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Abstract— The expected shortage in spectrum supply is well
understood to be primarily due to the inefficient, static nature
of current spectrum allocation policies. In order to address
this problem, FCC promotes the so-called Opportunistic
Spectrum Access (OSA) to be applied on Cognitive Radio
Networks (CRNs). In short, the idea behind OSA is allowing
unlicensed users to use unused licensed spectra as long as they
do not cause interference to licensed users. In this paper, we
present and evaluate learning schemes that allow unlicensed
users to locate and use spectrum opportunities effectively,
thus improving efficiency of CRNs. We separately consider
two models: single and multiple unlicensed user(s). For the
latter model, we present two schemes: non-cooperative and
cooperative Q-learning. All proposed schemes do not require
prior knowledge or prediction models of the environment’s
dynamics and behaviors, yet can still achieve high perfor-
mance by learning from interaction with the environment.
Using simulations, we show that the proposed schemes achieve
good performances in terms of throughput and fairness.

Keywords: opportunistic/dynamic spectrum access, Q-
learning; reinforcement learning, cognitive radio networks.

I. INTRODUCTION

Spectrum has been traditionally partitioned by Federal

Communications Commission (FCC) into frequency bands

and assigned to licensees, also referred to as primary

users (PUs). PUs have exclusive and flexible access rights

as well as are protected against interference when using

their assigned bands. The traditional spectrum assignment

methods are no longer suitable, as there has been an

expected shortage in the spectrum supply due mainly to

the inefficient, static nature of these traditional methods,

thus calling for new ways that can exploit the available

spectrum more effectively. This fact is well supported

by measurement-based studies [1, 2], which show that the

average occupancy of spectrum over most frequencies is

very low. This measurement data confirms the availability

of many spectrum opportunities along time, frequency, and

space that wireless devices and networks can potentially

utilize. Therefore, it is imperative to develop mechanisms

that enable effective exploitation of these opportunities.

In order to meet the growing demand of spectrum

resources, FCC’s long-term vision is to evolve towards

more liberal, flexible spectrum allotment policies and usage

rights, where spectrum will be managed and controlled

dynamically by network entities and end-user devices them-

selves with little to no involvement of any centralized

regulatory bodies. As an initial step towards this direction,

FCC promotes the so-called opportunistic spectrum access

(OSA), which improves spectrum utilization efficiency.

The basic idea of OSA is to allow unlicensed users, also

referred to as secondary users (SUs), to exploit the unused

licensed spectrum on an instant-by-instant basis, but in a

manner that limits interference to PUs so as to maintain

compatibility with legacy systems. In this paper, a group

of two or more SUs who wish to communicate together

is referred to as an agent1. In order to communicate with

each other, all SUs in the same group must be tuned to the

same spectrum band. And prior to using a licensed band,

SUs must first sense the band to assess whether it is vacant,

and if it is, then they can switch to and use it as long as no

PUs are present. Upon the detection of the return of any

PUs to their band, SUs must immediately vacate the band.

Due to its great potentials, OSA has generated signif-

icant research interests and works, ranging from protocol

design [3, 4] to performance optimization [5, 6], and from

market-oriented access strategies [7] to new management

and architecture paradigms [8, 9]. Some research efforts

have also been given to the development of adaptive

approaches that can promote OSA. Most of these proposed

approaches require and rely on models that can capture

and predict the environment’s dynamics and behaviors.

However, due mainly to its very unique characteristics, it is

too difficult, if not impossible, to construct models that can

predict the dynamics of the OSA environment accurately,

thus calling for innovative techniques that can achieve

good performances by learning directly from interaction

with the environment, and without needing models of

such environments. Indeed, reinforcement learning (RL)

is a foundational idea built on the basis of learning from

interaction without requiring models of the environment’s

dynamics [10]. In this paper, we investigate three learning

schemes: 1) Q-learning for single SU, 2) non-cooperative

Q-learning for multiple SUs, and 3) cooperative Q-learning

for multiple SUs. These schemes are RL-based schemes

that are well suited for OSA environments, allowing SUs to

1Throughout this work, agents will also be referred to as secondary user
groups (SUGs); the terms agent and SUG will then be used interchange-
ably.



learn by themselves from interaction, and use their acquired

knowledge to locate and find best spectrum opportunities,

thus achieving efficient utilization of spectral resources.

We evaluate the performance of these proposed schemes

and compare them with the random access scheme. Simula-

tion results show that partial and fully cooperative schemes

perform better than the non-cooperative and the random

schemes in terms of achieved throughput and balanced

traffic loads. Depending on the communication overhead

due to the extra traffic incurred when exchanging infor-

mation between the cooperating users, different levels of

partial cooperation can be used. Overall, the proposed

learning techniques achieve high throughput performance

by learning from interaction with the environment and

intelligently locating and exploiting spectrum opportunities.

This paper is organized as follows. In Section II, we

present some related works. In Section III, we state the

problem. In Section IV, we formulate the RL framework,

and present the proposed learning schemes. Section V

evaluates the schemes, and Section VI concludes this work.

II. RELATED WORK

Brik et al. [11] proposed a centralized protocol for OSA,

called dynamic spectrum access protocol (DSAP). DSAP

relies on a central unit to coordinate and dynamically

allocate spectrum resources. DSAP architecture consists

of clients, a server, and transmitters. Each client senses

the network to collect information about spectrum usage,

and sends this information to the server via a predefined

common control channel. The server uses this information

to allocate spectrum. Although simple, this model presents

scalability, single-point failure, and vulnerability issues due

to its centralized nature. Raychaudhuri et al. [12] proposed

a spectrum etiquette protocol, called CCSC, for coordinat-

ing network nodes in the unlicensed spectra. Unlike DSAP,

CCSC is distributed. In CCSC, nodes periodically broadcast

spectrum usage information on a dedicated channel so as

other nodes, monitoring this channel, can hear about and

learn which channels are available. One issue with CCSC

is that it does not guarantee, nor does it always result in,

the selection of optimal channels.

There have also been several works that proposed

learning-based approaches for OSA [13–15]. For example,

in [13], Fangwen et al. proposed an RL-based approach

that allows cognitive radios to select frequency bands (FBs)

with the most available resources. The detection of spectral

resources is formulated as a Markov decision process, and

a solution strategy based on an actor-critic method is pro-

posed. The objective is to minimize the mutual interference

between PUs and SUs while maximizing the utilization of

available resources. This scheme assumes prior knowledge

of the environment’s dynamics. Unlike these works, our

work does not require prior knowledge of such dynamics,

giving more practical ways of promoting effective OSA.

III. PROBLEM STATEMENT

Reinforcement learning (RL) is the concept of learning

from past and present to decide what to do best in the

future. That is, the learner, also referred to as agent,

learns from experience by interacting with the environment,

and uses its acquired knowledge to select the action that

maximizes a cumulative reward. RL is well suited for

systems whose behaviors are, by nature, too complex to

predict, but the reward, or reinforcement, resulting from

taking an action can easily be assessed or observed. For

example, in OSA, although it may be difficult to predict

which spectrum band will be available in the near future,

the reward resulting from using a band can easily be deter-

mined. The reward can be assessed, for example, through

amount of obtained throughput, experienced interference,

packet success rate, etc. Thus, RL techniques are a natural

choice for OSA because it is difficult to precisely specify an

explicit model of the environment, but it is easy to provide

a reward function.

We assume that all SUs are associated with a home

spectrum band (HSB) to which they have usage rights

at all time. In order to communicate with each other,

all SUs in the same group must be tuned to the same

band, being either their HSB or any unused licensed

band. While using the HSB, each secondary-user group

can opportunistically look for spectrum opportunities in

another band. This typically happens when, for example,

any of the SUs judge that the quality of their current

band is no longer acceptable. This technique can be done

by simultaneously assessing and monitoring the quality

of the band using quality metrics, such as signal-to-noise

ratio (SNR), packet success rate, achievable data rate, etc.

The secondary-user group is triggered to start seeking for

spectrum opportunities whenever the monitored quality no

longer meets for e.g. a minimum threshold that can be

defined a priori.

Upon the return of any PUs and/or when the quality

of current band drops below the threshold, the agent must

either return to its HSB or seek for an available band. Here-

after, we say that an exploration event is triggered when

either (i) PUs return back to their licensed band, and/or (ii)

the band’s quality is dropped below the threshold. In the

RL terminology, we therefore consider that the agent and

the environment interact at each of a sequence of discrete

time steps, each of which takes place at the occurrence of

an exploration event.

RL is typically formalized in the context of MDPs. In

general, an MDP represents a dynamic system, and is

specified by giving a finite set of states S, representing

all possible system states, a set of control actions A,

a transition function δ, and a reward function r. The

dynamics are Markovian in the sense that the probability

of being in the next state sj depends only on the current

state si and action ak, but not on any previous history. A

policy for an MDP is a mapping from states to actions.



The objective is then to find a policy that maximizes the

expected cumulative reward during its execution. In the next

section, we first formulate OSA as a finite MDP, and then

describe the Q-learning schemes for OSA.

IV. Q-LEARNING FOR OSA

In this section, we formulate OSA as a finite MDP.

An MDP is defined by a state sets S, an action set A,

a transition function δ and a reward function r. We first

consider OSA systems with single SU, and then consider

systems with multiple SUs.

A. Systems with Single SU

State set. S consists of m+1 states where m is the number

of bands, {s0, s1, . . . , sm}, where the system is said to be

in state si if the agent is either using or sensing band bi at

the current time step. The agent cannot use any band unless

it is free, and the agent cannot know whether the band is

free unless it senses it. If band bi is not available due to

the presence of PUs, the system is still considered to be

in state si. Note that s0 corresponds to the state when the

agent is using its HSB b0 which is always available.

Action set. A has m+1 actions, {a0, a1, . . . , am}, where

taking action ai always leads to state si. At every time

step (i.e., an exploration event) while in state si, the agent

can either choose to exploit by switching back to its HSB

b0, or choose to explore by searching for new spectrum

opportunities. The number of bands that are sensed before

either finding the first available band or switching back

to HSB is referred to as the dynamic exploration index, n.

The value of this index, which is learned and set via the Q-

learning, varies over time and depends on current PUs’ load

and condition. The Q-learning has the ability to adaptively

find the optimal index n that balances between the desire

to keep switching/sensing overhead low and the need to

maximize the chances of finding spectrum opportunities.

Transition function. δ : S×A → S specifies the next state

the system enters given the current state sj and the action

ak to be taken. For any pair (sj , ak), δ(sj , ak) = sk.

Reward function. r : S × A → R specifies the reward

r(si, ak, sk) the agent earns when transitioning to next

state sk as a result of taking action ak while in state

si. Specifically, the reward perceived by the agent when

entering state sk is a function of the quality level the

agent receives when using the band it ends up selecting.

We therefore assume that each band bk is associated with

a quality level qk, which can be determined via metrics,

such as SNR, packet success rate, data rates, etc. Hereafter,

qk will be used to represent the positive reward (without

including the cost of exploration yet) that band bk offers.

Exploration also comes with a cost. Recall that SUs

are allowed to use any licensed band only if the band is

vacant, and that discovery of opportunities is done through

spectrum sensing. That is, SUs periodically, or proactively,

switch to and sense certain bands to find out whether any of

them are vacant. However, sensing incurs some cost, which

is often referred to as sensing overhead. This overhead can

be of multiple types: energy consumed to perform sensing,

delays resulting from switching across bands, throughput

wasted as a result of ceasing communication, etc. By letting

cik denote the cost incurred as a result of exploring band

bk while in state si, the reward function can be written as

r(si, ak, sk) =

{

qk − cik if bk is available

−cik else

Q-learning. The goal of the agent is to learn a policy,

π : S → A, for choosing the next action ak based on its

current state si that produces the greatest possible expected

cumulative reward. A cumulative reward R is typically

defined through a discount factor γ, 0 ≤ γ < 1, as
∑

∞

t=0
γtr(si+t, ak+t). Because it is naturally desirable to

receive rewards sooner than later, the reward is expressed

in a way that future rewards are discounted with respect to

immediate rewards.

The optimal policy is calculated using Q-learning [10].

A function, Q : S×A → R, is defined for each state-action

(si, ak) pair as the maximum discounted cumulative reward

that can be achieved when starting from state si and taking

action ak according to the optimal policy. Thus, given the Q
function, it is possible to act optimally by selecting actions

that maximize Q(si, ak) at each state. Q can be constructed

recursively as follows. The Q-learning algorithm learns an

estimate Q̂ of the optimal Q-function by selecting actions

and observing their effects. In particular, each step in the

environment involves taking an action ak in state si and

then observing the following state sk and the resulting

reward. Given this information, Q is updated via the

following equation:

Q̂(si, ak)← (1 − αl)Q̂(si, ak) + αl{r(si, ak)

+γmaxk′ Q̂(δ(si, ak), ak′ )}

where αl = 1/(1 + visitsl(si, ak)) and visitsl(si, ak) is

the total number of times this state-action pair has been

visited up to and including the lth iteration. This stochastic

approximation algorithm is guaranteed to converge to the

optimal Q-function in any MDP given the appropriate

exploration during learning [10].

B. Systems with Multiple SUs

We now consider the case of multiple SUs. We assume

there is no HSB.

State set. S consists of one state s only (S = {s}).

Action set. At each time step, the agent chooses an action

from the action set A = {a1, a2, . . . , am}, where m is the

number of bands. The number of actions is equal to the



number of spectrum bands in the system. Taking action ai
while using spectrum band bj makes an agent enter and

use spectrum band bi.

Reward function. We assume that each band bi has its own

bandwidth capacity Vi, and when more than one SUG use

a spectrum band, the bandwidth is equally divided among

all the SUGs using the band. For example, if there is a total

number of 3 SUGs, A, B, and C, each taking action i, j,

and k respectively, then the reward of SUG A, denoted by

raijk , can be calculated as

raijk =







Vi/3 when i = j = k
Vi/2 when i = j 6= k or i = k 6= j
Vi when i 6= j 6= k

Non-cooperative Q-learning. The function Q, as defined

in the previous section, can be constructed recursively [14]

as follows.

Q(s, ai)(t+ 1) = Q(s, ai)(t) + α
×(E[r(s, ai)]−Q(s, ai)(t))

where 0 < α < 1 is the learning rate. When using the non-

cooperative Q-learning scheme, each SUG calculates its Q

table independently from other SUGs.

Action selection. The action selection mechanism plays

a very important role in Q-learning. During the learning

process, this selection mechanism is what enables the agent

to choose its actions. We consider the ǫ-greedy exploration

as the action selection mechanism, where the action corre-

sponding to the highest Q value in that time step is chosen

with a probability of (1 − ǫ) + ǫ/m, and any other action

from the action set A is chosen with a probability of ǫ/m.

The ǫ-greedy mechanism balances between exploration and

exploitation.

Probability vector. Based on the ǫ-greedy exploration, we

define the probability vector over the action set as follows.

X = (x1, x2, . . . , xm), where xi is the probability of taking

action i

xi =







(1− ǫ) + ǫ/m if Qi is the highest value

ǫ/m otherwise

where again m is the number of actions.

Cooperative Q-learning. Our multi-agent cooperative

scheme is based on the multi-agent Q-learning approach

derived in [16]. To illustrate, suppose that SUG A with

probability vector X is going to cooperate with two other

SUGs, B and C, with probability vectors Y and Z, respec-

tively. The Q table entry for SUG A choosing action i can

be calculated as [16]:

Q(s, ai)(t+ 1) = Q(s, ai)(t) + xi(t)α

× [(
∑j=m

j=1
yj(t)

∑k=m

k=1
(raijk)(zk(t)))−Q(s, ai)(t)]

Similarly, each SUG can compute its Q table values

based on the probability vectors of the other SUGs.

V. EVALUATION

We now evaluate the performance of the proposed

schemes. We first show the results for the single SU model,

and then for the multiple SUs model.

A. Single SU

We study the single-user Q-learning by evaluating and

comparing its performance to a random access model.

This model will be used here as a baseline for comparison,

and is defined as follows. Whenever an exploration event

is triggered, the secondary-user group, using the random

access model, selects a spectrum band among all bands

randomly. If the selected band is idle, then the group uses

it until the return of any PUs associated with this band.

Otherwise, i.e., if the selected band happens to be busy,

then the group goes back to its home band. This process

repeats until an idle band is found.

1) Environment Setup: We assume that the spectrum is

divided into m non-overlapping bands, and that each band

is associated with a set of PUs. PUs’ traffic in the spectrum

band is mimicked by considering ON and OFF alternating

periods. ON periods denote that PUs are present while OFF

periods denote their absence. ON and OFF periods on the

ith band are taken from the exponential distribution with

rates λi and µi. The PU traffic load ηi of the ith band is

then expressed as µi/(µi + λi).
The exponential distributions will be used in this work

to generate samples to be able to evaluate our learning

scheme. Recall that the power of RL lies in its capability to

converge to approximately optimal behavior without need-

ing prior knowledge of PUs traffic behavior. Throughout,

we characterize PUs traffic activities by the average, η̄ =
1

m

∑m

i=1
ηi, and the coefficient of variation, CoV = σ/η̄,

of PUs traffic loads across all bands, where σ denotes the

standard deviation of these traffic loads.

2) Effect of the Average of PUs Traffic Load: We

begin by studying the effect of the average of PUs traffic

load η̄ on the achievable throughput. Fig. 1 plots the

total throughput, normalized w.r.t. the maximal achievable

throughput, that the SUG achieves as a result of using

single-user Q-learning (Q-OSA in the figures) and the

random access for two different PUs traffic loads: η̄ = 0.5

and η̄ = 0.8. The measured throughput is based on what

the SUG receives from the m licensed bands only; i.e., not

counting for the HSB. In this simulation scenario, CoV is

set to 0.1443 and the total number of bands m is set to 10.



Fig. 1. Throughput behavior under two different PUs traffic loads, η̄ =
0.5 and 0.8, for m = 10 and CoV = 0.1

Fig. 2. Throughput gain as a function of PUs average loads η̄ for m = 10
and CoV = 0.1443

First, note that as expected, the higher the η̄, the lesser

the achievable throughput under both schemes. However,

regardless of the PUs traffic load, Q-learning always out-

performs the random scheme. Also, note that the more

loaded the system is, the higher the difference between the

throughput achievable under Q-learning and that achievable

under random access (e.g., gain is higher when η̄ = 0.8).

To further illustrate the effect of η̄ on the performance

of single-user Q-learning, we plot in Fig. 2 the throughput

Fig. 3. Dynamic index behavior for different value of PUs average loads:
CoV = 0.1443, m = 10

gain (single-user Q-learning w.r.t. to random access) as a

function of η̄. Note that the gain increases as the PUs traffic

load increases. In other words, the Q-learning performs

even better under heavy loaded systems. Note that the gain

can be as high as 80% when η̄ = 0.8. When η̄ is high; i.e.,

when spectrum opportunities are scarce, the learning capa-

bility of Q-learning allows the agent to efficiently locate

where the opportunities are, whereas random access leads

to less throughput since it is accessing bands randomly.

When η̄ is small, on the other hand, the random access

scheme is able to achieve high throughput since spectrum

opportunities are too many to miss even when bands are

selected unintelligently. Observe that not only Q-learning

outperforms the random access (which is expected), but

also achieves close-optimal throughput; Fig. 1 shows that

the normalized throughput can be as high as 90%, meaning

that Q-learning can achieve up to 90% of that achievable

under an ideal scheme.

In Fig. 3, we show the dynamic index n behavior for

different values of η̄ (pbar in the figure) under Q-learning.

Recall that this index denotes the number of bands that

are sensed before either finding the first available band or

switching back to HSB. Clearly, Fig. 3 shows that the agent

is almost always able to find an available band from the first

(n = 1) attempt; regardless of PUs loads, more than 75%

of the time, the agent finds an available band in its first

attempt. Thus, the learning capability of Q-learning allows

the agent to quickly locate available bands.

To summarize, these obtained results show that the

proposed Q-learning is capable of achieving between 80%

and 95% of the maximal achievable throughput. Also, more

than 75% of the time, Q-learning hits the available band

from the first attempt. Results also show that Q-learning

achieves high throughput performance even under heavy

PUs traffic loads.

3) Effect of the Variation of PUs Traffic Load: Fig. 4

plots the total throughput that the secondary-user group

achieves under Q-learning and the random access for two

different PUs load variations: CoV = 0 and CoV = 0.144.

Note that when CoV = 0.144, Q-learning outperforms the

random scheme by simply locating and exploiting unused

opportunities through learning. As expected, the throughput

gain increases with the variation. As shown in Fig. 4, the

gain is higher when CoV = 0.144 than when CoV = 0.

To further illustrate the effect of PUs load variability on

throughput, we show in Fig. 5 the throughput gain for

different values of CoV .

The average PUs traffic load, η̄, is set to 0.6 (i.e.,

only 40% of the spectrum is available). Observe that the

higher the variation of PUs loads across different bands, the

higher the throughput gain; i.e., the higher the throughput

the agent/group can achieve when compared with that

achievable under the random access scheme. This can be

explained as follows. When the average of PUs traffic

loads is kept the same, a high variation in the loads across



Fig. 4. Achievable throughput under single-user Q-learning and random
access schemes η̄ = 0.8, m = 10

Fig. 5. Throughput gain as a function of PUs load variability: η̄ =
0.6,m = 10

different bands increases the likelihood of finding highly

available spectrum bands. This, on the other hand, also in-

creases the likelihood of finding spectrum bands with fewer

opportunities. With experience, Q-learning learns about,

and starts exploiting, these more available bands, yielding

then more throughputs. When the load variation is low,

on the other hand, Q-learning achieves lesser throughput

because all bands are almost equally-loaded, and hence,

there is no special (i.e., more available) bands that the agent

can learn about.

To further illustrate this effect, we show the dynamic

index n behavior in Fig. 6 under different values of CoV .

As expected, the lower the CoV , the greater the number of

bands to be sensed before finding an available band. When

CoV = 0, Q-learning does not find an available band as

fast as when CoV = 0.35.

B. Multiple SUs

We consider multiple SUs, and show the importance of

multi-agent cooperation by comparing the per SUG average

received throughput of the cooperative scheme with that

of a non-cooperative one. Specifically, we study the effect

that cooperation has on network load balancing by allowing

SUGs to make better action decision, leading to more

Fig. 6. Dynamic index behavior for different values of PUs load
variability: η̄ = 0.6,m = 10

effective exploitation of bandwidth opportunities. This also

ensures fairness among SUGs by making sure that all SUGs

receive (approximately) equal throughput shares.

1) Simulated Access Schemes: We consider that the

spectrum is divided into m non-overlapping spectrum bands

with n SUGs (unlike the previous sections, hereafter, n
represents the number of SUGs). We mimic the presence of

PUs by considering different spectrum bands with different

bandwidth capacities. Let Vj denote the bandwidth capacity

of band j. A spectrum band with a higher bandwidth

capacity is meant to have a lower PU activity, and vice

versa. We consider a time-slotted system, and assume that

SUGs interact with the environment in accordance with

these time slots. That is, SUGs can only enter or leave a

band at the beginning and at the end of these time steps. We

now summarize the three access schemes that are evaluated

in this subsection.

Random access scheme. At the end of each time slot/step,

an SUG using the random access scheme selects a spectrum

band among the m available bands randomly, and uses it

during the next time slot. If more than one SUG happen to

select the same spectrum band, they share the bandwidth

of the band equally.

Non-cooperative Access Scheme. In the non-cooperative

access scheme, each SUG uses the non-cooperative Q-

learning policy discussed in Section IV-B to create and

update its own Q table. Each SUG enters the environment

and takes actions based on its own Q table without cooper-

ating with any of the other SUGs. When two or more SUGs

choose the same band during the same time step, they share

its bandwidth equally. Although the SUGs are typically

unaware of the other agent’s actions and act independently,

the effect of the other SUG’s actions are reflected in the

reward that the SUGs receive from the spectrum band.

Cooperative Access Scheme. In the cooperative access

scheme, each SUG maintains its own Q table using the

cooperative Q-learning, discussed in Section IV-B. Here,

an agent’s Q table is formulated by taking into account
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Fig. 7. SUG distribution: m = 3, n = 6, Vj = [5 10 15].

the probabilities associated with the actions of the other

SUGs with which it cooperates. In this case, at each time

step, the SUG is provided with the probability vector of

every other SUG with which it cooperates. The tradeoff

here is between the communication overhead caused by

extra traffic needed for exchanging the probability vectors

among the cooperating SUGs and the performance gains

due to improved action selections because of cooperation.

2) Cooperation Vs. Non-cooperation: First, we con-

sider an OSA system with m = 3 spectrum bands and n =
6 SUGs. Bandwidth capacities are set to Vj = [5 10 15].
In this scenario, an ideal balanced spectrum load is reached

when each of the SUGs gets a reward of 5 units, which

implies that the 1st band has 1 SUG, the 2nd has 2 SUGs,

and the 3rd band has 3 SUGs. We simulate the three

different access schemes for this scenario, and plot the

average number of SUGs (averaged over 10000 episodes)

in each of the three spectrum bands (i.e., the distribution

of SUGs) in Fig. 7.

The figure shows the average number of SUGs that end

up choosing each of the three spectrum bands for each

of the three studied schemes. It can be observed that the
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Fig. 8. Coefficient of variation of the rewards of all the SUGs at each
time period: m = 3, n = 6, Vj = [5 10 15].

fully cooperative access scheme leads to the ideal balanced

system load. As explained earlier, this is because in the

fully cooperative method, each SUG accounts for all the

possible actions that could be taken by its counterparts

when making a decision. On the other hand, when SUGs do

not cooperate, they may not select the best available band,

as they have no clue what other SUGs will select, leading

to a lesser balanced load distribution when compared with

that of the cooperative scheme. Clearly and as expected,

the Random access scheme results in an equally distributed

SUGs among all bands, leading to the worst load balance

when compared with the other two schemes2.

Fairness is another important metric that we also

evaluate in this work. To do this, we plot in Fig. 8 the

coefficient of variation (CoV) of the received rewards

of all the SUGs as a function of time period (each time

period corresponds to 500 epochs). Observe that the fully

cooperative access scheme has the lowest CoV among the

three schemes. The lower the CoV is, the closer the SUGs’

received rewards are to one another, indicating a fairer

access scheme. It can also be seen that the CoV of the

non-cooperative access scheme is approximately twice that

of the fully cooperative access scheme, and the CoV of

the random access scheme is substantially higher than the

other two. Therefore, cooperation improves performances

not only in terms of network load balancing, but also in

terms of ensuring fairness among all SUGs.

3) Impact of Degree of Cooperation: Recall that

cooperation increases the performance because it allows the

SUGs to make a better decision when selecting their next

actions. This is because the SUGs take into account what

other SUGs will select when making their action decisions.

However, acquiring such information would necessitate the

exchange of messages among cooperative SUGs, which

clearly incurs extra overhead. Therefore, the challenge is

to strike a good balance between the desire for a higher

level of cooperation that enables a better action selection

2We want to mention that these above results do not account for the
communication overhead caused by message exchange needed to share
the probability vectors among cooperative SUGs.



and the need for a lower level of cooperation so as to keep

the cooperation overhead to a minimum. Cooperation over-

head comes from the extra traffic needed to exchange the

probability vectors and also from the computing delay/time

resulting from solving the complex equations involved in

updating the Q table entries of the cooperative SUGs.

We now study the impact of degree of cooperation on

the achievable performances of a OSA system with m = 3
spectrum bands and n = 12 SUGs. The bandwidth capac-

ities of the spectrum bands are set to Vj = [10 20 30]. In

this scenario, an ideal balanced load is reached when each

of the SUGs earns a reward of 5 units, corresponding to

when the 1st band houses 2 SUGs, the 2nd band houses 4
SUGs, and the 3rd band houses 6 SUGs. For this simulation

scenario, we evaluate and compare the performances of

the cooperative access scheme by considering three degrees

of cooperation: 2 (i.e, each SUG cooperates with 2 other

SUGs), 4 (i.e, each SUG cooperates with 4 other SUGs),

and 6 (i.e, each SUG cooperates with 6 other SUGs).

Fig. 9 shows the average number of SUGs that end

up choosing each of the three spectrum bands for the

random, non-cooperative, and cooperative access schemes

with 2, 4 and 6 degree of cooperation. Note that as the

degree of cooperation increases, the system load becomes

more balanced. That is, the cooperative access scheme with

degree of cooperation equal to 6 leads to a better balanced

system load when compared with the other two degrees.

We also study fairness achieved under each of the three

cooperation degrees, and plot the CoV of the received

rewards of the SUGs in Fig. 10. Observe that cooperation

with a degree of 6 has the lowest CoV, followed by a degree

of 4, and then followed by a degree of 2. This indicates

that a higher degree of cooperation leads to a lower CoV,

meaning that SUGs receive closer amounts of rewards,

thus ensuring fairness among SUGs. Therefore, cooperation

improves performances not only in terms of network load

balancing, but also in terms of ensuring fairness among all

SUGs. Note that each of the three degrees of cooperation

has a lower CoV when compared with the non-cooperative

and random access schemes.

It is important to mention again that although higher

degree of cooperation results in improved action selection

decisions, it also incurs more communication overhead and

execution times. Therefore, one must choose the degree of

cooperation that balances between good selection decision

and minimum overhead so as to lead to an increased overall

system performance.

VI. CONCLUSION

In this paper, we developed a reinforcement learning

based framework for DSA system with multiple secondary

users. We evaluated and compared two multi-agent Q-

learning algorithms, namely the non-cooperative and the

cooperative Q-learning schemes along with the random

scheme. Simulation results showed that partial and fully
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(c) Cooperation with 2 SUGs

1 2 3
0

1

2

3

4

5

6

7

Spectrum bands

A
vg

 N
o

.o
f 

S
U

G
s

(d) Cooperation with 4 SUGs
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Fig. 9. SUG distribution: m = 3, n = 12, Vj = [10 20 30].
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Fig. 10. Coefficient of variation of the rewards of all the SUGs at each
time period: m = 3, n = 12, Vj = [10 20 30].

cooperative access schemes perform better than the non-

cooperative and the random access schemes in terms of

achieving a higher throughput and a better balanced traffic

loads. We also showed that cooperation improves perfor-

mances not only in terms of network load balancing, but

also in terms of ensuring fairness among all users.
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