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Abstract— We derive theoretical performance limits of densely also been intensively studied, but mostly in the contextafé-
covered delay-tolerant networks (DTNs). In the DTN model we scale networks only. In [15], the authors derived an upp&ndo
study, a number of fixed (data collector) nodes are deployedni 4 the delay sufficient for disconnected networks to become

the DTN region where mobile (data generator) nodes move frée o . .
in the region according to Brownian motion. As it moves, each connected through node mobility. The work in [16] derivee th

mobile node is assumed to continuously generate and bufferata. Minimum node density required to ensure connectivity igear
When a mobile node comes within the communication coverage static networks.

range of a data collector node, the mobile node immediately rai In contrast, this work aims at deriving analytic upper bosiod
completely uploads its buffered data to the data collector ade, the expected time a mobile node spends without communitatio

and then resumes generating and buffering its data. In this pper, . -
we first derive analytic bounds on the amount of time a mobile COVErage in mostly, but not fully, covered DTNs as a function

node spends without communication coverage. Then, using ¢se Of the communication coverage ratio; i.e, DTNs whose cayera
derived bounds, we derive sufficient conditions on node deitg that  ratio is close to one. Intermeeting times, defined as the ime

statistically guarantee that the expected amount of time sgnt in the  mobile node spends before running into another node, hase be
uncovered region remains below a given threshold. Additioally, we derived in [24] for the generalized hybrid random walk mipil
derive sufficient conditions on node density to keep the pradbility del. Additi IV La 1241 sh that the distribution i
of buffer overflow below a given tolerance. mo Gj\ s itionally, La [24] S ows that the aistribu !on '_ _e_r-
meeting times can be approximated by an exponential digioit
when mobile nodes move independently from one another and
|. INTRODUCTION when the probability of establishing communication linksang

Delay-tolerant networks (DTNSs) are a class of networks thapdes is relatively low. This result provides support for ase
are, by nature, partially covered or intermittently corteéc As ©f @ 2-D Brownian Motion model of a mobile node, which we
a consequence, traditional end-to-end routing paradigrag m\Vill Show also has approximately exponential intermeetinges
not be the most effective in delivering data across nodes, dff'der the assumptions of the Poisson Clumping Heuristi¢ [25
to the absence of multi-hop paths. In such sparse netwofR§d described in more detail in Subsection III-A). _
data delivery is only possible through tiséore-carry-and-drop Cai et "’,‘" [26,] show that when removing the bgundarles
routing approach, which relies on node mobility to carryadat’n & two-dimensional random walk model, intermeeting times
Therefore, applications supported by these networks giely follow power-layv dls_trlbunons, but not_exponennal onddis
delay insensitive/tolerant, as data packets are expeategperi- 90€S not conflict with our model. It is well-known that the
ence some delay before reaching their destinations. DTMe ha D random walk is only recurrent on bounded regions and
recently attracted significant interest in the context ofbip ransient otherwise, whereas 2-D Brownian Motion is always
sensor networks (e.g., event/data collection [1-3], ahimani- recurrent. Given a small region about the origin, this is the
toring/tracking [4, 5], mobile ubiquitous LAN extensions, F]), difference I_aetvv_ee_n_the mobile node retur_nlng only f|n_|te‘llyen
and continue to find new applications, for instance in velaicu @"d returning infinitely often to the region, respectivesyd
networks (e.g., [8-10]). explains why the distribution of 2-D random walk intermegti

Due to their importance and wide range of applications,eheimes has a shorter tail (lower probability of high valuesart
has been considerable research focus on DTN, ranging frem ph€ distribution of 2-D Brownian Motion hitting times.
tocol design [11-14] to connectivity analysis [15-17] arafag In the DTN model we study, a numk_Jer of fixed ”00_‘65 (also re-
modeling and characterization [16, 18-22]. The work in [aggs fered to asaccess poinjsare deployed in the DTN region, where
continuum percolation theory [23] to show how delays in gargn°Pilé nodes (also referred to data generatorsmove freely
wireless networks scale with the Euclidean distance betwe8 the region by following a Brownian motion. As it moves, Bac
the sender and the receiver. Speed of information propmgatfnoPile node is assumed to continuously generate and buffer d
has recently also been studied analytically for static 198, When a mobile node comes within the g:ommuni_cation_coverage
as well as mobile [20-22] DTNs. The authors in [19] deriveff"9€ Of a data collector node, the mobile node immediatedy a
upper bounds on the maximum propagation speed in |ar§é)_mpletely uploads its buf_fered data to _the.data coIIeclmll‘em
scale wireless networks, and those in [21] derived analysiper 2nd then resumes generating and buffering its data. Ifveitiiin
bounds on information delay in large-scale DTNs with pdesibthe communication coverage range the mobile node generates

mobility and intermittent connectivity. Network connedty has dat@ but uploads it virtually instantaneously. o
In this work, we first use the Poisson Clumping Heuristic [25]

This work was supported, in part, by the National SciencenBation (NSF). to provide analytic bounds on the expected hitting time, the



time a mobile node spends without communication coveraged model is laid out on a square grid (with data collectorssath

Then, using these derived bounds, we derive sufficient tiondi intersection) and extends in each direction, we assumeydar

on node density that ensure that the expected hitting times @ahe assumption that the grid continues forever is unnepgssa

guaranteed to be below a given time threshold and that that considering the boundary behavior would add little t@ ou

probability of buffer overflow is below a given tolerancenéily, analysis. The assumption of a square grid is also unnegessar

using simulations, we validate the sufficiency of our caodi. It is not hard to extend our analysis to other regularly-eding
Our contributions in this paper are the following: patterns like a triangular or hexagonal grid. The hardesdt ipa

« Derive analytic bounds on the expected time mobile nod¥®rking out the trigonometry.
spend without communication coverage.

« Provide sufficient node density conditions ensuring that th lIl. 1-D EXAMPLE
expected time mobile nodes spend without coverage remaind his section demonstrates our analysis by a simple exanfiple o
below a fixed threshold. a DTN with a single user modeled by a one-dimensional diffuisi

« Derive analytic bounds on the rate at which mobile nodem a line. This helps to clarify our methods of analysis, ttothe
drop data due to buffer overflow. predictions of the model are significantly more accurateno t

« Provide sufficient node density conditions ensuring the radimensions than in one. As we will discuss in SubsectiorAlll-
at which mobile nodes drop data, equivalently the probthis is partly due to the requirement of the Poisson Clumping
bility of the hitting time exceeded that required for buffeHeuristic that the stochastic process have a nonzero dviiy a
overflow, stays below a given tolerance. from the set we are interested in, in this paper this is the

» Validate/verify the derived results via simulations. uncovered area. In one dimension, standard Brownian motion

The rest of the paper is organized as follows. In Section f1as zero drift 4 = 0) and it seems unrealistic to impose a value.
we state our network model. To introduce our methods, we firsferefore, the results derived in this section are onlysitiative
derive results for a one-dimensional model in Section I then and thus there was no need to validate them in Section V.

derive and present our analytic results in Section IV. Inisa¢/, ~ We describe the movement of a mobile node by a Brownian
we validate via simulations the derived models/boundsalfin motion, X;, on a line of lengthn with the endpoints mapped
we conclude the paper in Section VI. to each other, so as to avoid issues with the boundary. Geo-

metrically, this is equivalent to a Brownian motion on a lgrc
of circumferencer. Let w denote the number of access points,

Il. DTN MobEL each having radius. As shown in Fig. 1, let the positions of
In this paper, we analyze the performances of mostly coverg@ access points be.., _%", —20,2, %17 ...}. The distance

DTNs for both one-dimensional (1-d) and two-dimensional (between two neighboring access points is tHenWe assume
d) node deployment models. For each node deployment modght the DTN is mostly covered, meaning that the coverade rat
a number of fixed nodes (data collectors) are deployed in tReclose to 1 (i.e.2rw/n ~ 1). We also assume thaf, has drift
DTN region, where mobile nodes (data generators) moveyfreg] — ¢ and variancer® = 1.
in the region, following a Brownian motion. As they move, Since the regions between any two access points are idegntica
mobile nodes are assumed to continuously generate andr bufesuffices to consider just one uncovered area between two
data independently from one another, at a raté/hen a mobile neighboring access points. In particular, we consider e s
node comes within the communication coverage range of a dgfaoccurring while X, is between the access points located at
collector node, the mobile node immediately and completefysitions0 andn /w.
uploads its buffered data to the data collector node, and the Definition 3.1: We defineC; for somej € N to be the set of
resumes generating and buffering its data. Each mobile rdeimes when the mobile node is within the uncovered area letwe
assumed to have a buffer space of sizebits, and when the the access points located @andn/w. Formally,
buffer is full, data is dropped. n

Our focus in this work is on the study of dense DTNSs. That is, Cj = {’5 r <Xy < w 7’} .
DTNs that are mostly covered, but not fully. Hence, the nekwo . . . .
formed by the data collector nodes is assumed to be unccmhec'tf the mobile nc_)de exits _th‘? intervd, n/w] we reco_rd the times
and the communication coverage ratio is assumed to be cl&‘éée“ the mobile node is in the uncovered area in a new set of
to 1. In these dense DTNs, as mobile nodes move, they wiines: Cj1- . . .
eventually traverse a data collector's communication caye Consider two sets of times wher_l the mobile node is in the
area, and can then upload their buffered data. To this erd, coverec_i ared; angl Cj for someyj, k € FI We observe that
coverage ratié is assumed to be close to 1 throughout this papef’ # Ci it and only if there exists times”, #; € Cj (sor <

and all the mathematical analysis in this work depends hea thtjtt< ”/tlf _:)' ar:jd)? G_CO'k (sor < Xy, < n/w-—r)such
on this assumption. att; <t* <tp andX;. =0 orn/w.

We use node deployment models in the 1-d and 2-d modelsWe would like to point out that for time, <1 <t itis

[ i ' i ; ; ible for the mobile node to move such tha} € [r,n/w —
with regularly repeating patterns which we will describdéyfun POSs! ,
the forthcoming sections. Suffice it to say for now that in thé rl, Xy, € (0,r), and Xy, € [r,n/w —r] and X; € (0, n/w) for

model, each access node is exactly the same distance apart.alIJ t € [to, 1] This IS the case t.hat thg mobile node is |n.|t|aIIy n
the uncovered region, moves into either of the two neighgpri

1The coverage ratio is defined as the fraction of the area edviey collector cpv_ered regions and returns to the uncovered reg"?” witbwert
nodes’ communication ranges to that of the total DTN area. hitting 0 orn/w, and thus we would not start recording a new set



hitting time [25]. In our particular application to a DTN \ita

n . . . . . .
_2L W single user modeled by a one-dimensional diffusion on g line
_% -W-r 0 r an this is analogous to the total block siZ&,, with expected value
[ - i given by Equation 1.
T I I = . . . . .
—t » —t— The heuristic itself does not prescribe a universal definiti
clump of what does and does not constitute a clump, choosing thstea

to require “sufficiently long inter-arrival times” and arails to
Fig. 1.  Linear geometry:w access points, each with a communicationd D€ing “sufficiently rare.” The reason for this is that at any
coverage area of radi2u1s, are located on a circle of length at positions scale, whether we look at the time interj@| 100] or [0, 109] the
Lo =2 =0 00 5 1 m/(2w) s the furthest distance of a mobile pjisgon process yields the same clumping behavior: theegsoc
node from an access point; thus the clump is the set of timetthe set of points “ . ; A
in space) when the mobile node is in the uncovered regionkedaiclump.” We  '€turns to the area after a “long time,” relative to the scale of
supposen/(2w) is close tor. the time interval, and the clump siz€| is small (but nontrivial),
relative to the scale of the time interval.
) ) . In practice, the process being modeled by the heuristicneill
of times even thoug_h the mob_lle no_de left the uncovered E9iGe approximated equally closely at all scales. So even ththug
Thlf reforeB|t IS p_053|ble chdfjt'rls a d|sco?ndec;§tg seti_ ‘ thheuristic does not call for it, we indirectly affect the léhgf
dor 'at r?wnla_ntmo |onl,) ? ?_xpecte : _'ntg 'mﬁ tr? " the interarrival times by specifying a condition on the edgrmn
endpoin Sb(') an In Erv]gljcf’ I sbar_lngba a pomn S;g L ? of the model over which we have the most direct control: as in
;“<bx E IS glven y (a’?’. ) . ( ;x)(x N (E))'I[ ]'d €l Definition 3.1 we define the exact point the mobile node has to
1 be the random amount ° “’.“e It ta.‘ €S a mobile node to ri'gach before we say it has exited the clump for good. After the
an access point from the t!mf,emmedlately followingCo (so . process hits this point, and subsequently returns to thewset
X, =r of n/w —r and in either case the nearest access po"fgcord the times when the mobile node is in the uncovered area
are at 0 anch/w). Thus,ETy = (n/w—r)r, and if we letT, be in a new set of times
the random amount of time it takes a mobile node to return bagk '
to clumpC, immediately after leaving an access polaf, = 2.
Hence, the expected length of the total bldgk= 71 +7%, or the B. Performance Analysis
expected amount of time required for the mobile node to walk
from an access point to an uncovered area and back to an ac
point is

et v = w/n andn = 2rw/n denote respectively the access

B%?r?t density and the communication coverage ratio, whgaéna

r represents the radius/range of the communication covenage
ETo = rn/w. () of an access point. We begin by deriving some useful stisti

Under specific assumptions, we can say fhats approximately (expected time without coverage and bit loss rate) for this t

exponentially distributed with parametef when 2% < 1 is example and use these to derive a function relating the tyensi

2 . . .
sufficiently large [25]. These specific assumptions areampt Of access points to the expected amount of time spent without

in the following subsection, Subsection IlI-A. coverage and to the data loss rate.
Proposition 3.2: For sufficiently largen, the expected time a
A. Poisson Clumping Heuristic mobile node spends without communication coveraie&r?

Proof: The average clump rate\y, is the inverse of the

Given a time-dependent stochastic process, and d sétthe ted meET. of the total block s d thus it foll
arrival times toA are memoryless (specifically, the distributio xpected imekio 0 1e otal block siz€, an us 1t Tolows
om Eq. (1) that\, = L = = The expected clump sizEC),

of arrival times toA is exponential) and the process intersects t E then b 4
setA rarely (relative to the set of times the process could aatve ©N heN be expressed as
A which is the total time interval), then we can approximat th w(Ag) w(Ao)r

behavior of this process’ arrivals to the set by the Poissond3s. ECo = Ao Ty

In the Poisson Process, the inter-arrival times, den@tedf the wherer(A4y) is the probability of being in the clump. Now, by

process to the set are exponentially distributed, with paramete ting that th bability of being i | A
A, and the random variable for the number of times the mobi&? ing that the probability of being in our clumpAo), can

: X o . . S0 be expressed as
node hits an access point up to tithes Poisson, with parameter

T

At. In the language of the heuristia, is called the clump rate, m(Ag) = 2= Zrw o,
so named because the random sets of times, dedgtéat the n
process spends in the areappear to “clump” together. Thewe can writeECy = r/v — 2r2. ]

approximations given by the Poisson Clumping Heuristicrionp Let us now assume that each mobile node has a data buffer of
if the process is unlikely to return td immediately after leaving capacity B bits, and that when the buffer becomes full, data is
A; there should typically be some drift away from Let 7(A) dropped (due to buffer overflow). Recall that data is geeerat
be the probability (with respect to the stationary disttidw) that at a constant rate, and is fully uploaded when the mobile
the process is iM. The main result of the heuristic is: node reaches an access point's communication range. In what
_ follows, let 7 = B/¢, which represents the amount of time
m(A) = AEC. 2) required to overflow the buffer of the mobile node.
The assumption that the interarrival times follow an expdiad Corollary 3.3: For a sufficiently small threshold, the ex-
distribution additionally gives us that = 1/7, whereT is the pected time a mobile node spends without communication cov-



erage is guaranteed to remain belowf the densityr of access
points is above/ (7 + 2r?).

Proof: Proof follows from Proposition 3.2. [ ]

Data loss occurs when the buffer of the mobile node overflows,
and the buffer of the mobile node overflows when the time
the mobile node spends without communication coveragedn th
interval (r,n/w — r) exceedsr. Denote the first hitting time of
the process to or n/w —r by T* = T, AT, /., Hence, the
data loss rate equalB(T* > 7).

Proposition 3.4:For sufficiently largen, the data loss rate of
a mobile node is bounded above py/7)(1/v — 2r).

Proof: Denote the first hitting time of the process itoor
njw—r by T* =T, NT, ,_,. Since the intervalr,n/w—r) C
[0,n/w], we observe thaP(T™* > 7) < P(|Cy| > 7).

Now, using Markov’s Inequality, we can writB(|Cy| > 7) < Fig. 2. Grid geometry: the uncovered area (the star shap&pusded by

ECy/7, yielding an upper bound ofr/7)(1/v — 2r) on the two circles, one of radiups from within and one of radiup; from without,
. hich will be used to calculate bounds on the expected timeoailsn node
achievable data loss rates. m

. . . . . spends outside the communication coverage ates the distance between two
We provide the following sufficient condition on the densify neighboring collector nodes; is the radius of the communication coverage area

access points to guarantee data loss rates due to buffeftomwerof a collector node.
remain below some condition on the rate
Corollary 3.5: For sufficiently largern, data loss rates are

guaranteed to remain below the rate conditioif the density _ )
v of access points satisfied (er + 2r2). the mobile node hits the uncovered area because of the assump

Proof: Recall that the data loss rate is bounded above H§n Of @ high coverage ratio, and the fact that the drift foe t
(r/7)(1/v — 2r). Hence, it suffices that/7)(1/v — 2r) < ¢ or radial _part of Brownian Monon, given by the Bgssel Process,
equivalentlyr > r/(er + 2r2) to ensure that the data loss ratd@s driftu(r) = 1/(2r), wherer is the Euclidean distance of the
does not exceed the threshald m Brownian Motion from the origin.

Let 7(C) be the probability (given by the stationary distri-
IV. 2-D DTN MoDEL bution) that the process is in the uncovered region B6dthe
We consider that mobile nodes follow a Brownian motion angikpected amount of time spent in the uncovered region. Walrec
move in a 2-dimensional plane. Collector nodes are placéioein the main result of the heuristics(C) = AEC, described in
plane to form a grid. We assume that each of the collector siodgubsection IlI-A.

has a circular coverage region with radiusThe spacing distance . . . —
; - : The time a mobile node spends with communication coverage
D between two neighboring collector nodes is assumed to be

larger tham/2. This distance is also assumed to be smaller thgrt?rresponds to the time it takes a mobile node to_ reach the edg
. : of the square from the edge of an uncovered region, and then to

2k SO as to ensure that the DTN contains regions of no coverage, " one of the uncovered regions aqain

referred to as uncovered regions, that are disconnectesh@sn 9 gain.

in Fig. 2, we then draw a square of side lengtharound each  To derive an upper bound, we first investigate a radial difeus

uncovered region, with the center of each region placed én trocess on an inner disk with radips = %Dﬂ /K2 — %DQ and

middle of the square. Each corner of each square corresgondg, outer disk with radiug?; — %D centered at the same point

on\?vcolleﬁto: nOdi' i bef i ith deri (these boundaries are shown in Fig. 2). We then investigate a
'e make two observations before proceeding with our deriva- . qyie i : " ; -
. . i pr gw fidial diffusive process on an inner disk with radjys= @D—
tion and analysis. First, the problem is symmetric, and benc

studying one square suffices. Note that once a mobile no’f‘]gnd an outer disk with radiug, = 3D to find a lower bound

reaches the edge of a square coming from the edge of pa{hthe clump rate. We can see that with these two disks, we are

uncovered region, returning back to the same region or anothS(_:”b";g the_sqt;gre;wt?;}n a disk a?(.j anothertyvnhw]l ttf;]teesq,
one makes no difference vis-a-vis of our clumping analysigS IS shown In F1g. 2. ‘The geometric properties of the square
Ig)ly\rl for a probabilistic coupling construction, where ttaglial

Second, because the uncovered region has an odd shape an@ . X e : i
boundary region has a square shape, it is too difficult tovderi rownian motion on a square regionis stochasﬂcal]y dotaha
the exact clump rate. Instead, we derive bounds on the clu m above and below by the rad."’?" Brownian mot!ong (Bessel
rate. processes) whose boundary conditions are respectiveliytiee
and outer circle. A similar geometric approach to provideam

We inscribe the largest possible circle in the uncovereibreg | bound the hitting i ing th functi
centered at the center of the square, and denote the radiué“?)q ower bounds on the hitting ime, using the same function
gerlved in Proposition 4.1, is used in [27].

the circlep;. We also circumscribe the smallest possible circ
around the uncovered region, centered at the center of eacBince we are investigating the radial diffusive process on a
region, and denote the radius of this cirgle. The geometry disk with radiusR; centered at the center of a circle of radius
of this grid is shown in Fig. 2. pi wherei € {1, 2}, the Brownian motion in either case can be

In our model, the distribution of hitting times satisfies thenodeled as a Bessel process with parameter 2, i.e., with drif
assumptions in Subsection IlI-A regarding the rarity withieh u(r) = % and variancer? = 1 [28].



A. Inner and Outer Disks of Radji; and R; > p; A approaches zero will makR a reflecting boundary. By letting

Let us now consider a disk of radiys centered in a disk of pa = Pr-a(T, <Tr)
radius R; > p; as shown in Fig. 2, wheré € {1,2}. Let us an = Ep_aA(T,|T,<Tr)
assume that a mobile node. moves inside the disk of ra@gus ba = Ep_a(Tr|Tr <T))
and it bounces back when it hits the boundary of the disk. We
define then the smaller disk of radiys to be our clump, and one can writtEg A [min{7},, Tr}] = paaa + (1 — pa)ba.
the hitting time to be the time between two consecutive clumpBy Wald's Theorem, we find thar_ (7))
visits. The hitting time is then the time it takes a mobile edd

reach the boundary of the outer disk of radiis given it just = pada+(l=pajpa(ea+ba)

left the inner disk of radiup; plus the time it takes a mobile +(1 = pa)?palan +2ba) +
node to hit back the inner disk given that it just bounced back — ant ba(l —pa)

from hitting the boundary. The expected value of this hittiime pA

is derived from Lemmas 4.2 and 4.3 and stated in the following 1

proposition. - p_AER’A(T”AT’*)

Proposition 4.1: For a smaller disk of radius; centeredinthe  From Eq. (15.3.10) [28], it follows
larger disk of radiusk;, the expected hitting time i&(p;, R;), S(R)— S(R— A)
whereh(p, R) = R*In |21, (S(R) SORR

For one pair of i |nner and outer circles, of radiand R, the P
hitting time is defined as the sum of the amount of time tHd from Eq. (15.3.12) [28], it followsEz A [min{T),, Tr}]
mobile node spends traveling from the edge of the uncover@@uals
region to the boundary of the larger disk (with expected @alu R=8 9(S(R) — S(R— A))(S(y) — S(p))
denotedE, [Tr]), and the time spent returning from the edge of / S(R) — S(p)
the larger disk to the boundary of the communication diskHwi ? R
expected value denotdéiz[T,]). We calculate these two means +/ 2(S(R—=A) = S(p)(S(R) = S(y ))m(y)dy.
in the following lemmas. R-A ( ) —S(p) '

Lemma 4.2:E,[Tr] = 5 (R? — p?). From this, we can writ€€g_A (T),) as
Proof: Consider the radial intervdl, R], wherep is in RoA

this interval. LetE,[min{7,,Tr}| be the expected time that it 2/ (S(y) — S(p))m(y)dy
takes to hit eithern or R given that we start ap. Because the P
Bessel process has a drift away from the origin that becomes  2(S(R—A) — S(p)) [F
large as we approach the origin, then the expected Hpj&x| T S(R) — S(R—A) /
it takes to hit the boundary given we are atis equal to
lim, 0 E,[min{T%, Tr}].

PRfA(Tp < TR) =

R—A
Substituting in our functions and solving, we can write

From Eq. (15.3.12) in [28], it follows that the expectedihigt Er-a(Ty) as
time E,[min{7T,, Tr}] equals p?In|E=2| {(%)2(m|¥| ~ L4 %]
[ 2 SR S In | B2 (A7 A|>R<_ A, 1
J(S(R) = S(y) - —

In [ A2 ]

R
+f 2m () <(§ 5(a) v

Now by taklng the limit asA goes to zero, we fin€x(T,) =

where S(z) = In|z| and m(z) = z are the speed function ,, R 2
and speed density of the Bessel process. Integratin theeabo s, |_ 2 (R 7). -
P y P 9 9 We can now combme our two lemmas to prove Proposition
expression yield®,[min{7,, Tr}] to be equal to 41
2 o (1 /p\2 1 1 Proof of Prop. 4.1: For one pair of inner and outer circles,
In(R/a) [m(R/p)a (5 (5) <1n(p/a) N 5) T Z) of radii p and R, the hitting time is the sum oE,[Ts] and
o 1 1 /p\2 1 Eg[T,], derived respectively in Lemmas 4.2 and 4 3; therefore
(o (-1 - 5 () (e - 1)) o 1) = F*1n ], .

The following corollary, which is an immediate applicatioh
Whena goes taD, the first term goes tp? In ( ) and the second the hitting time functionp, is used throughout to derive the main

2(14 (2 2y _1 ~ results of this paper.
prm 906 0 (2 ’ (R) o (%) 2}) Since £, [Tr] = Corollary 4.4: For a star-shaped inner region and a square

li;naﬁo E,[min{T,, Tr}], it then follows thatf,[Tr] = 5(R* —  poundary of side lengttD, the expected hitting time is lower
p°). B pounded byh(p1, R1) and upper bounded biy(ps, Ry).
Lemma 4.3:Ex(T,) = R*In | %[ — § (R* - p?). Looking back over the results we have derived, in order to

Proof: Let A be small and assume that whenever our procesarform our analysis on a different node deployment strnectxd
hits R that it jumps instantaneously ®— A. Taking the limit as regularly-repeating shapes (e.g. triangles, squaresgoss), we



just need to calculate the radii of the four circles we uséé: tdensityr of collector nodes satisfies
radiusp. of the largest circle contained in the uncovered region,

2
the radiusp; of the smallest circle containing the uncovered v>2. (#) )
region, the radiusk?; of the largest circle that can be contained T+ VARt — 72
in one of the shapes and the radiits of the smallest circle Proof: Proposition 4.5 provides an upper bound®f, so
containing one of the shapes, each in terms:@nd D. Then, it suffices that
computing the upper bounds and sufficient conditions can be K
done by applyingh(p;, R;) for eachi and proceeding through oD (1 — VAR — 1) =T

the calculations in the proofs. . . .
in order for the expected time to remain belew

By letting 7 = x2v, the above inequality becomes
B. Upper Bounds and Sufficient Conditions

2

We now derive upper bounds on the expected hitting times, N — (1 — 2|0 — 1) <T

and provide sufficient conditions on node density that guae V20 4

that the expected time the mobile node spends without cgeera Now, solving for#, we find

does not exceed a given threshold. We define the node density

to be equal tol / D2. S, Lo 1 (@T B 1)
Given that each mobile node has a data buffer with a limited 4~ '

capacity of B bits, it may happen that the buffer overflows,

causing data to be dropped. Again, fet= B/c represent the ~Because; <» < j andr < x?, we have that

time required to overflow the buffer of the mobile node. WNr:
Proposition 4.5: The expected amount of time a mobile = < QVT — 1) > 0.

node spends without communication coverdge€, is bounded 2 Kk

above by This implies that

K 1
—— (1 =24/ == |.
\/Z < RV 4)
Proof: The probability of being in the uncovered region, ) S ) o _
7(C), is the ratio of the expected amount of time the mobile The leading coefficient is negative, so this is a parabolg(in

node spends in the clumf,C, to the expected amount of timethat opens downwards. Using the quadratic formula to find the

7(C) ~ EC. From Corollary 4.4, it follows then that which is impossible for a square root, so we only need to conce

ourselves with the positive root),

Ci_g(ﬁy_£&ﬁ+ggo

2K4 2K2

m(C) - h(p1, R1) <E(C) < 7(C) - h(p2, Ra).

B - /5 20 )

From a geometric argument, we can find the area of the uncov- Vo> 27 27
ered region and divide it by the area of the square surrogndin B 2 (% - 1)
it to find 7 (C), which implies that
m(C)=1-2 /-@21/—1—77,%21/—1-400871 <#> KU, 1 ’
V 4 VK2 v>2. :
where ther in the right hand side of the equation is the constant T +2y/1 - i (%)2

and ther on the left hand side of the equation is the terminolo
for the stationary distribution.
Because; < x*v < 3, we can then write

g|¥eplacingz> by vx? results in the sufficient node density stated in
the corollary, which guarantees that the expected time ailenob
node spends without communication coverage will be less tha

1 the thresholdy. [ ]
m(C) <1 _2\/ K2V — 4 We now provide a condition on the node density that is
N . sufficient to keep the data loss rate below a threshholtliote
ow since i v .
—iln (1 B \/m) LS thate is a cqndltlon on_the rate at which buﬁ_er overflow can
2w -V occur, andr is a condition on the amount of time the mobile
then, node can spend in the uncovered region.
o 1 The mobile node overflows its buffer exactly when the mobile
E(C) < — (1 — 24/ K% — Z) . node spends an amount of time outside the communicatiorerang
Vv that exceeds. Denote byT™ the first time the mobile node hits

m the communication range. The data loss rate is tHE€R* > 7).
Corollary 4.6: For a sufficiently small threshold, (where we We do not deal directly with the case that the mobile nodethés
requirer < 2x2 for the square root to remain real), the expectegbvered region while irC but note that our sufficient condition
time a mobile node spends without communication coveragesidl holds, becausé(T* > 1) < P(|C| > 7).
guaranteed to remain below the threshhold (i, < 7) if the Proposition 4.7: For sufficiently large communication cover-



age ratio (and requiring < x?v < 1), the data loss rate of a
mobile node is bounded above according to

K 1
P(IC| > 1) < o <1—21/n2u—1> .

—©— Simulated/measured time
== Theoretical upper bound |1

()
g
% 0.14
Proof: Since the uncovered region is contained in Markov 3 0.12
Inequality yields E 01
Z o
[}
P(IC| > 1) <E(C)/T. (50.087
And, from Proposition 4.5, we have E
= 0.06
(=}
E(C) < . 1—2\/%21/—l : S 004}
V2 4 8
. . » . % 0.02
Combining these two inequalities yields the stated uppenbo
on the data Ipss rate. . u 875 08 085 09 095 1
The following sufficient condition guarantees that dataslos coverage ratio

rates remain below the threshold rate

Corollary 4.8: The data loss rates are guaranteed to remai. 3. Measured and theoretical hitting times for 2-d Brianmotion on a
below the threshold rateP(|C| > 7) < e if the densityry of square withs = 5 and D ranging fromy/2x to 2.
collector nodes satisfies

2
K distribution (x = 0,02 = 1) for the displacement of the mobile
v>2- . .
T€ + 1[4kt — (1€)? node, and a uniform random number selected ffonx] for the
_ ) o o angle that the mobile node’s path makes with the x-axis. &her
Proof: If we re(:,1U|reP(|C! > 1) <e thenitis sufficient to ¢6 the position of the mobile node at any tirfie described in
require (by Markov's Inequality) x- and y-coordinates i$ZzT:O ricos(0;), S v sin(6;)).
Shrinking the displacement to zero increases the accuracy
of the simulation in modeling simple Brownian motion, but it

and we showed in Corollary 4.6 and Proposition 4.7 that< increases the computation time. We find= 0.2 to be a good

er if the node density satisfies the resulting inequality. m  choice for the step-size.
Because of symmetry, simulating 2-D Brownian motion on a

V. VERIFICATION AND VALIDATION plane is equivalent to simulating it on a square of side lengt

Through simulations, we first validate the use of the PoiSS(])% with 4 collector nodes each located at one corner and an

. o i L uncovered area located at its center. The covered regian the
Clumping Heuristic by measuring the expected hitting tiraed . o : .

. ; : . Is the area withink of any corner. If the simulated Brownian
comparing them against the derived bounds, and then véréy

. - . . N motion exits the square, it is equivalent to continue theutition
derived sufficient conditions on node density by mimickimgla _ . ! L .
. i ) ; with the mobile node placed back inside the box at the opposit
simulating a Brownian motion.

position. Fig. 3 shows that the simulated times are well loean
by the derived upper bounds for a range of valuesifoand as
A. Poisson Clumping Heuristic Validation expected, the higher the coverage, the tighter the bound.
Recall that, as illustrated in Section IlI-A, the deriveéahet-
ical results are based on the assumption that the 2-D Brownj - . . .
motion in dense networks yields aSproximately expondytialg Sufficient Node Density Conditions Verification
distributed intermeeting times (i.e., times without conmication In this section we test and verify the sufficient conditioms o
coverage are exponentially distributed), thus allowingaisise node density stated in Propositions 4.5 and 4.7 to ensuté¢ttha
the Poisson Clumping Heuristic approach. In this sectioa, Wime required to overflow the buffer of the mobile node andadat
focus on validating the Poisson Clumping Heuristic apphdag loss rate remain below a threshold.
simulating and measuring the hitting times of a Brownianioot ~ We verify the sufficient condition for the expected time a
in the 2-D model, and comparing them with the theoreticaleuppmobile node spends without communication coverage to be
bound (in Corollary 4.4) for a fixed value of Recall thatD guaranteed to remain below a thresheldfor a range of values
can range, for fixed, from 2x, where the circles of the coveredof «: 5, 20, 35 and 50, and fdP near tov/2x for each (.45x to
regions just barely touch, t§/2x, where the circles overlap so1.78x). We calculate the sufficient density from Proposition 4.5,
that the uncovered region is at its smallest; the coverati@ sa which is a function ofr and .
varies respectively from about 0.7854 to 1. In our simulative The assumption of the heuristic that the region is mostly
setk = 5. covered imposes another condition on the scale of the times
We use Matlab to simulate 2-D Brownian motion in a square lwye can choose for our threshotd Our simulation will yield
generating a displacement and angle of the displacefrert;) random times spent in the covered region between arrivals to
fort € [0,...,00). We generate a normal random variable witthe uncovered region, of whicEC' represents an average, and

EC
P(|C|>T)<T<€



k=20

Time without coverage
— 1 (Threshold)

100

node overflowing its buffer at 60% (so= 0.6) and = chosen

1200
1000 _\
800

K=5
. 8"\ according to the process described above. The results are pr
g jz 600 \ sented in Fig. 5.
S ”0 \ 400 To summarize, through simulations, we are able to suppert th
£ oSS 2028 N v | use of the Poisson Clumping Heuristic techniques and ititest
E‘ (s 5000' ' e the applicability of the sufficient conditions on the nodesigy.
2 3000
;2000\\ :ZZZ VI. CONCLUSION
o 2000 In this paper, we derived theoretical bounds on data logs rat
1000 and packet delays in mostly covered DTNs for both the 1-
88 08 1 11 12 13 8805 1 11 1z 13 d and the 2-d node deployment models. For each model, we

Ratio of Density to Sufficient Density (v lvs)

first provided analytic bounds/approximations on the etgubc
Fig. 4. The measured and the derived upper bound (Propositis) on the t'm_e mOb'Ie_ n_OdeS spe_qd without f:ommunlcatlon.coveragé, an
time a mobile node spends without communication coveragenwharyingD at  derived sufficient conditions ensuring that these timesgasa-
values neaw/2s, for x = (5,20, 35,50). The negative exponential relationship nteed to remain below a given threshold. We then analyzed

is most clear wher = 5 and looks linear in the other graphs. For some values
x, hamelyx = 5 and 50, the time spent without coverage is below the thrdsho
for values of D relatively small when compared to the sufficient conditidhe

e data loss rates that mobile nodes experience by pravidin
upper bounds on the achievable data loss rates, and byrdgrivi

sufficient condition is much tighter for = 20 and 35. The relationship between g fficient conditions that (statistically) guarantee ttretse rates

x, D, 7, and the tightness of the sufficient condition is not well enstbod but
seems to depend on the star shape of the uncovered region.

remain below a given threshold. We verified our obtained rsode

via simulations.

K=5 K =20
E —-Average Data Loss Rate|
0'8‘\\\ —¢ (Threshold)
1]
N\ [
I}
% os 0.4
2 0.2
8 (2]
§ 8_3 0.9 1 1.1 1.2 1.3 8.8 0.9 1 11 12 13
S 08 k=35 08 K =50
F O ’ 3
>
< 0.6 0.6
0.4 0.4 [4]
0.2 0.2
8.8 0.9 1 11 12 13 88 0.9 1 11 1.2 13 [5]

Ratio of Density to Sufficient Dénsity i)

Fig. 5. The measured and the derived upper bound (Propogitk) on the rate (6]

at which a mobile node drops data due to buffer overflbwaries over values
near v/2x, for k = (5,20, 35,50). Since the mobile node drops data exactly
when the time spent without coverage exceeds the thresh@dsee the same
relationship with the ratio of the density to the sufficieeindity as in Figure 4.

(7]

(8]
we recall from the heuristidEC' < 7 (C)h(p2, R2), SO we want [9]
to pick 7 close tomw(C)h(p2, R2). The valueh(ps, Rs) is the
expected value of the (exponential) distribution of theetispent
between arrivals to the uncovered region, but the heursstitost
accurate in the tail of the distribution, so we can improve ou
accuracy by picking a tim& equal to the 99th percentile of the 1

exponential distribution. Therefore we u$esuch that

T 1
0.99 = —_—
/—oo h(p2, R2)

Since we scale the radial displacement of the Brownian motio
by s = 0.2, we wantr such that2s>s = x(C)T. Therefore [14
T = (7(C)T)/0.08.

For each ratio of the node density to the sufficient densiy (f[15]
each value ofD) we simulate the process and measure the tirﬁ%
spent outside the coverage for each value:offhe results are
presented in Fig. 4 [17]

We do the same for the sufficient condition on the averajg,
data loss rate, setting the acceptable probability of théilmo

[10]

[12]

*ﬁz d
e P2, Ra xZ.
[13]

] Q. Li, S. Zhu, and G. Cao,
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