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Abstract— This paper investigates the performance lim-
its of delay tolerant networks (DTNs) with intermittently
connected nodes deployed for wildlife monitoring, wherein
information is either transmitted or carried to static access-
points by free-ranging animals whose movement is assumed
to be random. Specifically, in such mobility-aided applica-
tions where routing is performed in a store-carry-and-drop
manner, limited buffer capacity of a carrier node plays a
critical role, and data loss due to buffer overflow heavily
depends on access-point density. Driven by this fact, our focus
in this paper is on providing sufficient conditions on access-
point density that limit the likelihood of buffer overflow.
Specifically, we first derive and prove sufficient access-point
density conditions that ensure that the data loss rates are
statistically guaranteed to be below a given threshold. We
consider studying both the square and hexagonal access-
point deployment structures. Then, we validate the derived
theoretical results for each of the two studied structures
through simulations.

I. INTRODUCTION

The deployment of extremely versatile sensor networks

in a variety of real world applications is progressing from

concept to reality. Wildlife monitoring is an important

example that has received considerable attention during the

last decade. Biologists have long recognized the need for

insight into animal habitat, the monitoring of endangered

species, and the study of socialization behavior in animals,

as these are all necessary to understand their physiology,

behavior, and ecology. However, many species are rare

and wide-ranging, and thus difficult to monitor directly or

capture for repetitive physiological measures [1]. During

the last decade, researchers have been designing automated

monitoring systems which demand less human presence in

the field. After initial attempts which, at times, provided

inconsistent and invalid outcomes, efforts have been made

on the deployment of enormously potent sensor networks

for this kind of application [2, 3].

In sensor networks, free-ranging animals are equipped

with light-weight battery-powered collars, attached at the

neck. The collars are designed to operate inconspicuously,

collecting and saving spatio-temporal data (for example,

location information, biometric, and activity information,

etc.) continuously, without disrupting the animal’s nor-

mal activities. At regular intervals, the collar (having a

relatively limited memory space) transmits its data to a

device where data storage is not an issue. However, due

to the continuous and random movement of the animals,

fixed network infrastructure cannot be used for data trans-

mission. And, due to the lack of continuous connectivity,

traditional MANET techniques cannot be applied either.

Attempts have been focused instead on store-carry-and-

drop routing to static access points [4], where transmission

occurs when the animal is in close proximity to the fixed

node. A special class of sensor networks, known as delay

tolerant networks (DTNs), is considered to be well suited

for these wildlife monitoring applications that are typically

underserved by traditional networks [5–10].

Such DTNs are sparse networks of mobile nodes,

equipped with buffers of limited capacity, and static

access-points with virtually unlimited buffer capacity.

Since every mobile node in the network stores an amount

of data that increases with time, and there is no guarantee

of when mobile nodes will reach the coverage area (the

area surrounding the access-point where data transfer can

be performed), the buffer may overflow frequently, leading

to data loss which severely hampers the reliability of the

system. It is important to understand how the reliability of

such networks depends on the density of the static nodes,

as this density relates to both the frequency with which

a mobile node visits coverage areas and the probability

of buffer overflow. Although considerable research efforts

have focused on protocol design [11–14], connectivity

analysis [15, 16], delay modeling and characterization [17,

18], and mobility analysis [19, 20], the effect of access-

point density on data loss is still not well-understood.

In this paper, we propose sufficient conditions on

access-point density of partially covered, intermittently

connected DTNs deployed for wildlife monitoring/tracking

so that the data loss rate does not exceed a given thresh-

old. To the best of our knowledge, there is no previous

work addressing the issue of critical density from this

perspective. Due to the limited coverage (the network is

disconnected in the traditional sense), data delivery is only

possible through animals whose movement is assumed



random (henceforth referred to as mobile nodes), which

store and carry data until they come close to a fixed node

with no power constraints (henceforth referred to as an

access-point), where data is then fully downloaded. The

focus of this work is then on partially connected networks

where both the node density and the coverage ratio are

assumed to be low. In this work, we derive theoretic

sufficient conditions on the access-point density, ensuring

that data loss rates are statistically guaranteed to be below

a given data loss threshold.

We explore two two-dimensional (2-D) access point

deployment structures: the square grid and the hexagon

grid. We use a mathematical model based on Brownian

Motion to analyze the movement of mobile carrier nodes.

In particular, the contribution of this paper is threefold:

• Derivation of sufficient access-point density condi-

tions of partially covered, intermittently connected

DTNs, consisting of both mobile and static nodes,

deployed for wildlife monitoring, to ensure that data

loss rates are bounded by a given threshold;

• Asymptotic behavioral analysis of the access-point

density when varying the buffer size and/or data loss

rate threshold; and

• Validation of the derived theoretical results through

intensive simulations.

The rest of the paper is organized as follows. In Sec-

tion II, we present our network model. We then derive

in Section III sufficient bounds on access-point density.

In Section IV, we validate our theoretical results via

simulation. Finally, we conclude the paper in Section V.

II. NETWORK MODEL

We consider a delay-tolerant sensor network used for

tracking and monitoring free-ranging animals in their natu-

ral environment. For this, we assume and study DTNs that

can experience long data transmission delays and frequent

disconnection, and that consist of access-points laid out on

a grid structure and a set of mobile nodes (animals). We

assume that mobile nodes in these sensor networks inde-

pendently and continuously generate data (for example, the

animal’s position and speed) at rate c. Whenever a mobile

node comes within the coverage area of an access-point,

it immediately and completely downloads its generated

data. Each mobile node is assumed to be equipped with

a memory chip that has a buffer with limited size of B
bits, and when the buffer is full the newly generated data

is dropped. Let τ = B/c, which basically represents the

minimum amount of time required to overflow the buffer

of the mobile node. Also, let ǭ denote the data loss rate

threshold that mobile nodes can tolerate.

In these sensor networks, mobile nodes rely on their

mobility to maintain connectivity with the access-points

as the networks are only partially covered by the access-

points and the coverage ratio is relatively low. Throughout

this paper, we assume that the coverage ratio1 is low; all

the mathematical analysis and derivation provided in this

paper depends on this assumption.
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Fig. 1. Each access-point has a communication disk of radius ρ

surrounding it, and is distance 2κ away from its four closest neighbors
in the square grid deployment structure and its six closest neighbors in
the hexagon grid deployment structure.

We consider node deployment structures where access-

points are placed via a grid structure, and mobile nodes are

free to move within the plane—their paths are modeled by

a 2-D Brownian Motion. In this paper, we study two node

deployment structures: the square grid and the hexagon

grid. In the square grid structure, shown in Fig. 1 (left),

each access-point is surrounded by four access-points of

distance 2κ away. We assume that each access-point is

surrounded by a communication disk of radius ρ. We draw

a square around each access-point, of side length 2κ, and

note that if an animal is anywhere in the square, the access-

point at the center is its closest access-point. Thus,the

node density, ν, and coverage ratio, η, can respectively

be expressed as 1/(4κ2) and πρ2/(4κ2).
In the hexagon grid structure, shown in Fig. 1 (right),

access-points are placed in the plane to form a hexagon

grid—each access point is surrounded by six access-points

in each direction, each 2κ away. We identify an arbitrary

point’s closest access-point by drawing a hexagon around

each access-point. We assume that each access-point is

surrounded by a small communication disk of radius ρ,

and that each hexagon has apothem κ, where the apothem

is defined to be the length of the shortest line from the

center to an edge (the radius is the length of the longest

such line). In the hexagon grid structure, the node density

ν and the coverage ratio η can be expressed as 1/(2
√
3κ2)

and πρ2/(2
√
3κ2), respectively.

III. ACCESS-POINT DENSITY ANALYSIS

It is clear that the density of access-points in a given

network affects the data loss rate of a mobile node. In

this work, we derive and provide sufficient conditions on

the access-point density to ensure that the data loss rate

does not exceed a given threshold. Before proceeding with

1The coverage ratio is defined as the fraction of the area covered by
access-points’ communication ranges relative to that of the network area.



Fig. 2. We approximate the square by two circles, one inscribed in
the square, and the other circumscribing the square, in order to calculate
bounds on the hitting time.

Fig. 3. We approximate the hexagon by two circles, one inscribed in the
hexagon, and the other circumscribing the hexagon, in order to calculate
bounds on the hitting time.

our derivation and analysis, we first observe the symmetric

structures of the square and hexagon grid deployments: as

a mobile node reaches the edge of a square or an hexagon,

there is no difference between approaching a new commu-

nication disk (i.e., coverage area), or returning to the same

communication disk, in terms of the time spent outside of

coverage areas. Therefore, in our analysis, we restrict our

focus to one square in the square grid deployment and to

one hexagon in the hexagon deployment.

In this work, we use 2-D Brownian Motion to model

the movement of the mobile nodes. We define the hitting

time as the time it takes a mobile node just left the edge of

the coverage area to hit the edge of the square or hexagon

and then to hit (return to) the coverage area again.

Recall that the coverage area has a circular shape and

the boundary region has either a square or an hexagonal

shape. Therefore, instead of directly calculating the hitting

time, we provide a lower and an upper bounds on it.

We first derive a lower bound by considering a mobile

node traveling in the circle inscribed in the square (Fig. 2)

or in the hexagon (Fig. 3) with radius κ and centered at

our access point. Similarly, we find an upper bound on

the hitting time by considering a mobile node traveling in

the outer circle that circumscribes the square or hexagon.

In the case of the square grid, this circle has radius
√
2κ

and in the case of the hexagon grid, this circle has radius

2
√
3κ/3, as shown respectively in Figs 2 and 3.

Proposition 3.1: For sufficiently small η, the expected

hitting time σ̄ in the square grid deployment is lower and

upper bounded as

κ2 ln

(

κ

ρ

)

≤ σ̄ ≤ 2κ2 ln

(√
2κ

ρ

)

(1)

Proof: Using the theorem given in [21], it follows

that when the coverage area has circular shape of radius

ρ and the boundary region also has circular shape of

radius R > ρ, the expected hitting time can be expressed

as h(ρ,R) = R2 ln
∣

∣

∣

R
ρ

∣

∣

∣
. Hence, applying this result to

the inner boundary region of radius κ and to the outer

boundary region of radius
√
2κ, as shown in Fig. 2, the

expected hitting time σ̄ in the square grid deployment can

then be lower bounded by h(ρ, κ) and upper bounded by

h(ρ,
√
2κ).

Proposition 3.2: For sufficiently small η, the expected

hitting time σ̄ in the hexagon grid deployment is lower

and upper bounded as

κ2 ln

(

κ

ρ

)

≤ σ̄ ≤
4

3
κ2 ln

(

2κ
√
3ρ

)

(2)

Proof: Similar to the previous proof, provided that the

expected hitting time, when the coverage area has circular

shape of radius ρ and the boundary region has circular

shape of radius R > ρ, can be expressed as h(ρ,R) =

R2 ln
∣

∣

∣

R
ρ

∣

∣

∣
, the expected hitting time σ̄ in the hexagon grid

deployment can be lower bounded by h(ρ, κ) and upper

bounded by h(ρ, 2
√
3κ/3).

A. Sufficient access-point density of square deployment

Recall that ν = 1

4κ2 denotes the access-point density of

the square grid deployment. We now provide a sufficient

condition on the critical density when deploying the access

points in the square grid structure.

Theorem 3.3: For sufficiently small ρ, when τ ≥ πρ2

8
,

the data loss rate is guaranteed to remain below the

threshold, ǭ, if the following condition on access-point

density holds:

ν ≥
−π − 2 ln 1

ǭ
+

√

(

π + 2 ln 1

ǭ

)2
+ 8

(

4τ
ρ2 − π

)

ln 1

ǭ

16τ − 4ρ2π

Proof: Recall that because of symmetry, it suffices to

consider the motion of a mobile node on a single square

of the grid. Let C be a random variable representing

the amount of time the mobile node spends inside the

communication disk of radius ρ (i.e., inside the coverage

area), and T be a random variable representing the total

amount of time spent inside the square of length 2κ.

For small coverage ratio η, we can write η ≈ EC/σ̄ or

equivalently EC ≈ ησ̄, where σ̄ is the expected hitting



time and EC is the expectation of C; i.e., the mean time

a mobile node spends in the coverage area.

Now, note that buffer overflow occurs when T minus

EC exceeds τ . Hence, the probability of overflow, PO , can

be expressed as P (T−EC > τ) or P (T > τ+EC). Since

T can be approximated with an exponential distribution

with parameter 1/σ̄ [22], PO can then be written as

PO = exp
{

−
τ

σ̄
− πρ2ν

}

= exp

{

−
τ

σ̄
−

πρ2

4κ2

}

.

From Proposition 3.1, it then follows that the probability

of overflow, PO , is bounded below by

exp

{

−
τ

h(ρ, κ)
−

πρ2

4κ2

}

,

and bounded above by

exp

{

−
τ

h(ρ,
√
2κ)

−
πρ2

4κ2

}

.

where again h(x, y) = y2 ln
∣

∣

y
x

∣

∣.

We know that for all z > 0, ln z ≤ z − 1 holds, so it

then follows that h(ρ,
√
2κ) ≤ f(ρ,

√
2κ), where,

f(ρ,
√
2κ) = κ2

(

2κ2

ρ2
− 1

)

,

which implies that

exp

{

−
τ

h(ρ,
√
2κ)

−
πρ2

4κ2

}

≤ exp

{

−
τ

f(ρ,
√
2κ)

−
πρ2

4κ2

}

.

(3)

Eq. (3) implies that the probability of overflow is also

bounded above by

exp

{

−
τ

f(ρ,
√
2κ)

−
πρ2

4κ2

}

.

To ensure that the probability of overflow does not exceed

the data loss rate threshold ǭ, it suffices then that

exp

{

−
τ

f(ρ,
√
2κ)

−
πρ2

4κ2

}

≤ ǭ.

For τ ≥ πρ2

8
, replacing κ2 by 1

4ν
yields (after some

algebraic simplification),

(

8τρ2 − 2ρ4π
)

ν2 +

(

πρ2 + 2ρ2 ln
1

ǭ

)

ν − ln
1

ǭ
≥ 0.

Solving the quadratic equation provides the sufficient

condition on ν proposed in the theorem for square grid

deployment.

B. Sufficient access-point density of hexagon deployment

Now, we apply the same approach to derive a sufficient

condition on the access-point density for the case of

hexagon grid deployment. Recall that in the hexagonal

deployment, the access-point density ν can be expressed

as 1

2
√
3κ2

(as mentioned in Section II).

Theorem 3.4: For a sufficiently small ρ, when τ ≥
(πρ2)/(6

√
3), data loss rates are guaranteed to remain

below a given threshold, ǭ, if the following condition on

access-point density holds:

ν ≥
−2π − 3

√
3 ln 1

ǭ

54τ − 6
√
3ρ2π

+

√

(

2π + 3
√
3 ln 1

ǭ

)2

+ 24
√
3
(

2
√
3τ

ρ2 − π
)

ln 1

ǭ

54τ − 6
√
3ρ2π

.

Proof: Following similar derivation to that given in

the proof of Theorem 3.3 above, PO can be written as

PO = exp

{

−
τ

σ̄
−

πρ2

2
√
3κ2

}

.

Now from Proposition 3.2, it follows that PO is bounded

below by

exp

{

−
τ

h(ρ, κ)
−

πρ2

2
√
3κ2

}

,

and bounded above by

exp

{

−
τ

h(ρ, 2
√
3

3
κ)

−
πρ2

2
√
3κ2

}

.

where again h(x, y) = y2 ln
∣

∣

y
x

∣

∣.

Again, as ln z ≤ z − 1 holds for all z > 0, it then

follows that h(ρ, κ) ≤ f(ρ, κ) where

f

(

ρ,
2
√
3

3
κ

)

=
2κ2

3

(

4κ2

3ρ2
− 1

)

,

which implies that

exp

{

−
τ

h(ρ, 2
√
3

3
κ)

−
πρ2

2
√
3κ2

}

≤

exp

{

−
τ

f(ρ, 2
√
3

3
κ)

−
πρ2

2
√
3κ2

}

.

(4)

Eq. (4) implies that PO is also bounded above by

exp

{

−
τ

f(ρ, 2
√
3

3
κ)

−
πρ2

2
√
3κ2

}

.

To keep the probability of overflow from exceeding the

data loss rate threshold ǭ, it also suffices that the above

bound to be less than or equal to ǭ. Then, replacing κ2 by



its expression 1

2
√
3ν

, after some algebra, it yields that for

τ ≥ πρ2

6
√
3

,

(

27τρ2 − 3
√
3ρ4π

)

ν2+
(

2πρ2 + 3
√
3ρ2 ln

1

ǭ

)

ν − 2 ln
1

ǭ
≥ 0.

(5)

Solving the quadratic equation again provides the stated

sufficient condition on ν for hexagonal access-point de-

ployment.

C. Asymptotic Analysis

We are also interested in studying the asymptotic behav-

iors of the access-point density for the studied DTNs. Note

that to ensure that the probability of overflow does not

exceed the required threshold, it suffices that the density

remains below a certain value; which we derived and

proposed in Theorems 3.3 and 3.4—we call this value the

sufficient access-point density and denote it as νs. Note

that νs depends on the communication radius ρ, the time

to overflow the buffer τ , and the given threshold ǭ.
Corollary 3.5: For fixed ǭ, the sufficient density νs in

both the square and hexagon grid deployments is Θ(1/
√
τ )

as τ → ∞.

Thus for both the square and hexagon deployments, as

the buffer size increases to infinity, the sufficient access-

point density decreases asymptotically as fast as the in-

verse of the square root of the buffer size.

Corollary 3.6: For fixed τ , the sufficient density νs in

both the square and hexagon grid deployments is Θ(ln 1

ǭ
)

as ǭ → 1.

In other words, as the data loss rate threshold ǭ goes

to 1, the sufficient density νs decreases asymptotically as

fast as ln 1

ǭ
.

IV. VALIDATION

In this section, we use MATLAB to validate the derived

sufficient conditions presented in Theorems 3.3 and 3.4.

For this, we conduct simulations of 2-D Brownian motion

in the bounded square and hexagonal regions (as shown

in Fig. 1). We perform this by simulating two random

variables at each time step for the distance the mobile node

travels in a unit time interval in the x- and y-directions.

We then use it to simulate the hitting time as previously

defined: the time it takes the Brownian motion to leave a

communication disk (i.e., coverage area), having radius ρ
centered at the origin, then hit the boundary of the square

or hexagon, and then return to the communication disk.

The hitting time is in turn used to measure the average

data loss rate (ǫm), which is a function of the radius of

the communication disk ρ, access-point density ν, and time

required to overflow the buffer τ . In our simulation, we

consider three different values of ρ, ρ = 30, 20, and 10.

We also consider different values of ν (which depends only

on κ) for measuring the average data loss rate (for each

ρ). We set the data loss rate threshold ǭ = 0.9 for each

of the two grid deployments. For a given ρ, we calculate

the value of τ as τ = πρ2/8 for square deployment and

τ = πρ2/(6
√
3) for the hexagon deployment (for both

cases, it is notable from Theorem 3.3 and Theorem 3.4

that for a given ρ, any two fixed values greater than the

above values can be used). Also, for a fixed ρ, from the

Theorem 3.3 and Theorem 3.4, we calculate the theoretical

sufficient density, νs, which is a function of ρ, τ , and ǭ.
For each νs, we simulate and measure the average data

loss rate for various values of ν.

Figs. 4 and 5 illustrate the validation of Theorems 3.3

and 3.4. There are three observations that we make from

these two figures. First, observe that when ν is higher than

the theoretical sufficient density, νs, the measured average

data loss rate is blow the given threshold, regardless of the

deployment structure. Second, also observe that when the

measured data loss rate is above the given threshold, then

the corresponding density violates the sufficient density

condition. For example, the first bar from the right (in

both figures) corresponds to a measured data loss rate

that exceeds the threshold, but note that the corresponding

density ν does not meet the sufficient density condition

either; i.e., ν = 0.5νs < νs. Third, note that when ν is

lower than the sufficient density, νs, the average data loss

rate may or may not exceed the given threshold, since

our derived conditions are sufficient. For example, the

measured data loss rate exceeds the required threshold

in the case of square grid deployment, as shown in

Fig. 4 for ν = 0.8νs (second bar from the right) and

νs = 0.8165× 104. Whereas, the measured data loss rate

does not exceed the threshold in the case of hexagon grid

deployment even when ν = 0.8νs, as shown in Fig. 5 for

νs = 1.084× 104. This means, as mentioned earlier, that

the conditions provided in the theorems are sufficient, but

not necessary.

V. CONCLUSION

In this paper, we derived and provided sufficient con-

ditions on the density of access-points of DTNs used

specifically for wildlife tracking. We also analyzed the

asymptotic density behavior under various design param-

eters. Finally, we validated our models via simulations.
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Fig. 4. The measured average data loss rate for various sufficient densities in the square grid deployment

0.482 1.084 1.928
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Sufficient density for hexagonal grid deployment(νs) ∗ 104

M
ea

su
re

d
av

er
a
g
e

d
a
ta

lo
ss

ra
te

(ǫ
m

) Density = ν

 

 

ν = 3 ∗ ν
s

ν = 2 ∗ ν
s

ν = 1.5 ∗ ν
s

ν = 1.2 ∗ ν
s

ν = 0.8 ∗ ν
s

ν = 0.5 ∗ ν
s

Data loss rate threshold(ǭ)
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