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Abstract—We design a simple and efficient online scheme for
scheduling cloud tasks requesting multiple resources, such as
CPU and memory. The proposed scheme reduces the queuing
delay of the cloud tasks by accounting for their execution time
lengths. We also derive bounds on the average queuing delays,
and evaluate the performance of our proposed scheme and
compare it with those achievable under existing schemes by
relying on real Google data traces. Using this data, we show
that our scheme outperforms the other schemes in terms of
resource utilizations as well as average task queuing delays.

I. INTRODUCTION

Demand for cloud-based services has been increasing

in recent years. As a result, cloud computing has been

attracting the focus and attention of many researchers to

address numerous related issues, such as energy reduction in

data centers, online job scheduling, realtime scheduling, etc.

There have also been some research efforts aimed to develop

service models and architectures suitable for cloud computing

paradigm [1, 2]. Some other works try to adapt and apply

existing solutions developed for similar problems to solve

cloud computing problems. Examples of such problems are

bin packing, vector bin packing, off-line scheduling, online

scheduling, and fair resource allocation [3–7].

In [3], the authors propose an online scheduling algorithm

for real-time cloud computing services using two utility

functions for rewarding early completion of tasks and pe-

nalizing missed deadlines. In [8], the authors consider a

market-based resource allocation model for batch jobs in

cloud computing and propose an approximation algorithm

in order to maximize social welfare. In [5], join-shortest-

queue and MaxWeight scheduling policies and power-of-two-

choices routing are proved to be optimal under the proposed

model. In [9], a genetic algorithm is improved by combining

the Min-Min and Max-Min concepts to schedule independent

tasks in cloud computing. Another genetic algorithm is also

proposed in [10], which guarantees the best solution in

finite time for cost-based multi QoS scheduling in cloud

computing. In [11], the authors present a fully decentralized

scheduler that benefits from information aggregation to al-

locate available nodes to a task so that it finishes in time.

They show that their proposed scheduler has competitive

performance in networks of up to hundred thousand nodes.

In [12], the authors minimize total energy cost while trying

to meet as many client requests as possible. The system is

penalized if the service time of a task exceeds a specific

upper bound. In [13], the authors propose an efficient multi-

objective scheduling algorithm for workflow applications,

where the objectives to minimize include economical, energy,

and reliability considerations. Ramamritham et al. [14] were

among the first to propose scheduling algorithms for tasks

with both time and resource limitations. The authors in [4]

consider different heuristics based on task demands using

offline scheduling algorithms.

Most of the mentioned works consider heuristics based

on demand values or task completion deadlines. Instead, we

aim, in this work, to minimize the average task queuing

delay while accounting for task execution times. For this, we

propose a simple and efficient online scheme for scheduling

cloud tasks that request multiple resources. We derive bounds

on the average queuing delays, and evaluate the performance

of our proposed scheme and compare it with those achievable

under existing schemes by relying on real Google data

traces [15]. Using this real Google data, we show that our

scheme outperforms the other schemes in terms of resource

utilizations as well as average task queuing delays.

The paper is organized as follows. In Section II, we

introduce some terminology. Section III provides some back-

ground and state our motivation and objective. Section IV

presents our proposed scheme. In Section V, we provide

upper and lower bounds on average task queuing delays. Sec-

tion VI presents the performance evaluation of our scheme.

We conclude our work in Section VII.

II. TERMINOLOGY AND NOTATION

In this section, we describe the different system compo-

nents essential to the scheduling problem that we investigate

in this paper.

Servers: They are the computing resources that run the

tasks submitted by cloud clients. Upon its arrival, a task is

assigned to a server for execution. In our problem, we assume

that the system contains n heterogeneous servers each with

two types of resources, a processing unit (CPU) and a mem-

ory unit (RAM). For simplicity and without loss of generality,

we consider throughout this paper the normalized capacity of

the resource with respect to the maximum available capacity

among all servers.

Task: It is the entity that is to be submitted by cloud

clients, needs to assigned to and executed on server. Each

task requests an amount of CPU and Memory resources to

be allocated to it for a specific period of time. Each task

i is represented by a 4-tuple as (tsi , t
exec
i , ci,mi) where:

tsi and texeci denote the task’s submission and execution

times, and ci and mi denote respectively task i’s requested

amounts of cpu and memory. Without loss of generality, we
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assume that ci and mi are also normalized with respect to

the maximum resource capacity among all available servers.

That is, 0 ≤ ci ≤ 1 and 0 ≤ mi ≤ 1 for every task i.
We also assume that ci and mi are the real values of task

i demands (i.e. the tasks reveal their true values of their

demands). However, one may argue how one can ensure that

these values are real. For this, we assume that either the tasks

are internal, meaning that no outsider is using the system, or

when there are malicious tasks, there is a task admission

control (TAC) mechanism that only allows the submission of

non-malicious tasks. TAC mechanisms are beyond the scope

of this work.

Scheduler: In this work we focus on designing this

component. The scheduler determines when and on which

server each task starts to execute. However, the scheduler

considers the constraint that the total demands for cpu and

memory of the tasks that run on a server at the same time

must not exceed the servers available cpu and memory,
respectively.

Queue: It holds the tasks that are submitted, but have not

started their execution yet. Upon a task’s arrival/submission,

if the scheduler does not find a idle server to which the task

can be assigned for execution, it queues the task. The amount

of time a task spends in the queue is called queuing delay.

Queuing delay can be zero if the task starts running right

after submission.

In this work, our aim is to design a scheduler that reduces

the average queuing delay of the tasks under the constraints

mentioned above. In Section IV, we develop a simple sched-

uler that is based on existing schemes and takes advantage

of a new heuristic based on the tasks’ execution times.

III. BACKGROUND, MOTIVATION AND OBJECTIVE

In this section, we overview some existing schemes that are

used mostly for task scheduling in cloud computing. Then,

we state our motivation as well as objective for this work.

A. EXISTING SCHEDULERS

The problem of reducing the average queuing delay of

tasks can be also thought of as a problem of reducing the

number of servers to be used for task execution. Intuitively,

using fewer servers results in shorter queuing delays, since

this means that there are more servers (resources) left avail-

able for running other tasks (already submitted or to be

submitted in the future). Clearly, the more resources/servers

we have, the higher the chances that a submitted task gets

executed fast, which in turn results in reducing the task’s

queuing delay.

Our problem is now converted to a classical bin packing

problem in which it is assumed that there are items (e.g.,

tasks) that need to be placed in the minimum possible number

of bins (e.g., servers) subject to bin capacity constraints; i.e.,

none of the bins should contain items whose total capacity

exceeds the bin’s capacity. However, the bin packing problem

considers that the items each has a single size value, which

corresponds to the item’s size. In our problem, each item

or task is associated with two values, once represents the

CPU demand and one represents the memory demand. Vector

bin packing problem is then more suitable to our scheduling

problem, which is a generalization of classic bin packing

problem to allow items to have multiple values. In vector bin

packing problems, each item is considered as a d-dimensional

vector that should be placed in d-dimensional bins. Our

resource scheduling problem is then a 2-dimensional vector

bin packing. In what follows, we overview few existing

scheduling schemes used for solving vector bin packing that

are relevant/applicable to our studied problem.

1) Online scheduling: We first begin by overviewing some

online task scheduling algorithms. In online scheduling, it is

assumed that tasks can be submitted at different times, and

the schedule is to assign them to servers as they arrive.

First Fit (FF): In this algorithm, when a task is submitted,

the scheduler looks through all the servers one by one, and

assigns the task to any available server it finds. But if there

is no available server with enough resources to accommodate

the task, the task is assigned to a new server; i.e., the number

of ON servers increases by one as a result of this assignment.

In our scheduling problem, the number of available servers

is limited. Hence, in order to apply FF algorithm, we modify

it as follows. When there is no available servers with enough

capacity to fit the new task, the scheduler appends the task

to the end of the queue.

When the execution of a task completes, the scheduler

checks whether it can assign the task at the front of the

queue to the corresponding server. If the server has enough

resources, the task is assigned to it; otherwise the scheduler

waits for the next task submission or completion.

Best Fit (BF): This algorithm is similar to FF algorithm. The

only difference is that the scheduler tries to find a server that

has the least amount of remaining resource after the task

is assigned to it. Note that in the case of the d-dimensional

problem, the least amount of remaining resource has no trivial

definition, since the size of a task is not a single value any

longer. Later, we will see some heuristics that define the size

of multi-dimensional tasks, which can also be used to define

the amount of remaining resource of a server.

Worst Fit: This algorithm is similar to BF, except the

scheduler tries to find the server that has the largest amount of

remaining resources (instead of the least amount of resources

as in BF) after the task is assigned to it. Again, like in BF

algorithm, the definition of the amount of remaining resource

requires size definition of multi-dimensional tasks.

Random Fit: As the name suggests, the scheduler randomly

assigns the task to any available server with enough capacity;

i.e., without violating the capacity constraint.

It is known that the BF algorithm outperforms the other

algorithms in most cases, and that is why it is widely used

for resource scheduling in cloud computing.

2) Offline scheduling: We now describe some existing off-

line scheduling algorithms. In these algorithms, it is assumed

that the scheduler knows all the tasks that are to be scheduled

ahead of time; for example, this applies to when all tasks

arrive (are submitted) at the same time.

First Fit Decreasing (FFD): In this algorithm, the scheduler

sorts all tasks in descending order based on some metric

specified by the heuristic used by the algorithm, and then
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assigns the tasks according to the FF algorithm.

Best Fit Decreasing (BFD): The scheduling algorithm is

similar to FFD, except the task assignment is based on the

least amount of remaining resource as it is described above.

3) Multi-dimensional task size metrics: We now present

some heuristic metrics used to define and specify the sizes

of tasks with multiple dimension. The metrics presented next

are proposed [4].

Product: The size of a multi-dimensional task is calculated

by multiplying all demands. In our problem, the Product size

of task i equals ci ×mi.

Sum: The size of each task is defined as a linear combination

of all demands, where the constants (weights) indicate the

importance of the resources. In our problem, the size of task

i equals a1ci+ a2mi where a1 and a2 are weights reflecting

the importance of cpu and memory, respectively.
AvgSum: This is the same as the "Sum" metric above, except

the weights are the resource’s average demands. For our

problem, we have a1 = 1/k
∑k

i=1
ci and a2 = 1/k

∑k
i=1

mi

where k is the total number of submitted tasks.

DotProduct (DP): This corresponds to the dot product

between the demands of the task and the remaining amount

of resource. Thus, each task does not have a single value,

but rather it has a different value for each server. Then, the

maximum value over the servers is used to determine which

server the task should be assigned to without violating the

capacity constraint.

Norm-Based Greedy (NB): This defines the size of each

task as its Lp-norm value with p > 1. Consider a vector

~x = (x1, ..., xd), then Lp norm of ~x is equal to





d
∑

j=1

|xj |
p





1/p

In our problem, L2 norm of task i is equal to
√

c2i +m2

i .

As shown in [4], Dot-Product and L2 Norm-based Greedy

heuristics outperform other heuristics in most cases.

B. Motivation and Objective

As explained earlier in this section, there have been

proposed many heuristics and algorithms for online task

scheduling. Most of these heuristics consider task demands

only, and ignore task execution times. Nevertheless, we know

that in order to minimize the queuing delay of the tasks when

all tasks have the same size, we need to execute the task

with the shortest execution time. Unlike previous works, this

paper considers and accounts for task execution times when

sorting tasks for execution. The objective of this work is

then to design a scheduling heuristic with an objective of

reducing the average queuing delay of the submitted tasks

while accounting for task execution times. This problem is

interesting, since developing a good algorithm is neither easy

nor enough to address all issues raised in scheduling. In this

work, we propose to build a two-phase scheduling scheme

for multi-dimensional tasks, using the idea of a well-known

greedy algorithm for off-line task scheduling (with only one

dimension) in which the scheduler sorts the task based on

their execution time in ascending order and runs the task

with the shortest execution time. This greedy algorithm is

optimal and can be implemented using a simple and efficient

sorting algorithm such as quick-sort.

IV. THE PROPOSED SCHEDULING SCHEME

ïż£ In this section, we explain our proposed scheduling

scheme. Our scheme schedules tasks in two phases. Phase

one is triggered by an arrival of a new task, whereas phase

two is triggered by the completion of a task execution.

The first phase is triggered by a new task arrival event.

Upon the arrival of a new task, the scheduler tries to find

an available server for assigning and executing this recently

submitted task. If the scheduler does not find any server

for the task, it puts it in the queue. Specifically, in the first

phase, the task is assigned to the server with the minimum

L2-norm of the remaining resources, given the server has

sufficient resources to accommodate the task. If there is no

server that satisfies these conditions, the task is placed in the

queue sorted according to its execution time.

Fig. 1(a) illustrates how the scheduling is conducted in

the first phase. As shown in the figure, in case of a new task

arrival event, there are two steps the scheduler performs: in

step 1, the scheduler filters out the servers that have adequate

amounts of resources to allocate to the task; and in step 2,

the scheduler finds the server with the minimum L2 norm of

the remaining resources. When no server is found in step 1,

the task will be queued as explained before.

In the second phase which is triggered upon a task execu-

tion completion, the scheduler tries to find the task with the

shortest execution time among the tasks that are already in

the queue, and fits it on the recently released server. Since

the queue is kept sorted according to task execution times,

finding the task with the shortest execution time is done by

iterating over all the tasks in the queue. Then, the tasks that

fit the server will be assigned to it after allocating resources

to all previous tasks with shorter execution times.

Fig. 1(b) illustrates how scheduling benefits from the

proposed heuristic during the second phase when a task

running on server j completes. The figure shows that the first

two tasks in the queue need more resources than what it is

available on the recently released server j, but the third task

in the queue requires less resources. Hence, server j allocates
its remaining resources to this third task. It is seen that, even

though the fifth task in the queue requires less resources than

the third task, but there is not enough resources to allocate

to the fifth after allocating resources to the third task.

Our proposed heuristic is inspired by the well-known

greedy scheduling algorithm described in Section III. How-

ever, the scheduler uses this heuristic in its second phase

only and chooses the task with the shortest execution time

among the tasks which does not violate the corresponding

server’s capacity constraints. We call, throughout the paper,

our proposed scheme BF-EXEC, since in its first phase, it

uses the BF algorithm and in its second phase, it schedules

tasks according to their execution times.
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(a) Phase 1: Scheduling upon task arrival

(b) Phase 2: Scheduling upon execution completion

Fig. 1. Scheduling Scheme: (a) A task is submitted and the scheduler finds
the best server (b) Scheduling the task with the shortest execution time in
the queue upon a task execution completion

V. AVERAGE QUEUING DELAY BOUNDS

We derive upper and lower bounds on the average queuing

delay. In what follows, we assume that the tasks’ average

arrival rate and service time are λ and µ, respectively.
Theorem 5.1: If ci ≤ Uc and mi ≤ Um for every task i,

the queuing delay, W , is upper bounded as

W ≤ µ−
1

λ
⌊max{

1

Uc
,

1

Um
}⌋

Proof: We prove it by assuming that all the tasks are

identical in terms of their demands. In order to find an upper

bound, we assume ci = Uc and mi = Um for every task

i. Hence, we know that the number of running tasks Nr, is

bounded as Nr ≥ ⌊max{ 1

Uc

, 1

Um

}⌋.
Recall that the number of tasks in the system, N , is, as

given by Little’s Theorem, N = λµ. As a result, the number

of tasks waiting in the queue is Nq = N −Nr which yields

Nq ≤ λµ − ⌊max{ 1

Uc

, 1

Um

}⌋. Using Little’s theorem for

the queue system this time, we have Nq = W/λ. It then
follows the upper bound on the queuing delay as stated in

the theorem.

Theorem 5.2: If Lc ≤ ci and Lm ≤ mi for every task i,

the queuing delay, W , is lower bounded as follows

W ≥ µ−
1

λ
⌊min{

1

Lc
,

1

Lm
}⌋

Proof: Similarly, we prove this by assuming that all the

tasks are identical in terms of their demands, and considering

the worst case scenario, where ci = Lc and mi = Lm for

every task i. Hence, the number of running tasks, Nr, is

upper bounded by ⌊min{ 1

Lc

, 1

Lm

}⌋. Little’s theorem yields

that the number of tasks in the system, N = λµ. Hence, the
number of tasks waiting in the queue is Nq = N−Nr which

yields Nq ≥ λµ − ⌊min{ 1

Lc

, 1

Lm

}⌋. Using Little’s theorem

for the queue this time, we have Nq = W/λ. The lower

bound stated in the theorem follows then.

VI. PERFORMANCE EVALUATION

ïż£In this section, we evaluate our proposed techniques by

using real Google data traces [15]. Using this real data, we

show that our proposed scheme performs well when com-

pared to existing schemes. For our evaluation, we extract the

arrival time and execution time along with cpu and memory
demands of 2000 tasks from the data traces provided by

Google. Google provides cpu and memory demands of the

tasks in the normalized form as mentioned in Section II. We

will compare our scheme to the following schemes: FFD-

NB (First Fit Decreasing with L2 Norm-Based), FFD-DP

(First Fit Decreasing with Dot-Product), and FCFS (First-

Come First-Serve)1.

A. RESOURCE UTILIZATION

Fig. 2 depicts the average CPU (Fig. 2(b)) and memory

(Fig. 2(a)) resource utilizations while varying the number

of servers from 10 to 80 under the different scheduling

schemes. Note that our proposed scheme utilizes almost 90%

of the servers’ memory capacities which is higher than other

schemes’ utilizations. Also, it can be seen from Fig. 2(b) that

our proposed scheme utilizes 85% to 90% of the servers’

cpu capacities which is higher than other schemes’ CPU

utilizations. Although higher utilization means that lower

resource wastage, it does not mean that system resources are

utilized in favor of reducing the average task queuing delay.

This will be studied in next section.

B. AVERAGE DELAY

Fig. 3 depicts the average task queuing delay for various

numbers of servers under the different studied scheduling

schemes. Note that our proposed scheme reduces the average

queuing delay when compared to the other schemes. We

conclude that our proposed scheme utilizes the resources

effectively while reducing the average queueing delay that

tasks experience.

1As the name suggests, in this scheme, a task must be assigned to a

server before any other task that arrives after it can be assigned. Here,
if no server with sufficient resources is found to run a given task, then

all the tasks that came after it must wait until a server is found to

execute this given task.
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(a) Memory Utilization
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(b) CPU Utilization

Fig. 2. Resource utilization for various number of servers under different
scheduling schemes
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Fig. 3. Average queuing delay for various number of servers under different
scheduling schemes

VII. CONCLUSION

This paper proposes an online scheduling scheme that aims

to minimize the average task queuing delay while accounting

for task execution times. Our focus is on scheduling tasks that

request multiple resources, such as CPU and memory. We use

real Google data traces to evaluate the performance of our

proposed scheme and compare it with those achievable under

some existing ones. Our results show that our scheme out-

performs the other schemes in terms of resource utilizations

as well as average task queuing delays.
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