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Abstract—We propose an adaptive service model that maxi- from accessing the DSA system. In [12,13], we proposed
mizes the amount of service that spectrum users (SUs) ach&v efficient objective functions that are suitable for DSA, lait

from accessing DSA systems. The proposed model allows SUspey jead to the maximization of the total system service tha
to utilize available spectrum efficiently by enabling them b . .

locate spectrum opportunities in a distributed manner, theeby SUs re_Ce'Ve from using such systems_. .

maximizing the long-term rewards that SUs receive. In this [N this work, we propose an adaptive service model that

model, SUs adapt their required level of service with time can be used by SUs to compute the rewards they receive
depending on the amount of service they received so far. This from using the DSA system. This proposed service model

proposed model is suitable for and can be used by existing .omplements the objective functions that we proposed i [12

objective functions. It leads to the maximization of the amant 131 in that wh d by th biecti functi it
of service that SUs receive through DSA. Our simulation reslis 1, in that when use y these objeclive functions, 1

show that the proposed adaptive model is very scalable by €nhances the amount of service that each SU receives in
performing well regardless of the number of users in the sygm, the long run. Using simulations, we show that the proposed

and allows users to achieve high service rewards by quickly model, when used by the appropriate objective functions,

locating spectrum opportunities in the system. promotes successful DSA. It enables SUs to achieve high
Index Terms—Elastic traffic; distributed dynamic spectrum rewards by allowing them to quickly locate and exploit
access; adaptive access techniques. spectrum opportunities. It is also very scalable in that it

performs well regardless of the number of SUs in the system.
The rest of the paper is organized as follows. In Section II,
we state the problem studied in this work. In Section IlI,
Dynamic spectrum access (DSA) has been a key solutime present the proposed service model and overview the
to the spectrum shortage problem [1-3]. It allows spectruabjective functions used in this work. In Section IV, we
users (SU) to dynamically and adaptively access the spelerive the optimal performance behaviors. In Section V,
trum bands, leading to significant improvement of spectrume evaluate the performances of the proposed model and
efficiency. DSA created significant research interests -rangpmpare them with those of existing models. Finally, we
ing from the development of sensing techniques [4,5] amtnclude the paper in Section VI.
algorithms [6-8] to the design of new architectures [9, 10].
Learning-based techniques have also been key to promoting Il. PROBLEM STATEMENT
successful DSA, as they can easily be implemented in aThroughout this work, aragentis used to refer to any
decentralized manner without requiring users to have agyoup of two or more SUs that want to communicate with
prior knowledge of the dynamics and characteristics of themch other. All members of each group must then switch
DSA environment. Learning-based techniques rely on leara-the same spectrum band prior to beginning their commu-
ing algorithms (e.g., reinforcement learners [11]) to teamication. We assume that spectrum is divided intonon-
from users’ interaction and experience to decide what to deerlapping bands, and consider a time-slotted systemevher
in the future. More specifically, learning algorithms allovagents are assumed to arrive and leave at the beginning and
SUs to use their knowledge obtained from their interactiors the end of time slots. At each time step, each agent using
with the environment to take the appropriate actions thatband receives a service that is passed to it from that band.
maximize the long-term amount of service that they receihe amount of service that the band offers an agent can be
from accessing the DSA system. measured in terms of, for example, amount of throughput,
The challenge with learning techniques is that when SUsliability of the communication, the signal to noise ratio
do not design their objectives carefully, learning algoris the packet success rates, etc. We assume that once the agent
can eventually lead to poor overall system performances Thswitches to a particular band, it can immediately quantifgt a
is because the collective behavior of the SUs aiming tneasure the amount of service that it receives from using the
maximize poorly designed objectives is likely to resultow! band. The methods that agents use to quantify and measure
received system service, thereby worsening the amounttb& service received as a result of using any particular band
service each SU receives. Therefore, it is important to corage beyond the scope of this work. ét be the total amount
up with the appropriate objective design so that when SUs gbservice that spectrum bandoffers.
after their objectives, their behavior as a whole leads & th In this work, our focus is on developing methods that allow
maximization of the amount of service that each SU receivagents to access and use the DSA system in a distributed

I. INTRODUCTION



manner. Specifically, the assumption here is that agentstoug
to_rely on and implement some learning algorithms (e.g., a Vi /n;(t) it n(t) <V;/Q
reinforcement learner [11, 14]) to enable them to learn bou  7;(¢) = { _pni0a-v; . 3)
and find good spectrum opportunities in the system. Agents, Qe K otherwise
indepeno_lently of one another, use their Ieamers to se_ﬂegt bnd band;j reward function can be expressed as

best available spectrum bands, and do so either perioglicall .

(every time episode) or reactively (whenever their reative (t) = Vj B it n;(t) <V;/Q @)
rewards drop below a certain threshold). That is sa|q, thi§" nj(t)Qefﬁ% otherwise

work proposes techniques that complement the learning al-
gorithms in that it enhances the amount of service that eactfor illustration purposes, we show in Fig. 1 the elastic
agent receives in the long run when used by these algorithifvard functionr;(¢) of agenti when using bandj as a
Although our proposed techniques are not developed for afaction of n;(t) for 3 =20 andV;/Q = 4.

specific learners, we choose to use throughout this work the
e-greedy Q-learner [11] with a discount rate of 0 andean Vi
value of0.05 for the sake of evaluating our proposed mode
For more details on the Q-learner, readers can refer to [1

Ill. SYSTEM MODEL

Reward: r(t)

Q

We present the proposed service model designed to
elastic traffic in DSA systems, and for completeness, we al ‘ ‘ ‘
overview the objective functions used in this work. 1 ViR

number of agents using band j

A. Elastic Reward Model Fig. 1. Reward function;(t): 8 =20 andV;/Q = 4 for all j.

In this paper, we consider the elastic traffic model, which
is suitable for elastic applications such as file transfet an
web browsing. Under this model, an agent’s reward is tfe Agent's Required Level of Service
amount of service it receives from using the spectrum bandwe consider that each agehtas a total required LoS,
when the agent's received level of service (LoS) is above@,,,;, that should be received by a given target time period,
certain threshold. That is, the higher the amount of seyvice. We assume that the required LoS at time ste@;(t),
the greater the reward. But when the received LoS droplanges adaptively based on the required LoS that has not

below a certain (typically low) threshold, the agent’s redva been received yet and the target peribdFormally,
becomes unacceptable very quickly. In other words, the

t
reward can decrease exponentially with the received LoS Qtotat — Z S (t')
when the received LoS is below the threshold. Formally, the o praet ’
reward of agent, r;(t), at time¢ can be written as Qi(t) = T _1 (%)
Si(t) if  S;(t) > Q) As mentioned earlier, at the end of each time step, by
ri(t) = Qi(t)efﬁw otherwise (1) means of a reinforcement learner [11], each agent selegts th

“best" available band, and uses it during the next time step.
whereQ,(t) andS;(¢) denote agents required and received Herein, we assume that the agents change their band and
LoS at timet, respectively, angs is a decaying factor. select the best spectrum band if and only if the agent has

From the system’s perspective, the global or system neceived less than the required LoS at that time step. The
ward,G(t), can be defined as the sum of all agents’ rewardsand selection method is as stated in [12]. In other words,
Formally, G(t) at time stept can be expressed as an agent does not need to change its operating band unless

it is not satisfied with the level of service it has received.

n
Gt) =) ri(t) ey

i=1 C. Objective Functions
wheren denotes the total number of agents. As a speciallLet ¢;(t) denote the objective function that agerghould
case, when all agents using bapdire assumed to receivego after in order to maximize the global received rewards.
equal amount of service from their spectrum bands, and tHere, the agents try to maximize their objectives by means
required LoS of all agents is the same (i.€;(t) = Q of the Q-learner [11]. We now briefly describe the objective
forall ¢t > 0 andi = 1,...,n), all agents in bang each functions used in this work to evaluate the proposed model.
receivesV;/n;(t) at time ¢t wheren;(t) is the number of More details on these functions can be found in [12, 13].
agents using bang at that time. In this special scenario, theAgent reward function: each agent aims to maximize its
reward function can be expressed as own reward function; i.e.g;(t) = r;(t) for each agent.



Global reward function: each agent tries to maximize thecapacity,c,,n, haSn—Z;qu#mm ¢; agents and any 0t|§|er
global rewards received by all agents. That is, agést bandj has exactly; agents.

objective function is the same as the global rewét); Proof: Without loss of generality, let's assume that <
i.e., g:(t) = G(t) for each agent. Vo < V3 <<V Letk=n—3", ¢ and let us refer
Difference reward function: each agent aims to maximizeto the agent distribution stated in the theorem(asNote
its own contribution to the global reward, which is referted thatC' corresponds to when; = ¢;, for j = 2,3, ...,m and
as the difference function [15], and denoted By(t). That n, = ¢;+k. We proceed with the proof by compariggwith
is, gi(t) = D;(t) for each agent, where any possible distributio®”’ among all possible distributions.
Letn; = c¢; +k; (k; > —c;) be the number of agents in

Di(t) = G(t) = G—(?) (©) bandj in C’, we know that
andG_;(¢) is the global reward when agents absent from -
the system.
P> k.
Team contribution reward function: each agent aims to Z hijzk ®)

. . . . . j=1,k; >0
maximize its team contribution to the global reward. This =

objective function is called team contribution functiorB[1 since we are eliminating the negative values from the sum-
and is denoted by’ (¢). With this function choice, agerits  mation. Let ¢;(k;) be the amount by which the global
function, g;(t), is set toT;(t), where reward is reduced when an agent joins barahd the band
n j has alreadyn; = c; + k; agents. From Lemma 4.1,
> 6G)D;(#) i Sit) > Qi(t) it follows that ¢;(k') < ¢;(k') > 0 wheni < j. And
Lt =4 = () from [12], it follows that0 < (k') < e (k' + 1) for
Di(t) otherwise k > 0. Note that for the distributiort’, the global reward

wheres; (j) is equal tol if agenti and ageny are using the IS reduced byu Yo e(i), and forC”, it is reduced by

same band and otherwise. Note that the focus of this work ,
is not on the design of objective functions, but rather on thlé Z ZEJ
design of service models that are suitable for elastic dxafflfor a

. It remains to show that’ —u > 0
j=1,k; >0 i=0
ny ¢’ # C. v —wu can be expressed as

IV. MAXIMAL ACHIEVABLE SYSTEM REWARDS

m k

We now analytically derive the maximum achievable u—uo= Y N (i)=Y el
global reward when the bands offer different LoS values. -:>10 =0 =0
We define band’s capacityc; asV;/Q whereV; is again =
the total LoS offered by bang and @) is agents’ required and as stated in Eq. (8), we know that the number of terms
LoS. The following lemma will be used later for deriving thén part o is more than the number of terms in partWe
maximal achievable reward of our studied system. consider three different scenarios:

Lemma 4.1:Consider two bands whose numbers of agents
exceeding their capacities are the same. The system/globa'l
reward reduces less if a new agent joins the spectrum band
with the least LoS value between the two bands.

Proof: Assume that there are two bandand; offering
V; andV; LoS values with band capacity andc;, respec-

k;

T,

k1 > k: Here, we have

k;

<!

k
EJ E 61

1 =0 =0
0

ﬁ'M :

tively. AssumeV; > V; which impliesc; > ¢;. Assume that k1 kj
the number of agents in bandsand j are n; = ¢; + k = Z B ICI0)
and n; = ¢; + k, respectively fork > 0. Recall from =30
Eqg. (4) that when band hasn; > c¢; agents, its reward =
is G(n;) = anefﬁ(:—j*U' If a new agent joins this band, whi(_:h is greater than zero since all the terms are
gt ositive.
the reward becomes; (n; + 1) = (n; + 1)Q¢ ” Vo, 121 = k: In this scenario, we have
It can easily be shown that when; = ¢; + & > 1,
Gj(nj) > Gj(n; + 1); i.e., the reward when joining band m ky k
j decreases by, (k) = G;(c; + k) — G;(¢; + k +1). Now u—uo= >N ) = > ali)
we can easily see that(k) > ¢;(k). Hence, if the channel j=1 i=0 i=0
capacity is lower, the reward decreases less. [ ] ki 20
Let n andm denote the total number of agents and the m ki
total number of spectrum bands in the system. = Z €0
Theorem 4.2:When there are: agents in the system and ;3:>20 =0

J

the bands capacities arQ,co, ..., ¢, the global reward
reaches its maximal only when the band with the lowest which is also greater than zero.



4
e k1 < k: In this scenario, we have Note that the proposed adaptive model outperforms the fixed
model under each of the studied objective functions. The

m  kj k
Wy — Z £ (i) Z e1(i) adaptive model achieves ab®it% of the optimal achievable
=i ! —o reward while the fixed model achieves alm@8t% of the
k;>0 optimal achievable reward.
m kj k
= Y D G- D al)
j=2 i=0 i=k1+1 100%
k;=0 —— ko)
— —— part b < PR N | ST PN
part a = 80%: ’ ) o
From Eq. (8), it follows that the number of terms ir R PPN IR f,f?_,.--‘;
part a is greater than that ipart b. Thus, we can find 8 goog!---7(Fres) R T
a term frompart a for every term inpart b which is 8 v By(Fixed)
greater than that term sineg(k') > (k') fori > jas o5 00 | v Adapiive Fixed
stated in Lemma 4.1 and (k") < ¢; (k') for k” > k" as  § - - -T(Adapive)
proved in [12]. Moreover, the remaining termspiart a @ DiAdapive)
. . . . / E 200/ L ...‘rJ(Adaptlve)
are positive which implies that’ — u > 0. S O — G(adaptive)
In all scenarios, we showed that — « > 0. Therefore, the 2 p—e N S e A e e
global reward for any distributiof” is smaller than that for 0% : : : :
the distributionC; i.e., C' is the distribution that corresponds 100 Zoé)pisodseoo 400 500
to the maximal achievable global reward. [ ] (@) & — 0%
Corollary 4.3: The system/global reward that a DSA sys- -0
tem can achieve is at most i 100% ‘
m m n—y 1 5¢ ) STt - TR IR L NUCT I Ny
D Vit = eep(-p—=—-1)) O § ,,
j=2 j=2 ! g 80%r el A R O
@ LT SRR B e R
Proof: The stated achievable global reward can k- 3 - T(Eed)
calculated using Theorem 4.2. m < 60% Ao . D(Fe)
o ptive "
o ...‘ri(F|?<ed)
V. PERFORMANCEEVALUATION B 40% Fixed i?ﬁiﬁgﬂvie)
N ivi
In this section, we evaluate the performance of the prig .
. R ) E‘ ’_’_’_‘/_/_ - TI aptivie
posed service model in terms of the achievable global rewa € 20%}, ‘ — G(Adaptivie)
and compare it with that achieved under the model propos 3 \;,_‘_‘___‘__‘,,_‘;]_w,:,:_‘_,_-'_-‘,_,__d_,\_-,.;:‘,_,,_‘,_.f.‘.___,».-,_\ )
in [12] for each of the aforementioned objective functions 0% ‘ ‘ ‘ ‘
agent reward f; = ;), global reward ¢; = G), difference 0 100 20'8 . d300 400 500
reward ¢; = D;), and team contribution reward;(= T;). pisode
In our model, the required LoS by agents adaptively changes (b) ¥ = 80%

throqgh time Wher_eas’_ in the model _proposed in [12_]’ th_—?g. 2. Normalized global reward under various time stepyy{ = 0%
required LoS remains fixed at every time step. Thus, in thigd (b)y = 80%

section, we refer to the our newly proposed modeldaptive
modeland the model used in [12] dixed model

We define the variability of spectrum bands’ LoS values,
1, as the difference between the minimuij,;,, and the N
averageV,,,, of the total LoS values offered by the bandsB- Scalability
We can writeyy = Ymin—VYes ynless stated otherwise,
throughout this evaluation ‘section, the decaying fagtds
set t02, the number of agents is set 300, the number of
bands is set td0 and the average Lo3/,,,, is set t020.

In order to study the performance of the proposed model
in terms of scalability, we compare in Fig. 3 the normalized
global reward under each of the two service models while
varying the number of agents, from 100 to 800 and fixing
the number of bands: to 10. Figs. 3(a) and 3(b) show these
A. Global Reward Behavior results when) = 0% andv = 80%, respectively.

Fig. 2 shows global reward normalized with respect to op- The figures show that the proposed adaptive model out-
timal achievable rewards derived and stated in CorollaBy 4performs the fixed model regardless of the number of agents
under the studied service models and objective functions.ih the system. These also show that both models are scalable
Fig. 2(a), the LoS offered by each band is the same for alhen the difference and team contribution objective fuordi
bands (i.e.z» = 0%), whereas in Fig. 2(b)) is set to80%. are used, but not scalable under the other two functions.
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VI. CONCLUSION

This i i 2
paper proposes an adaptive service model for pro-
moting efficient DSA. The proposed model enables SUs to
explore and exploit spectrum opportunities dynamicallg ari'1]
efficiently, thereby maximizing the long-term rewards thgiy
SUs receive. In this model, SUs adapt their required LoS with
time based on the LoS they received so far. This prOpOSﬁgl
service model complements existing objective functions
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