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Abstract— We derive theoretical performance limits of densely
covered delay-tolerant networks (DTNs). In the DTN model we
study, a number of fixed (data collector) nodes are deployed in
the DTN region where mobile (data generator) nodes move freely
in the region according to Brownian motion. As it moves, each
mobile node is assumed to continuously generate and buffer data.
When a mobile node comes within the communication coverage
range of a data collector node, the mobile node immediately and
completely uploads its buffered data to the data collector node,
and then resumes generating and buffering its data. In this paper,
we first derive analytic bounds on the amount of time a mobile
node spends without communication coverage. Then, using these
derived bounds, we derive sufficient conditions on node density that
statistically guarantee that the expected amount of time spent in the
uncovered region remains below a given threshold. Additionally, we
derive sufficient conditions on node density to keep the probability
of buffer overflow below a given tolerance.

I. I NTRODUCTION

Delay-tolerant networks (DTNs) are a class of networks that
are, by nature, partially covered or intermittently connected. As
a consequence, traditional end-to-end routing paradigms may
not be the most effective in delivering data across nodes, due
to the absence of multi-hop paths. In such sparse networks
data delivery is only possible through thestore-carry-and-drop
routing approach, which relies on node mobility to carry data.
Therefore, applications supported by these networks are typically
delay insensitive/tolerant, as data packets are expected to experi-
ence some delay before reaching their destinations. DTNs have
recently attracted significant interest in the context of mobile
sensor networks (e.g., event/data collection [1–3], animal moni-
toring/tracking [4, 5], mobile ubiquitous LAN extensions [6, 7]),
and continue to find new applications, for instance in vehicular
networks (e.g., [8–10]).

Due to their importance and wide range of applications, there
has been considerable research focus on DTNs, ranging from pro-
tocol design [11–14] to connectivity analysis [15–17] and delay
modeling and characterization [16, 18–22]. The work in [16]uses
continuum percolation theory [23] to show how delays in large
wireless networks scale with the Euclidean distance between
the sender and the receiver. Speed of information propagation
has recently also been studied analytically for static [18,19]
as well as mobile [20–22] DTNs. The authors in [19] derived
upper bounds on the maximum propagation speed in large-
scale wireless networks, and those in [21] derived analyticupper
bounds on information delay in large-scale DTNs with possible
mobility and intermittent connectivity. Network connectivity has
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also been intensively studied, but mostly in the context of large-
scale networks only. In [15], the authors derived an upper bound
on the delay sufficient for disconnected networks to become
connected through node mobility. The work in [16] derived the
minimum node density required to ensure connectivity in large
static networks.

In contrast, this work aims at deriving analytic upper bounds on
the expected time a mobile node spends without communication
coverage in mostly, but not fully, covered DTNs as a function
of the communication coverage ratio; i.e, DTNs whose coverage
ratio is close to one. Intermeeting times, defined as the timea
mobile node spends before running into another node, have been
derived in [24] for the generalized hybrid random walk mobility
model. Additionally, La [24] shows that the distribution ofinter-
meeting times can be approximated by an exponential distribution
when mobile nodes move independently from one another and
when the probability of establishing communication links among
nodes is relatively low. This result provides support for our use
of a 2-D Brownian Motion model of a mobile node, which we
will show also has approximately exponential intermeetingtimes
under the assumptions of the Poisson Clumping Heuristic [25]
(and described in more detail in Subsection III-A).

Cai et al. [26] show that when removing the boundaries
in a two-dimensional random walk model, intermeeting times
follow power-law distributions, but not exponential ones.This
does not conflict with our model. It is well-known that the
2-D random walk is only recurrent on bounded regions and
transient otherwise, whereas 2-D Brownian Motion is always
recurrent. Given a small region about the origin, this is the
difference between the mobile node returning only finitely often
and returning infinitely often to the region, respectively,and
explains why the distribution of 2-D random walk intermeeting
times has a shorter tail (lower probability of high values) than
the distribution of 2-D Brownian Motion hitting times.

In the DTN model we study, a number of fixed nodes (also re-
ferred to asaccess points) are deployed in the DTN region, where
mobile nodes (also referred to asdata generators) move freely
in the region by following a Brownian motion. As it moves, each
mobile node is assumed to continuously generate and buffer data.
When a mobile node comes within the communication coverage
range of a data collector node, the mobile node immediately and
completely uploads its buffered data to the data collector node,
and then resumes generating and buffering its data. If stillwithin
the communication coverage range the mobile node generates
data but uploads it virtually instantaneously.

In this work, we first use the Poisson Clumping Heuristic [25]
to provide analytic bounds on the expected hitting time, the



time a mobile node spends without communication coverage.
Then, using these derived bounds, we derive sufficient conditions
on node density that ensure that the expected hitting times are
guaranteed to be below a given time threshold and that the
probability of buffer overflow is below a given tolerance. Finally,
using simulations, we validate the sufficiency of our conditions.

Our contributions in this paper are the following:

• Derive analytic bounds on the expected time mobile nodes
spend without communication coverage.

• Provide sufficient node density conditions ensuring that the
expected time mobile nodes spend without coverage remains
below a fixed threshold.

• Derive analytic bounds on the rate at which mobile nodes
drop data due to buffer overflow.

• Provide sufficient node density conditions ensuring the rate
at which mobile nodes drop data, equivalently the proba-
bility of the hitting time exceeded that required for buffer
overflow, stays below a given tolerance.

• Validate/verify the derived results via simulations.

The rest of the paper is organized as follows. In Section II,
we state our network model. To introduce our methods, we first
derive results for a one-dimensional model in Section III. We then
derive and present our analytic results in Section IV. In Section V,
we validate via simulations the derived models/bounds. Finally,
we conclude the paper in Section VI.

II. DTN M ODEL

In this paper, we analyze the performances of mostly covered
DTNs for both one-dimensional (1-d) and two-dimensional (2-
d) node deployment models. For each node deployment model,
a number of fixed nodes (data collectors) are deployed in the
DTN region, where mobile nodes (data generators) move freely
in the region, following a Brownian motion. As they move,
mobile nodes are assumed to continuously generate and buffer
data independently from one another, at a ratec. When a mobile
node comes within the communication coverage range of a data
collector node, the mobile node immediately and completely
uploads its buffered data to the data collector node, and then
resumes generating and buffering its data. Each mobile nodeis
assumed to have a buffer space of sizeB bits, and when the
buffer is full, data is dropped.

Our focus in this work is on the study of dense DTNs. That is,
DTNs that are mostly covered, but not fully. Hence, the network
formed by the data collector nodes is assumed to be unconnected,
and the communication coverage ratio is assumed to be close
to 1. In these dense DTNs, as mobile nodes move, they will
eventually traverse a data collector’s communication coverage
area, and can then upload their buffered data. To this end, the
coverage ratio1 is assumed to be close to 1 throughout this paper,
and all the mathematical analysis in this work depends heavily
on this assumption.

We use node deployment models in the 1-d and 2-d models
with regularly repeating patterns which we will describe fully in
the forthcoming sections. Suffice it to say for now that in the1-d
model, each access node is exactly the same distance apart. The

1The coverage ratio is defined as the fraction of the area covered by collector
nodes’ communication ranges to that of the total DTN area.

2-d model is laid out on a square grid (with data collectors ateach
intersection) and extends in each direction, we assume, forever.
The assumption that the grid continues forever is unnecessary,
but considering the boundary behavior would add little to our
analysis. The assumption of a square grid is also unnecessary.
It is not hard to extend our analysis to other regularly-repeating
patterns like a triangular or hexagonal grid. The hardest part is
working out the trigonometry.

III. 1- D EXAMPLE

This section demonstrates our analysis by a simple example of
a DTN with a single user modeled by a one-dimensional diffusion
on a line. This helps to clarify our methods of analysis, though the
predictions of the model are significantly more accurate in two
dimensions than in one. As we will discuss in Subsection III-A,
this is partly due to the requirement of the Poisson Clumping
Heuristic that the stochastic process have a nonzero drift away
from the set we are interested in, in this paper this is the
uncovered area. In one dimension, standard Brownian motion
has zero drift (µ = 0) and it seems unrealistic to impose a value.
Therefore, the results derived in this section are only illustrative
and thus there was no need to validate them in Section V.

We describe the movement of a mobile node by a Brownian
motion, Xt, on a line of lengthn with the endpoints mapped
to each other, so as to avoid issues with the boundary. Geo-
metrically, this is equivalent to a Brownian motion on a circle
of circumferencen. Let w denote the number of access points,
each having radiusr. As shown in Fig. 1, let the positions of
the access points be{. . . ,− 2n

w ,− n
w , 0,

n
w , 2n

w , . . .}. The distance
between two neighboring access points is thenn

w . We assume
that the DTN is mostly covered, meaning that the coverage ratio
is close to 1 (i.e.,2rw/n ≈ 1). We also assume thatXt has drift
µ = 0 and varianceσ2 = 1.

Since the regions between any two access points are identical,
it suffices to consider just one uncovered area between two
neighboring access points. In particular, we consider the set
C0 occurring whileXt is between the access points located at
positions0 andn/w.

Definition 3.1: We defineCj for somej ∈ N to be the set of
times when the mobile node is within the uncovered area between
the access points located at0 andn/w. Formally,

Cj =
{

t : r < Xt <
n

w
− r
}

.

If the mobile node exits the interval[0, n/w] we record the times
when the mobile node is in the uncovered area in a new set of
times,Cj+1.

Consider two sets of times when the mobile node is in the
uncovered area,Cj andCk for somej, k ∈ N. We observe that
Cj 6= Ck if and only if there exists timest∗, tj ∈ Cj (so r <
Xtj < n/w − r), and tk ∈ Ck (so r < Xtk < n/w − r) such
that tj < t∗ < tk andXt∗ = 0 or n/w.

We would like to point out that for timest0 < t1 < t2 it is
possible for the mobile node to move such thatXt0 ∈ [r, n/w−
r], Xt1 ∈ (0, r), andXt2 ∈ [r, n/w − r] andXt ∈ (0, n/w) for
all t ∈ [t0, t2]. This is the case that the mobile node is initially in
the uncovered region, moves into either of the two neighboring
covered regions and returns to the uncovered region withoutever
hitting 0 orn/w, and thus we would not start recording a new set



Fig. 1. Linear geometry:w access points, each with a communication
coverage area of radiusr, are located on a circle of lengthn at positions
{. . . ,− 2n

w
,− n

w
, 0, n

w
, 2n

w
, . . .}; n/(2w) is the furthest distance of a mobile

node from an access point; thus the clump is the set of times (not the set of points
in space) when the mobile node is in the uncovered region, marked “clump.” We
supposen/(2w) is close tor.

of times even though the mobile node left the uncovered region.
Therefore it is possible thatCj is a disconnected set.

For a Brownian motion, the expected hitting time to the
endpoints of an interval[a, b], starting at a pointx such that
a < x < b is given byET (a, x, b) = (b − x)(x − a) [25]. Let
T1 be the random amount of time it takes a mobile node to hit
an access point from the timet immediately followingC0 (so
Xt = r or n/w − r and in either case the nearest access points
are at 0 andn/w). Thus,ET1 = (n/w− r)r, and if we letT2 be
the random amount of time it takes a mobile node to return back
to clumpC0 immediately after leaving an access point,ET2 = r2.
Hence, the expected length of the total blockT0 = T1+T2, or the
expected amount of time required for the mobile node to walk
from an access point to an uncovered area and back to an access
point is

ET0 = rn/w. (1)

Under specific assumptions, we can say thatT0 is approximately
exponentially distributed with parameterwrn when rw

n ≤ 1

2
is

sufficiently large [25]. These specific assumptions are explained
in the following subsection, Subsection III-A.

A. Poisson Clumping Heuristic

Given a time-dependent stochastic process, and a setA, if the
arrival times toA are memoryless (specifically, the distribution
of arrival times toA is exponential) and the process intersects the
setA rarely (relative to the set of times the process could arriveat
A which is the total time interval), then we can approximate the
behavior of this process’ arrivals to the set by the Poisson Process.
In the Poisson Process, the inter-arrival times, denotedT , of the
process to the setA are exponentially distributed, with parameter
λ, and the random variable for the number of times the mobile
node hits an access point up to timet is Poisson, with parameter
λt. In the language of the heuristic,λ is called the clump rate,
so named because the random sets of times, denotedC, that the
process spends in the areaA appear to “clump” together. The
approximations given by the Poisson Clumping Heuristic improve
if the process is unlikely to return toA immediately after leaving
A; there should typically be some drift away fromA. Let π(A)
be the probability (with respect to the stationary distribution) that
the process is inA. The main result of the heuristic is:

π(A) = λEC. (2)

The assumption that the interarrival times follow an exponential
distribution additionally gives us thatλ = 1/T , whereT is the

hitting time [25]. In our particular application to a DTN with a
single user modeled by a one-dimensional diffusion on a line,
this is analogous to the total block size,T0, with expected value
given by Equation 1.

The heuristic itself does not prescribe a universal definition
of what does and does not constitute a clump, choosing instead
to require “sufficiently long inter-arrival times” and arrivals to
A being “sufficiently rare.” The reason for this is that at any
scale, whether we look at the time interval[0, 100] or [0, 109] the
Poisson process yields the same clumping behavior: the process
returns to the areaA after a “long time,” relative to the scale of
the time interval, and the clump size|C| is small (but nontrivial),
relative to the scale of the time interval.

In practice, the process being modeled by the heuristic willnot
be approximated equally closely at all scales. So even though the
heuristic does not call for it, we indirectly affect the length of
the interarrival times by specifying a condition on the element
of the model over which we have the most direct control: as in
Definition 3.1 we define the exact point the mobile node has to
reach before we say it has exited the clump for good. After the
process hits this point, and subsequently returns to the set, we
record the times when the mobile node is in the uncovered area
in a new set of times.

B. Performance Analysis

Let ν = w/n andη = 2rw/n denote respectively the access
point density and the communication coverage ratio, where again
r represents the radius/range of the communication coveragearea
of an access point. We begin by deriving some useful statistics
(expected time without coverage and bit loss rate) for this toy
example and use these to derive a function relating the density
of access points to the expected amount of time spent without
coverage and to the data loss rate.

Proposition 3.2:For sufficiently largeη, the expected time a
mobile node spends without communication coverage isr

ν −2r2.
Proof: The average clump rate,λ0, is the inverse of the

expected timeET0 of the total block size, and thus it follows
from Eq. (1) thatλ0 = 1

ET0
= ν

r . The expected clump size,EC0,
can then be expressed as

EC0 =
π(A0)

λ0

=
π(A0)r

ν

whereπ(A0) is the probability of being in the clump. Now, by
noting that the probability of being in our clump,π(A0), can
also be expressed as

π(A0) =
n− 2rw

n
= 1− 2rν

we can writeEC0 = r/ν − 2r2.
Let us now assume that each mobile node has a data buffer of

capacityB bits, and that when the buffer becomes full, data is
dropped (due to buffer overflow). Recall that data is generated
at a constant ratec, and is fully uploaded when the mobile
node reaches an access point’s communication range. In what
follows, let τ = B/c, which represents the amount of time
required to overflow the buffer of the mobile node.

Corollary 3.3: For a sufficiently small thresholdτ , the ex-
pected time a mobile node spends without communication cov-



erage is guaranteed to remain belowτ if the densityν of access
points is abover/(τ + 2r2).

Proof: Proof follows from Proposition 3.2.
Data loss occurs when the buffer of the mobile node overflows,

and the buffer of the mobile node overflows when the time
the mobile node spends without communication coverage in the
interval (r, n/w − r) exceedsτ . Denote the first hitting time of
the process tor or n/w − r by T ∗ = Tr ∧ Tn/w−r. Hence, the
data loss rate equalsP (T ∗ > τ).

Proposition 3.4:For sufficiently largeη, the data loss rate of
a mobile node is bounded above by(r/τ)(1/ν − 2r).

Proof: Denote the first hitting time of the process tor or
n/w−r by T ∗ = Tr∧Tn/w−r. Since the interval(r, n/w−r) ⊂
[0, n/w], we observe thatP (T ∗ > τ) < P (|C0| > τ).

Now, using Markov’s Inequality, we can writeP (|C0| > τ) <
EC0/τ , yielding an upper bound of(r/τ)(1/ν − 2r) on the
achievable data loss rates.

We provide the following sufficient condition on the densityof
access points to guarantee data loss rates due to buffer overflow
remain below some condition on the rateε.

Corollary 3.5: For sufficiently largeη, data loss rates are
guaranteed to remain below the rate conditionε if the density
ν of access points satisfiesr/(ετ + 2r2).

Proof: Recall that the data loss rate is bounded above by
(r/τ)(1/ν − 2r). Hence, it suffices that(r/τ)(1/ν − 2r) ≤ ε or
equivalentlyν ≥ r/(ετ + 2r2) to ensure that the data loss rate
does not exceed the thresholdε.

IV. 2-D DTN M ODEL

We consider that mobile nodes follow a Brownian motion and
move in a 2-dimensional plane. Collector nodes are placed inthe
plane to form a grid. We assume that each of the collector nodes
has a circular coverage region with radiusκ. The spacing distance
D between two neighboring collector nodes is assumed to be
larger than

√
2κ. This distance is also assumed to be smaller than

2κ so as to ensure that the DTN contains regions of no coverage,
referred to as uncovered regions, that are disconnected. Asshown
in Fig. 2, we then draw a square of side lengthD around each
uncovered region, with the center of each region placed in the
middle of the square. Each corner of each square correspondsto
one collector node.

We make two observations before proceeding with our deriva-
tion and analysis. First, the problem is symmetric, and hence
studying one square suffices. Note that once a mobile node
reaches the edge of a square coming from the edge of an
uncovered region, returning back to the same region or another
one makes no difference vis-a-vis of our clumping analysis.
Second, because the uncovered region has an odd shape and our
boundary region has a square shape, it is too difficult to derive
the exact clump rate. Instead, we derive bounds on the clump
rate.

We inscribe the largest possible circle in the uncovered region,
centered at the center of the square, and denote the radius of
the circleρ1. We also circumscribe the smallest possible circle
around the uncovered region, centered at the center of each
region, and denote the radius of this circleρ2. The geometry
of this grid is shown in Fig. 2.

In our model, the distribution of hitting times satisfies the
assumptions in Subsection III-A regarding the rarity with which

Fig. 2. Grid geometry: the uncovered area (the star shape) isbounded by
two circles, one of radiusρ2 from within and one of radiusρ1 from without,
which will be used to calculate bounds on the expected time a mobile node
spends outside the communication coverage area.D is the distance between two
neighboring collector nodes;κ is the radius of the communication coverage area
of a collector node.

the mobile node hits the uncovered area because of the assump-
tion of a high coverage ratio, and the fact that the drift for the
radial part of Brownian Motion, given by the Bessel Process,
has driftµ(r) = 1/(2r), wherer is the Euclidean distance of the
Brownian Motion from the origin.

Let π(C) be the probability (given by the stationary distri-
bution) that the process is in the uncovered region andEC the
expected amount of time spent in the uncovered region. We recall
the main result of the heuristic,π(C) = λEC, described in
Subsection III-A.

The time a mobile node spends with communication coverage
corresponds to the time it takes a mobile node to reach the edge
of the square from the edge of an uncovered region, and then to
return to one of the uncovered regions again.

To derive an upper bound, we first investigate a radial diffusive

process on an inner disk with radiusρ1 = 1

2
D−

√

κ2 − 1

4
D2 and

an outer disk with radiusR1 = 1

2
D centered at the same point

(these boundaries are shown in Fig. 2). We then investigate a
radial diffusive process on an inner disk with radiusρ2 =

√
2

2
D−

κ and an outer disk with radiusR2 =
√
2

2
D to find a lower bound

on the clump rate. We can see that with these two disks, we are
inscribing the square within a disk and another within the square,
as is shown in Fig. 2. The geometric properties of the square
allow for a probabilistic coupling construction, where theradial
Brownian motion on a square region is stochastically dominated
from above and below by the radial Brownian motions (Bessel
processes) whose boundary conditions are respectively theinner
and outer circle. A similar geometric approach to provide upper
and lower bounds on the hitting time, using the same function
derived in Proposition 4.1, is used in [27].

Since we are investigating the radial diffusive process on a
disk with radiusRi centered at the center of a circle of radius
ρi wherei ∈ {1, 2}, the Brownian motion in either case can be
modeled as a Bessel process with parameter 2, i.e., with drift
µ(r) = 1

2r and varianceσ2 = 1 [28].



A. Inner and Outer Disks of Radiiρi andRi > ρi

Let us now consider a disk of radiusρi centered in a disk of
radiusRi > ρi as shown in Fig. 2, wherei ∈ {1, 2}. Let us
assume that a mobile node moves inside the disk of radiusRi,
and it bounces back when it hits the boundary of the disk. We
define then the smaller disk of radiusρi to be our clump, and
the hitting time to be the time between two consecutive clump
visits. The hitting time is then the time it takes a mobile node to
reach the boundary of the outer disk of radiusRi given it just
left the inner disk of radiusρi plus the time it takes a mobile
node to hit back the inner disk given that it just bounced back
from hitting the boundary. The expected value of this hitting time
is derived from Lemmas 4.2 and 4.3 and stated in the following
proposition.

Proposition 4.1:For a smaller disk of radiusρi centered in the
larger disk of radiusRi, the expected hitting time ish(ρi, Ri),

whereh(ρ,R) = R2 ln
∣

∣

∣

R
ρ

∣

∣

∣.

For one pair of inner and outer circles, of radiiρ andR, the
hitting time is defined as the sum of the amount of time the
mobile node spends traveling from the edge of the uncovered
region to the boundary of the larger disk (with expected value
denotedEρ[TR]), and the time spent returning from the edge of
the larger disk to the boundary of the communication disk (with
expected value denotedER[Tρ]). We calculate these two means
in the following lemmas.

Lemma 4.2:Eρ[TR] =
1

2

(

R2 − ρ2
)

.
Proof: Consider the radial interval[a,R], where ρ is in

this interval. LetEρ[min{Ta, TR}] be the expected time that it
takes to hit eithera or R given that we start atρ. Because the
Bessel process has a drift away from the origin that becomes
large as we approach the origin, then the expected timeEρ[TR]
it takes to hit the boundary given we are atρ is equal to
lima→0 Eρ[min{Ta, TR}].

From Eq. (15.3.12) in [28], it follows that the expected hitting
time Eρ[min{Ta, TR}] equals

∫ ρ

a

2m(y)
(S(R)− S(ρ))(S(y)− S(a))

S(R)− S(a)
dy

+

∫ R

ρ

2m(y)
(S(ρ)− S(a))(S(R)− S(y))

S(R)− S(a)
dy

where S(x) = ln |x| and m(x) = x are the speed function
and speed density of the Bessel process. Integrating the above
expression yieldsEρ[min{Ta, TR}] to be equal to

2

ln(R/a)

[

ln(R/ρ)a2
(

1

2

(ρ

a

)2
(

ln(ρ/a)− 1

2

)

+
1

4

)

− ln(ρ/a)R2

(

−1

4
− 1

2

( ρ

R

)2
(

ln(ρ/R)− 1

2

))]

.

Whena goes to0, the first term goes toρ2 ln
(

R
ρ

)

and the second

term goes toR2

(

1

2
+
(

ρ
R

)2 [

ln
(

ρ
R

)

− 1

2

]

)

. Since Eρ[TR] =

lima→0 Eρ[min{Ta, TR}], it then follows thatEρ[TR] =
1

2
(R2−

ρ2).
Lemma 4.3:ER(Tρ) = R2 ln |Rρ | − 1

2

(

R2 − ρ2
)

.
Proof: Let∆ be small and assume that whenever our process

hitsR that it jumps instantaneously toR−∆. Taking the limit as

∆ approaches zero will makeR a reflecting boundary. By letting

p∆ = PR−∆(Tρ < TR)

a∆ = ER−∆(Tρ|Tρ < TR)

b∆ = ER−∆(TR|TR < Tρ)

one can writeER−∆[min{Tρ, TR}] = p∆a∆ + (1− p∆)b∆.
By Wald’s Theorem, we find thatER−∆(Tρ)

= p∆a∆ + (1− p∆)p∆(a∆ + b∆)

+(1− p∆)
2p∆(a∆ + 2b∆) + · · ·

= a∆ +
b∆(1− p∆)

p∆

=
1

p∆
ER−∆(Tρ∧TR

)

From Eq. (15.3.10) [28], it follows

PR−∆(Tρ < TR) =
S(R)− S(R −∆)

S(R)− S(ρ)
.

and from Eq. (15.3.12) [28], it followsER−∆[min{Tρ, TR}]
equals

∫ R−∆

ρ

2(S(R)− S(R−∆))(S(y)− S(ρ))

S(R)− S(ρ)
m(y)dy

+

∫ R

R−∆

2(S(R−∆)− S(ρ))(S(R)− S(y))

S(R)− S(ρ)
m(y)dy.

From this, we can writeER−∆(Tρ) as

2

∫ R−∆

ρ

(S(y)− S(ρ))m(y)dy

+
2(S(R−∆)− S(ρ))

S(R)− S(R−∆)

∫ R

R−∆

(S(R)− S(y))m(y)dy.

Substituting in our functions and solving, we can write
ER−∆(Tρ) as

ρ2 ln |R−∆

R |
[

(R−∆

ρ )2(ln |R−∆

ρ | − 1

2
) + 1

2

]

ln |R−∆

R |

−
ln |R−∆

ρ |
[

(R−∆

R )2(ln |R−∆

R | − 1

2
) + 1

2

]

ln |R−∆

R |
.

Now, by taking the limit as∆ goes to zero, we findER(Tρ) =
R2 ln |Rρ | − 1

2

(

R2 − ρ2
)

.
We can now combine our two lemmas to prove Proposition

4.1.
Proof of Prop. 4.1: For one pair of inner and outer circles,

of radii ρ and R, the hitting time is the sum ofEρ[TR] and
ER[Tρ], derived respectively in Lemmas 4.2 and 4.3; therefore
h(ρ,R) = R2 ln |Rρ |.

The following corollary, which is an immediate applicationof
the hitting time function,h, is used throughout to derive the main
results of this paper.

Corollary 4.4: For a star-shaped inner region and a square
boundary of side lengthD, the expected hitting time is lower
bounded byh(ρ1, R1) and upper bounded byh(ρ2, R2).

Looking back over the results we have derived, in order to
perform our analysis on a different node deployment structure of
regularly-repeating shapes (e.g. triangles, squares, hexagons), we



just need to calculate the radii of the four circles we used: the
radiusρ2 of the largest circle contained in the uncovered region,
the radiusρ1 of the smallest circle containing the uncovered
region, the radiusR1 of the largest circle that can be contained
in one of the shapes and the radiusR2 of the smallest circle
containing one of the shapes, each in terms ofκ andD. Then,
computing the upper bounds and sufficient conditions can be
done by applyingh(ρi, Ri) for eachi and proceeding through
the calculations in the proofs.

B. Upper Bounds and Sufficient Conditions

We now derive upper bounds on the expected hitting times,
and provide sufficient conditions on node density that guarantee
that the expected time the mobile node spends without coverage
does not exceed a given threshold. We define the node densityν
to be equal to1/D2.

Given that each mobile node has a data buffer with a limited
capacity ofB bits, it may happen that the buffer overflows,
causing data to be dropped. Again, letτ = B/c represent the
time required to overflow the buffer of the mobile node.

Proposition 4.5:The expected amount of time a mobile
node spends without communication coverage,EC, is bounded
above by

κ√
2ν

(

1− 2

√

κ2ν − 1

4

)

.

Proof: The probability of being in the uncovered region,
π(C), is the ratio of the expected amount of time the mobile
node spends in the clump,EC, to the expected amount of time
the mobile node spends between clumps,ET . More formally,
π(C) ≈ EC

ET . From Corollary 4.4, it follows then that

π(C) · h(ρ1, R1) ≤ E(C) ≤ π(C) · h(ρ2, R2).

From a geometric argument, we can find the area of the uncov-
ered region and divide it by the area of the square surrounding
it to find π(C),

π(C) = 1− 2

√

κ2ν − 1

4
− πκ2ν + 4 cos−1

(

1

2
√
κ2ν

)

· κ2ν,

where theπ in the right hand side of the equation is the constant
and theπ on the left hand side of the equation is the terminology
for the stationary distribution.

Because1
4
≤ κ2ν ≤ 1

2
, we can then write

π(C) ≤ 1− 2

√

κ2ν − 1

4
.

Now since
− 1

2ν
ln
(

1−
√
2κ2ν

)

≤ κ√
2ν

,

then,

E(C) ≤ κ√
2ν

(

1− 2

√

κ2ν − 1

4

)

.

Corollary 4.6: For a sufficiently small threshold,τ , (where we
requireτ ≤ 2κ2 for the square root to remain real), the expected
time a mobile node spends without communication coverage is
guaranteed to remain below the threshhold (i.e.,EC ≤ τ ) if the

densityν of collector nodes satisfies

ν ≥ 2 ·
(

κ

τ +
√
4κ4 − τ2

)2

.

Proof: Proposition 4.5 provides an upper bound onEC, so
it suffices that

κ√
2ν

(

1−
√

4κ2ν − 1
)

≤ τ

in order for the expected time to remain belowτ .
By letting ν̂ = κ2ν, the above inequality becomes

κ2

√
2ν̂

(

1− 2

√

ν̂ − 1

4

)

≤ τ.

Now, solving for ν̂, we find
√

ν̂ − 1

4
≥ −1

2

(√
2ν̂τ

κ2
− 1

)

.

Because1
4
≤ ν̂ ≤ 1

2
andτ ≤ κ2, we have that

−1

2

(√
2ν̂τ

κ2
− 1

)

≥ 0.

This implies that
(

τ2

2κ4
− 1

)

(√
ν̂
)2

−
√
2τ

2κ2

√
ν̂ +

1

2
≤ 0.

The leading coefficient is negative, so this is a parabola in
√
ν̂

that opens downwards. Using the quadratic formula to find the
roots of this polynomial in

√
ν̂, (note one root will be negative,

which is impossible for a square root, so we only need to concern
ourselves with the positive root),

√
ν̂ ≥

√
2τ

2κ2 −
√

τ2

2κ4 + 2
(

1− τ2

2κ4

)

2
(

τ2

2κ4 − 1
)

which implies that

ν̂ ≥ 2 ·





1

τ
κ2 + 2

√

1− 1

4

(

τ
κ2

)2





2

.

Replacinĝν by νκ2 results in the sufficient node density stated in
the corollary, which guarantees that the expected time a mobile
node spends without communication coverage will be less than
the threshold,τ .

We now provide a condition on the node density that is
sufficient to keep the data loss rate below a threshhold,ε. Note
that ε is a condition on the rate at which buffer overflow can
occur, andτ is a condition on the amount of time the mobile
node can spend in the uncovered region.

The mobile node overflows its buffer exactly when the mobile
node spends an amount of time outside the communication range
that exceedsτ . Denote byT ∗ the first time the mobile node hits
the communication range. The data loss rate is thenP (T ∗ > τ).
We do not deal directly with the case that the mobile node hitsthe
covered region while inC but note that our sufficient condition
still holds, becauseP (T ∗ > τ) < P (|C| > τ).

Proposition 4.7:For sufficiently large communication cover-



age ratio (and requiring1
4
≤ κ2ν ≤ 1

2
), the data loss rate of a

mobile node is bounded above according to

P (|C| > τ) <
κ

τ
√
2ν

(

1− 2

√

κ2ν − 1

4

)

.

Proof: Since the uncovered region is contained in Markov’s
Inequality yields

P (|C| > τ) < E(C)/τ.

And, from Proposition 4.5, we have

E(C) ≤ κ√
2ν

(

1− 2

√

κ2ν − 1

4

)

.

Combining these two inequalities yields the stated upper bound
on the data loss rate.

The following sufficient condition guarantees that data loss
rates remain below the threshold rateε.

Corollary 4.8: The data loss rates are guaranteed to remain
below the threshold rate,P (|C| > τ) < ε if the densityν of
collector nodes satisfies

ν ≥ 2 ·
(

κ

τε +
√

4κ4 − (τε)2

)2

.

Proof: If we requireP (|C| > τ) < ε, then it is sufficient to
require (by Markov’s Inequality)

P (|C| > τ) <
EC

τ
< ε

and we showed in Corollary 4.6 and Proposition 4.7 thatEC <
ετ if the node densityν satisfies the resulting inequality.

V. V ERIFICATION AND VALIDATION

Through simulations, we first validate the use of the Poisson
Clumping Heuristic by measuring the expected hitting timesand
comparing them against the derived bounds, and then verify the
derived sufficient conditions on node density by mimicking and
simulating a Brownian motion.

A. Poisson Clumping Heuristic Validation

Recall that, as illustrated in Section III-A, the derived theoret-
ical results are based on the assumption that the 2-D Brownian
motion in dense networks yields approximately exponentially
distributed intermeeting times (i.e., times without communication
coverage are exponentially distributed), thus allowing usto use
the Poisson Clumping Heuristic approach. In this section, we
focus on validating the Poisson Clumping Heuristic approach by
simulating and measuring the hitting times of a Brownian motion
in the 2-D model, and comparing them with the theoretical upper
bound (in Corollary 4.4) for a fixed value ofκ. Recall thatD
can range, for fixedκ, from 2κ, where the circles of the covered
regions just barely touch, to

√
2κ, where the circles overlap so

that the uncovered region is at its smallest; the coverage ratio η
varies respectively from about 0.7854 to 1. In our simulation, we
setκ = 5.

We use Matlab to simulate 2-D Brownian motion in a square by
generating a displacement and angle of the displacement(rt, θt)
for t ∈ [0, . . . ,∞). We generate a normal random variable with
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Fig. 3. Measured and theoretical hitting times for 2-d Brownian motion on a
square withκ = 5 andD ranging from

√
2κ to 2κ.

distribution (µ = 0, σ2 = 1) for the displacement of the mobile
node, and a uniform random number selected from[0, π] for the
angle that the mobile node’s path makes with the x-axis. There-
fore the position of the mobile node at any timeT , described in
x- and y-coordinates is(

∑T
i=0

ri cos(θi),
∑T

i=0
ri sin(θi)).

Shrinking the displacement to zero increases the accuracy
of the simulation in modeling simple Brownian motion, but it
increases the computation time. We finds = 0.2 to be a good
choice for the step-size.

Because of symmetry, simulating 2-D Brownian motion on a
plane is equivalent to simulating it on a square of side length
D with 4 collector nodes each located at one corner and an
uncovered area located at its center. The covered region then
is the area withinκ of any corner. If the simulated Brownian
motion exits the square, it is equivalent to continue the simulation
with the mobile node placed back inside the box at the opposite
position. Fig. 3 shows that the simulated times are well bounded
by the derived upper bounds for a range of values forη, and as
expected, the higher the coverage, the tighter the bound.

B. Sufficient Node Density Conditions Verification

In this section we test and verify the sufficient conditions on
node density stated in Propositions 4.5 and 4.7 to ensure that the
time required to overflow the buffer of the mobile node and data
loss rate remain below a threshold.

We verify the sufficient condition for the expected time a
mobile node spends without communication coverage to be
guaranteed to remain below a threshold,τ , for a range of values
of κ: 5, 20, 35 and 50, and forD near to

√
2κ for each (1.45κ to

1.78κ). We calculate the sufficient density from Proposition 4.5,
which is a function ofτ andκ.

The assumption of the heuristic that the region is mostly
covered imposes another condition on the scale of the times
we can choose for our thresholdτ . Our simulation will yield
random times spent in the covered region between arrivals to
the uncovered region, of whichEC represents an average, and
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Fig. 4. The measured and the derived upper bound (Proposition 4.5) on the
time a mobile node spends without communication coverage when varyingD at
values near

√
2κ, for κ = (5, 20, 35, 50). The negative exponential relationship

is most clear whenκ = 5 and looks linear in the other graphs. For some values of
κ, namelyκ = 5 and 50, the time spent without coverage is below the threshold
for values ofD relatively small when compared to the sufficient condition.The
sufficient condition is much tighter forκ = 20 and 35. The relationship between
κ, D, τ , and the tightness of the sufficient condition is not well understood but
seems to depend on the star shape of the uncovered region.
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Fig. 5. The measured and the derived upper bound (Proposition 4.5) on the rate
at which a mobile node drops data due to buffer overflow.D varies over values
near

√
2κ, for κ = (5, 20, 35, 50). Since the mobile node drops data exactly

when the time spent without coverage exceeds the threshold,we see the same
relationship with the ratio of the density to the sufficient density as in Figure 4.

we recall from the heuristic,EC ≤ π(C)h(ρ2, R2), so we want
to pick τ close toπ(C)h(ρ2, R2). The valueh(ρ2, R2) is the
expected value of the (exponential) distribution of the time spent
between arrivals to the uncovered region, but the heuristicis most
accurate in the tail of the distribution, so we can improve our
accuracy by picking a timeT equal to the 99th percentile of the
exponential distribution. Therefore we useT such that

0.99 =

∫ T

−∞

1

h(ρ2, R2)
e
− 1

h(ρ2,R2)x dx.

Since we scale the radial displacement of the Brownian motion
by s = 0.2, we want τ such that2s2τ = π(C)T . Therefore
τ = (π(C)T )/0.08.

For each ratio of the node density to the sufficient density (for
each value ofD) we simulate the process and measure the time
spent outside the coverage for each value ofκ. The results are
presented in Fig. 4

We do the same for the sufficient condition on the averate
data loss rate, setting the acceptable probability of the mobile

node overflowing its buffer at 60% (soε = 0.6) and τ chosen
according to the process described above. The results are pre-
sented in Fig. 5.

To summarize, through simulations, we are able to support the
use of the Poisson Clumping Heuristic techniques and illustrate
the applicability of the sufficient conditions on the node density.

VI. CONCLUSION

In this paper, we derived theoretical bounds on data loss rates
and packet delays in mostly covered DTNs for both the 1-
d and the 2-d node deployment models. For each model, we
first provided analytic bounds/approximations on the expected
time mobile nodes spend without communication coverage, and
derived sufficient conditions ensuring that these times areguar-
anteed to remain below a given threshold. We then analyzed
the data loss rates that mobile nodes experience by providing
upper bounds on the achievable data loss rates, and by deriving
sufficient conditions that (statistically) guarantee thatthese rates
remain below a given threshold. We verified our obtained models
via simulations.
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