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Abstract—We propose an adaptive service model that maxi-
mizes the amount of service that spectrum users (SUs) achieve
from accessing DSA systems. The proposed model allows SUs
to utilize available spectrum efficiently by enabling them to
locate spectrum opportunities in a distributed manner, thereby
maximizing the long-term rewards that SUs receive. In this
model, SUs adapt their required level of service with time
depending on the amount of service they received so far. This
proposed model is suitable for and can be used by existing
objective functions. It leads to the maximization of the amount
of service that SUs receive through DSA. Our simulation results
show that the proposed adaptive model is very scalable by
performing well regardless of the number of users in the system,
and allows users to achieve high service rewards by quickly
locating spectrum opportunities in the system.

Index Terms—Elastic traffic; distributed dynamic spectrum
access; adaptive access techniques.

I. I NTRODUCTION

Dynamic spectrum access (DSA) has been a key solution
to the spectrum shortage problem [1–3]. It allows spectrum
users (SU) to dynamically and adaptively access the spec-
trum bands, leading to significant improvement of spectrum
efficiency. DSA created significant research interests rang-
ing from the development of sensing techniques [4, 5] and
algorithms [6–8] to the design of new architectures [9, 10].
Learning-based techniques have also been key to promoting
successful DSA, as they can easily be implemented in a
decentralized manner without requiring users to have any
prior knowledge of the dynamics and characteristics of the
DSA environment. Learning-based techniques rely on learn-
ing algorithms (e.g., reinforcement learners [11]) to learn
from users’ interaction and experience to decide what to do
in the future. More specifically, learning algorithms allow
SUs to use their knowledge obtained from their interactions
with the environment to take the appropriate actions that
maximize the long-term amount of service that they receive
from accessing the DSA system.

The challenge with learning techniques is that when SUs
do not design their objectives carefully, learning algorithms
can eventually lead to poor overall system performance. This
is because the collective behavior of the SUs aiming to
maximize poorly designed objectives is likely to result in low
received system service, thereby worsening the amount of
service each SU receives. Therefore, it is important to come
up with the appropriate objective design so that when SUs go
after their objectives, their behavior as a whole leads to the
maximization of the amount of service that each SU receives

from accessing the DSA system. In [12, 13], we proposed
efficient objective functions that are suitable for DSA, in that
they lead to the maximization of the total system service that
SUs receive from using such systems.

In this work, we propose an adaptive service model that
can be used by SUs to compute the rewards they receive
from using the DSA system. This proposed service model
complements the objective functions that we proposed in [12,
13], in that when used by these objective functions, it
enhances the amount of service that each SU receives in
the long run. Using simulations, we show that the proposed
model, when used by the appropriate objective functions,
promotes successful DSA. It enables SUs to achieve high
rewards by allowing them to quickly locate and exploit
spectrum opportunities. It is also very scalable in that it
performs well regardless of the number of SUs in the system.

The rest of the paper is organized as follows. In Section II,
we state the problem studied in this work. In Section III,
we present the proposed service model and overview the
objective functions used in this work. In Section IV, we
derive the optimal performance behaviors. In Section V,
we evaluate the performances of the proposed model and
compare them with those of existing models. Finally, we
conclude the paper in Section VI.

II. PROBLEM STATEMENT

Throughout this work, anagent is used to refer to any
group of two or more SUs that want to communicate with
each other. All members of each group must then switch
to the same spectrum band prior to beginning their commu-
nication. We assume that spectrum is divided intom non-
overlapping bands, and consider a time-slotted system where
agents are assumed to arrive and leave at the beginning and
at the end of time slots. At each time step, each agent using
a band receives a service that is passed to it from that band.
The amount of service that the band offers an agent can be
measured in terms of, for example, amount of throughput,
reliability of the communication, the signal to noise ratio,
the packet success rates, etc. We assume that once the agent
switches to a particular band, it can immediately quantify and
measure the amount of service that it receives from using the
band. The methods that agents use to quantify and measure
the service received as a result of using any particular band
are beyond the scope of this work. LetVj be the total amount
of service that spectrum bandj offers.

In this work, our focus is on developing methods that allow
agents to access and use the DSA system in a distributed
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manner. Specifically, the assumption here is that agents ought
to rely on and implement some learning algorithms (e.g., a
reinforcement learner [11, 14]) to enable them to learn about
and find good spectrum opportunities in the system. Agents,
independently of one another, use their learners to select the
best available spectrum bands, and do so either periodically
(every time episode) or reactively (whenever their received
rewards drop below a certain threshold). That is said, this
work proposes techniques that complement the learning al-
gorithms in that it enhances the amount of service that each
agent receives in the long run when used by these algorithms.
Although our proposed techniques are not developed for any
specific learners, we choose to use throughout this work the
ε-greedy Q-learner [11] with a discount rate of 0 and anε
value of0.05 for the sake of evaluating our proposed model.
For more details on the Q-learner, readers can refer to [11].

III. SYSTEM MODEL

We present the proposed service model designed to fit
elastic traffic in DSA systems, and for completeness, we also
overview the objective functions used in this work.

A. Elastic Reward Model

In this paper, we consider the elastic traffic model, which
is suitable for elastic applications such as file transfer and
web browsing. Under this model, an agent’s reward is the
amount of service it receives from using the spectrum band
when the agent’s received level of service (LoS) is above a
certain threshold. That is, the higher the amount of service,
the greater the reward. But when the received LoS drops
below a certain (typically low) threshold, the agent’s reward
becomes unacceptable very quickly. In other words, the
reward can decrease exponentially with the received LoS
when the received LoS is below the threshold. Formally, the
reward of agenti, ri(t), at timet can be written as

ri(t) =

{

Si(t) if Si(t) ≥ Qi(t)

Qi(t)e
−β

Qi(t)−Si(t)

Si(t) otherwise
(1)

whereQi(t) andSi(t) denote agenti’s required and received
LoS at timet, respectively, andβ is a decaying factor.

From the system’s perspective, the global or system re-
ward,G(t), can be defined as the sum of all agents’ rewards.
Formally,G(t) at time stept can be expressed as

G(t) =

n∑

i=1

ri(t) (2)

wheren denotes the total number of agents. As a special
case, when all agents using bandj are assumed to receive
equal amount of service from their spectrum bands, and the
required LoS of all agents is the same (i.e.,Qi(t) = Q
for all t > 0 and i = 1, ..., n), all agents in bandj each
receivesVj/nj(t) at time t wherenj(t) is the number of
agents using bandj at that time. In this special scenario, the
reward function can be expressed as

ri(t) =

{
Vj/nj(t) if nj(t) ≤ Vj/Q

Qe
−β

nj(t)Q−Vj
Vj otherwise

(3)

and bandj reward function can be expressed as

Gj(t) =

{
Vj if nj(t) ≤ Vj/Q

nj(t)Qe
−β

nj(t)Q−Vj
Vj otherwise

(4)

For illustration purposes, we show in Fig. 1 the elastic
reward functionri(t) of agent i when using bandj as a
function ofnj(t) for β = 20 andVj/Q = 4.
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Fig. 1. Reward functionri(t): β = 20 andVj/Q = 4 for all j.

B. Agent’s Required Level of Service

We consider that each agenti has a total required LoS,
Qtotal, that should be received by a given target time period,
T . We assume that the required LoS at time stept, Qi(t),
changes adaptively based on the required LoS that has not
been received yet and the target periodT . Formally,

Qi(t) =

Qtotal −

t∑

t′=1

Si(t
′)

T − t
(5)

As mentioned earlier, at the end of each time step, by
means of a reinforcement learner [11], each agent selects the
“best" available band, and uses it during the next time step.
Herein, we assume that the agents change their band and
select the best spectrum band if and only if the agent has
received less than the required LoS at that time step. The
band selection method is as stated in [12]. In other words,
an agent does not need to change its operating band unless
it is not satisfied with the level of service it has received.

C. Objective Functions

Let gi(t) denote the objective function that agenti should
go after in order to maximize the global received rewards.
Here, the agents try to maximize their objectives by means
of the Q-learner [11]. We now briefly describe the objective
functions used in this work to evaluate the proposed model.
More details on these functions can be found in [12, 13].
Agent reward function: each agent aims to maximize its
own reward function; i.e.,gi(t) = ri(t) for each agenti.
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Global reward function: each agent tries to maximize the
global rewards received by all agents. That is, agenti’s
objective function is the same as the global rewardG(t);
i.e., gi(t) = G(t) for each agenti.
Difference reward function: each agent aims to maximize
its own contribution to the global reward, which is referredto
as the difference function [15], and denoted byDi(t). That
is, gi(t) = Di(t) for each agenti, where

Di(t) = G(t)−G−i(t) (6)

andG−i(t) is the global reward when agenti is absent from
the system.
Team contribution reward function: each agent aims to
maximize its team contribution to the global reward. This
objective function is called team contribution function [13]
and is denoted byTi(t). With this function choice, agenti’s
function,gi(t), is set toTi(t), where

Ti(t) =







n∑

j=1

δi(j)Dj(t) if Si(t) ≥ Qi(t)

Di(t) otherwise

(7)

whereδi(j) is equal to1 if agenti and agentj are using the
same band and0 otherwise. Note that the focus of this work
is not on the design of objective functions, but rather on the
design of service models that are suitable for elastic traffic.

IV. M AXIMAL ACHIEVABLE SYSTEM REWARDS

We now analytically derive the maximum achievable
global reward when the bands offer different LoS values.
We define bandj’s capacitycj asVj/Q whereVj is again
the total LoS offered by bandj andQ is agents’ required
LoS. The following lemma will be used later for deriving the
maximal achievable reward of our studied system.

Lemma 4.1:Consider two bands whose numbers of agents
exceeding their capacities are the same. The system/global
reward reduces less if a new agent joins the spectrum band
with the least LoS value between the two bands.

Proof: Assume that there are two bandsi andj offering
Vi andVj LoS values with band capacityci and cj, respec-
tively. AssumeVi > Vj which impliesci > cj . Assume that
the number of agents in bandsi and j are ni = ci + k
and nj = cj + k, respectively fork ≥ 0. Recall from
Eq. (4) that when bandj has nj ≥ cj agents, its reward

is Gj(nj) = njQe
−β(

nj
cj

−1)
. If a new agent joins this band,

the reward becomesGj(nj + 1) = (nj + 1)Qe
−β(

nj+1

cj
−1)

.
It can easily be shown that whennj = cj + k ≥ 1,
Gj(nj) > Gj(nj + 1); i.e., the reward when joining band
j decreases byεj(k) ≡ Gj(cj + k)−Gj(cj + k + 1). Now
we can easily see thatεi(k) > εj(k). Hence, if the channel
capacity is lower, the reward decreases less.

Let n andm denote the total number of agents and the
total number of spectrum bands in the system.

Theorem 4.2:When there aren agents in the system and
the bands capacities arec1, c2, ..., cm, the global reward
reaches its maximal only when the band with the lowest

capacity,cmin, hasn−
∑m

l=1,cl 6=cmin
cl agents and any other

bandj has exactlycj agents.
Proof: Without loss of generality, let’s assume thatV1 ≤

V2 ≤ V3 ≤ ... ≤ Vm. Let k = n −
∑m

l=1 cl and let us refer
to the agent distribution stated in the theorem asC. Note
thatC corresponds to whennj = cj , for j = 2, 3, ...,m and
n1 = c1+k. We proceed with the proof by comparingC with
any possible distributionC′ among all possible distributions.
Let nj = cj + kj (kj ≥ −cj) be the number of agents in
bandj in C′, we know that

m∑

j=1,kj≥0

kj ≥ k. (8)

since we are eliminating the negative values from the sum-
mation. Let εj(kj) be the amount by which the global
reward is reduced when an agent joins bandj and the band
j has alreadynj = cj + kj agents. From Lemma 4.1,
it follows that εi(k′) ≤ εj(k

′) > 0 when i < j. And
from [12], it follows that 0 < εi(k

′) < εi(k
′ + 1) for

k ≥ 0. Note that for the distributionC, the global reward
is reduced byu =

∑k

i=0 ε1(i), and forC′, it is reduced by

u′ =

m∑

j=1,kj≥0

kj∑

i=0

εj(i). It remains to show thatu′ − u > 0

for anyC′ 6= C. u′ − u can be expressed as

u′ − u =

m∑

j=1
kj≥0

kj∑

i=0

εj(i)−

k∑

i=0

ε1(i)

and as stated in Eq. (8), we know that the number of terms
in part a is more than the number of terms in partb. We
consider three different scenarios:

• k1 > k: Here, we have

u′ − u =
m∑

j=1
kj≥0

kj∑

i=0

εj(i)−
k∑

i=0

ε1(i)

=

k1∑

i=k+1

ε1(i) +

m∑

j=2
kj≥0

kj∑

i=0

εj(i)

which is greater than zero since all the terms are
positive.

• k1 = k: In this scenario, we have

u′ − u =

m∑

j=1
kj≥0

kj∑

i=0

εj(i)−

k∑

i=0

ε1(i)

=

m∑

j=2
kj≥0

kj∑

i=0

εj(i)

which is also greater than zero.
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• k1 < k: In this scenario, we have

u′ − u =

m∑

j=1
kj≥0

kj∑

i=0

εj(i)−

k∑

i=0

ε1(i)

=

m∑

j=2
kj≥0

kj∑

i=0

εj(i)

︸ ︷︷ ︸

part a

−

k∑

i=k1+1

ε1(i)

︸ ︷︷ ︸

part b

From Eq. (8), it follows that the number of terms in
part a is greater than that inpart b. Thus, we can find
a term frompart a for every term inpart b which is
greater than that term sinceεi(k′) > εj(k

′) for i > j as
stated in Lemma 4.1 andεi(k′′) < εi(k

′) for k′′ > k′ as
proved in [12]. Moreover, the remaining terms inpart a
are positive which implies thatu′ − u > 0.

In all scenarios, we showed thatu′ − u > 0. Therefore, the
global reward for any distributionC′ is smaller than that for
the distributionC; i.e.,C is the distribution that corresponds
to the maximal achievable global reward.

Corollary 4.3: The system/global reward that a DSA sys-
tem can achieve is at most

m∑

j=2

Vj + (n−

m∑

j=2

cj) exp(−β(
n−

∑m
j=2 cj

c1
− 1)) (9)

Proof: The stated achievable global reward can be
calculated using Theorem 4.2.

V. PERFORMANCEEVALUATION

In this section, we evaluate the performance of the pro-
posed service model in terms of the achievable global reward,
and compare it with that achieved under the model proposed
in [12] for each of the aforementioned objective functions:
agent reward (gi = rj), global reward (gi = G), difference
reward (gi = Di), and team contribution reward (gi = Ti).
In our model, the required LoS by agents adaptively changes
through time whereas, in the model proposed in [12], the
required LoS remains fixed at every time step. Thus, in this
section, we refer to the our newly proposed model asadaptive
modeland the model used in [12] asfixed model.

We define the variability of spectrum bands’ LoS values,
ψ, as the difference between the minimum,Vmin, and the
average,Vavg , of the total LoS values offered by the bands.
We can writeψ =

Vmin−Vavg

Vavg
. Unless stated otherwise,

throughout this evaluation section, the decaying factorβ is
set to2, the number of agents is set to300, the number of
bands is set to10 and the average LoS,Vavg, is set to20.

A. Global Reward Behavior

Fig. 2 shows global reward normalized with respect to op-
timal achievable rewards derived and stated in Corollary 4.3
under the studied service models and objective functions. In
Fig. 2(a), the LoS offered by each band is the same for all
bands (i.e.,ψ = 0%), whereas in Fig. 2(b),ψ is set to80%.

Note that the proposed adaptive model outperforms the fixed
model under each of the studied objective functions. The
adaptive model achieves about90% of the optimal achievable
reward while the fixed model achieves almost70% of the
optimal achievable reward.
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Fig. 2. Normalized global reward under various time steps. (a) ψ = 0%
and (b)ψ = 80%

B. Scalability

In order to study the performance of the proposed model
in terms of scalability, we compare in Fig. 3 the normalized
global reward under each of the two service models while
varying the number of agents,n, from 100 to 800 and fixing
the number of bandsm to 10. Figs. 3(a) and 3(b) show these
results whenψ = 0% andψ = 80%, respectively.

The figures show that the proposed adaptive model out-
performs the fixed model regardless of the number of agents
in the system. These also show that both models are scalable
when the difference and team contribution objective functions
are used, but not scalable under the other two functions.
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Fig. 3. Normalized global reward for various number of agents: (a)ψ = 0%
and (b)ψ = 80%

C. LoS Variability

Fig. 4 plots the normalized global reward for different
values ofψ. Here,Vavg is kept equal to20. The figure shows
that the adaptive model outperforms the fixed one regardless
of the value ofψ. While the fixed model achieves about80%
of the maximum possible achievable reward, the adaptive
model achieves about95% of that same maximum reward.

VI. CONCLUSION

This paper proposes an adaptive service model for pro-
moting efficient DSA. The proposed model enables SUs to
explore and exploit spectrum opportunities dynamically and
efficiently, thereby maximizing the long-term rewards that
SUs receive. In this model, SUs adapt their required LoS with
time based on the LoS they received so far. This proposed
service model complements existing objective functions in
that it enhances the amount of service that each SU receives
from accessing the DSA system. Our results show that the
proposed model is very scalable and enables SUs to achieve
high rewards by allowing them to quickly locate and exploit
available spectrum opportunities.
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