (in terms

of the number of supported agents) of each spectrum band.

Now, we start by proving the following lemma, which will

later be used for proving our main result.

Lemma 4.1: The system/global service satisfaction level

reduces less when a new agent joins a more crowded spec-

trum band than when it joins a less crowded band.

Proof: Recall that when a band j has n′ > c agents,

its service satisfaction level is Gj(n
′) = n′e−β(n′

c
−1). If a

new agent joins this band, the new service satisfaction level

becomes Gj(n
′ + 1) = (n′ + 1)e−β(n′+1

c
−1). First, it can

easily be shown that when n′ > c ≥ 1, Gj(n
′) > Gj(n

′ +
1); i.e., the service satisfaction level when joining band j
decreases by ∆j(n

′) ≡ Gj(n
′) − Gj(n

′ + 1). Now we can

easily see that ∆j(n
′) increases when n′ increases. Hence,

the greater the number n′ (i.e., the more crowded the band),

the smaller the decrease in the service satisfaction level.

Theorem 4.2: When there are n agents in the system, the

global service satisfaction level reaches its maximal only

when m−1 bands (out of the total m bands) each has exactly

c agents, and the m-th band has the remaining n− c(m− 1)
agents.

Proof: Let k = n − mc, and let us refer to the

agent distribution stated in the theorem as C. Note that C
corresponds to when m− 1 bands each has exactly c agents

and the other m-th band has the remaining c + k agents

(since n − c(m − 1) = c + k). We proceed with the proof

by comparing C with any possible distribution C′ among all

possible distributions. Let c + k1 be the number of agents

in the most crowded band in C′, c + k2 be the number of

agents in the second most crowded band in C′, and so forth.

We just need to deal with the bands that each contains more

than c agents. If there are p bands each containing more than

c agents, then we know that
∑p

i=1 ki ≥ k.

For each band having c+k′ agents, let ǫi be the amount by

which the global service satisfaction level is reduced when

agent i joins the band for i = 1, 2, · · · , k′. From Lemma 4.1,

it follows that ǫi > ǫi+1 > 0, for all i = 1, 2, · · · , k′ − 1.

Note that for the distribution C, the global service satisfac-

tion level is reduced by t =
∑k

i=1 ǫi, and for C′, it is reduced

by t′ =
∑k1

i=1 ǫi +
∑k2

i=1 ǫi + · · · +
∑kp

i=1 ǫi. It remains to

show that t′ − t > 0 for any C′ 6= C. We consider three

different scenarios:

• k1 > k: Here, we have

t′ − t =

k1∑

i=1

ǫi +

k2∑

i=1

ǫi + · · ·+

kp∑

i=1

ǫi −

k∑

i=1

ǫi

=

k1∑

i=k

ǫi +

k2∑

i=1

ǫi + · · ·+

kp∑

i=1

ǫi

which is greater than zero.

• k1 = k: In this scenario, we have

t′ − t =

k1∑

i=1

ǫi +

k2∑

i=1

ǫi + · · ·+

kp∑

i=1

ǫi −
k∑

i=1

ǫi

=

k2∑

i=1

ǫi + · · ·+

kp∑

i=1

ǫi



which is also greater than zero.

• k1 < k: In this scenario, we have

t′ − t =

k1∑

i=1

ǫi +

k2∑

i=1

ǫi + · · ·+

kp∑

i=1

ǫi −

k∑

i=1

ǫi

=

k2∑

i=1

ǫi + · · ·+

kp∑

i=1

ǫi

︸ ︷︷ ︸

part a

−

k∑

i=k1

ǫi

︸ ︷︷ ︸

part b

Since k1+k2+ · · ·+kp ≥ k, the number of ǫi terms in

part a is greater than the number of terms in part b.
From Lemma 4.1, we know that the largest term in

part b is ǫk1 , which is smaller than the smallest term

ǫk2 in part a. Hence, part a is greater than part b, and

thus t′ − t is greater than zero.

In all scenarios, we showed that t′ − t > 0. Therefore, the

global service satisfaction level for any distribution C′ is

smaller than that for the distribution C; i.e., C is the dis-

tribution that corresponds to the maximal achievable global

service satisfaction level.

Corollary 4.3: The system service satisfaction level that a

DSA system can achieve is at most (m−1)V/Q+(n−(m−

1)V/Q)e−β(nQ
V

−m).

Proof: The proof follows from Theorem 4.2 by calcu-

lating the achievable global service satisfaction level for the

derived optimal agent distribution.

Note that the optimal achievable system service satisfac-

tion level (that we derived and stated in Corollary 4.3) is a

theoretical upper bound on the sum of all agents’ possible

achievable service satisfaction levels. In the next section,

we will evaluate the performances of the proposed objective

functions, and compare them against this upper bound.

V. PERFORMANCE EVALUATION

In this section, we evaluate the effectiveness of the pro-

posed objective functions in terms of their achievable system

service satisfaction levels, and comparing them with those

achievable under each of the functions: inherent (gi = sj),

global (gi = G), difference (gi = Di), and proposed (gi =
Ti). Unless stated otherwise, throughout this evaluation, the

decaying factor β is set to 2, the number of agents is set

to 1600, the number of bands is set to 10, and the capacity

cj = Vj/Q is set to 50 for all j.

A. Service Satisfaction Behaviors

Fig. 3 shows the system service satisfaction level nor-

malized w.r.t. the optimal service satisfaction level (derived

and stated in Corollary 4.3) achieved under each of the

four functions: inherent, global, difference, and proposed.

The figure clearly shows that the proposed function Ti

outperforms substantially the two intuitive functions, sj and

G, and outperforms the difference function by about 25%
in terms of the overall system service satisfaction levels.

Also, observe that our proposed function is very learnable

as it enables agents to reach up their achievable service

satisfaction levels quite quickly.
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Fig. 3. Normalized system service satisfaction levels under the four studied
functions: inherent (gi = sj), global (gi = G), difference (gi = Di), and
proposed (gi = Ti) at various time steps.

B. Scalability Performance

In order to study the performance of the proposed functions

in terms of scalability, we plot in Fig. 4 the normalized sys-

tem service satisfaction level under each of the four studied

objective functions when varying the number of agents, n,

from 800 to 1600 while keeping the number of bands m equal

to 10. In this and the next subsections, the system service

satisfaction levels shown in the figures are all measured at

episode 600 (basically, when the maximum level is attained).

Observe that the proposed function Ti is highly scalable. Note
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Fig. 4. Normalized system service satisfaction levels under inherent (gi =
sj), global (gi = G), difference (gi = Di), and proposed (gi = Ti)
functions for various numbers of agents.

that as the number of agents increases, Ti maintains high

system service satisfaction levels, whereas the satisfaction

level under sj or G drops dramatically with the number of

agents. When compared with the difference function Di, our

proposed function Ti still achieves satisfaction levels that are

about 30% higher than those achievable under Di.

We now plot in Fig. 5 the normalized system service

satisfaction level achieved under each of the four functions,

but for various values of the capacity c. The figure clearly

shows that the proposed function Ti outperforms the other

three function choices, even when varying the capacity of

the spectrum bands.
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Fig. 5. Normalized system service satisfaction levels under the four studied
functions: inherent (gi = sj), global (gi = G), difference (gi = Di), and
proposed (gi = Ti) for various capacities.

C. Fairness Performance

To also see how well the proposed functions do when

it comes to fairness, we plot in Fig. 6 the coefficient of

variations (CoV)1 of the received system service satisfaction

levels for various numbers of agents. Observe that the pro-
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Fig. 6. Coefficient of variation (CoV) of satisfaction levels under inherent
(gi = sj), global (gi = G), difference (gi = Di), and proposed (gi = Ti)
functions for various numbers of agents.

posed function achieves CoV values approximately similar

to those achievable under any of the other three studied

functions. These results show that not only the proposed

function achieve good performance in terms of optimality,

scalability, and learnability, but also does so while ensuring

a fairness quality as good as those achieved via the other

approaches.

VI. CONCLUSION

This paper proposed efficient resource and service man-

agement techniques to effectively support SUs in large-scale

DSA systems. We showed that the proposed techniques

achieve high service satisfaction levels, are very scalable by

performing well in small- as well as large-scale systems,

are highly learnable by reaching up high values fast, are

1CoV is the ratio of the standard deviation to the mean of the agents’
received service satisfaction levels; we use this metric as a means of
assessing the fairness, which reflects how close agents’ received satisfaction
levels are to one another.

distributive by requiring information sharing only among

agents belonging to the same band, and ensure fairness

among SUs by allowing them to receive equal amounts of

service.
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