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Abstract—This paper proposes an efficient spectrum and
power allocation solution for a large scale dynamic spectrum
access (DSA) systems. Unlike conventional methods relying on
optimization techniques which need huge computational capa-
bilities and full information exchange, in this paper we rely on
particle filtering to allocate the available bands among users in a
distributed manner. Particle filter is based on the representation
of the searched state, bands allocation per user in our case, by
a set of particles. The Particle filter has the advantage, with
comparison to Kalman-based filters, of its adaptivity to general
scenarios (non-linear models, non-Gaussian noise, multi-modal
distributions). Like Kalman-based filters, two model equations
are needed for particle filter. (i) A state evolution equation to
characterize the time evolution of the state. For our case, we
derive a prediction equation of the channel allocation from the
previous allocation from the channel fading temporal correlation.
(ii) An observation equation which relates the observation, the
Quality of Service in our case, to the channel allocation (state).
This equation will be useful in the weighting and re-sampling
phases of the filtering algorithm. The performances are analyzed
in terms of the per user achieved throughput. In addition,
comparison with performance when Q-learning is employed to
show the efficiency of our approach.

Index Terms—dynamic spectrum access, efficient spectrum
allocation, distributed algorithms, large-scale systems, particle
filtering.

I. INTRODUCTION

Optimal resource allocation has been considered crucial in

all communication systems driven by the inherent scarcity

nature of these resources as well as the pressing needs for

efficient energy use [1]. For instance, the current exponential

growth in the wireless devices has called into question the inef-

ficiency of the conventional static spectrum allocation policies

which resulted on a resource scarcity problem. Thus, propos-

ing efficient spectrum allocation methods and paradigms has

become vital than ever before. Dynamic Spectrum Access

(DSA) systems have been proposed to cope with this problem,

and hence, to improve the spectrum efficiency.

DSA has recently grasped a lot of interest from the research

community to deal with an unprecedented growth in wireless

users alongside a resources scarcity problem. In this com-

munication paradigm, a non-licensed set of users, commonly

called secondary users, is allowed to access the unused portion

of the spectrum, called spectrum holes, left by legacy users,

called primary users. Of particular interest, when it comes to

handling the massive number of users, is the need for efficient

and scalable resources allocation methods suitable for these

large-scale systems. In this case, distributed approaches are

more appealing than the centralized approaches due to their

ability to scale well with the number of users when it comes

to computational complexity.

Various methods have been proposed in the literature to

enable effective resource allocation in DSA systems ranging

from game theoretical and Extended Kalman Filtering [2]

to Q-learning [3] and evolutionary algorithms [4]. In [2],

the authors proposed an Extended Kalman filtering based

adaptive game where the DSA agents jointly decide on their

transmission power and track the channels’ variations. In [3]

the authors proposed a distributed multi-band joint spectrum

and power allocation based on learning. However, only quasi-

static channels have been taken into consideration. In [4], the

authors brought forth evolutionary algorithms for spectrum

allocation in DSA systems. This family of stochastic search

methods is inspired from the natural selection. The authors

proposed three algorithms to allocate a set of bands for a set

of users using genetic algorithm, quantum genetic algorithm

and particle swarm optimization.

Another possible method that belongs to this family of

search algorithms is particle filtering [5]. The core idea of it is

to estimate the conditional probability density through the use

of the Monte Carlo simulations and the importance sampling

techniques. Particle filtering has been applied in different

applications ranging from video tracking to localization. In

wireless communications, the main conventional applications

are blind equalization over frequency selective channels in

SISO systems [6] or with multi-antennas systems [7]. More-

over, it was applied to signal detection [8] and joint carrier

recovery and channel estimation for OFDM systems over

frequency selective fading channels [9]. However, very little

to no effort has been put towards applying this technique to

resource allocation problems in DSA systems.

With all this in mind, we propose in this paper to use

particle filtering for distributed resource allocation in large

scale DSA systems. We aim to profit from its high capabilities

of tracking real-time systems. We formulate the problem of the

spectrum allocation among the different users by taking into

consideration the interference among users. We assume that

each user operates with a fixed power level and the problem

will be to select the "best" operating band for each user. The

particle filter tracks the changes over the channels to allow

each user to get the highest throughput while minimizing the

interference caused to the other users. The achieved perfor-

mance is compared with that achieved when reinforcement



learning is used instead.

The reminder of this paper is organized as follows. In

Section II, we start by describing our system model and

the communication pattern. In Section III, we provide a

comprehensive overview about particle filtering principle and

algorithm. In Section IV, we give our problem formulation

and show how to solve the formulated problem using particle

filtering. In section V, we investigate the performances of the

proposed resource allocation methods through some numerical

analysis while in Section VI, we draw the conclusions.

II. SYSTEM MODEL

We consider a set of n users trying to communicate with

their correspondent n receivers over one single band each. The

m bands have been declared available by all the users through

the use of an accurate multi-band spectrum sensing technique

(The spectrum sensing phase is out of the scope of this paper).

We assume that the number of users is very high compared

the number of the available channels (i.e., n >> m). Hence,

the users will interfere with each other while trying to achieve

their maximum throughput.

In our framework, the fading channel between the a trans-

mitter k and a receiver i is modeled by a pth order Auto-

Regressive (AR(p)) process [2]. Thus, at the time episode t

the channel impulse response of user h
(j)
ik (t) is given by

h
(j)
ik (t) =

p
∑

l=1

αlh
(j)
ik (t− l) + βw

(j)
i (t), (1)

where h
(j)
ik (t − l) denotes the channel fading impulse at the

time episode t− l for the band j and
{

αl

}p

l=1
and β are the

AR parameters that could be estimated using the Yule-Walker

equations [10] which assumes that αl = J0(2πlfdTb) where
J0 is the zero

thorder Bessel function of the first kind, fd is the
maximum Doppler frequency and Tb is the channel coherence

time.

By selecting a channel out of the available m channels, the

user i at the time slot t will interfere with the other users

that have selected the same channel band. Hence, the received

Signal to Interference plus Noise Ratio (SINR) when using

the jth band could be expressed as

γ
(j)
i (t) =

Pi|h
(j)
ii (t)|

2

n
∑

k=1
k 6=i

a
(j)
k Pk|h

(j)
ik (t)|

2
+N0B

(j)

. (2)

As a result, the achieved throughput will be expressed as

Ri(t) =

m
∑

j=1

a
(j)
i B(j) log2(1 + γ

(j)
i (t)), (3)

where a
(j)
i is a binary index that illustrates whether the jth

channel was selected by user i or not such that
∑m

j=1 a
(j)
i = 1

to guarantee that each user selects only one band, B(j) is the

jth channel bandwidth, h
(j)
ik (t) is the j-th channel impulse

response from the kth transmitter to the ith receiver, and N0

is the power spectral density of the noise which is assumed

constant overtime and equal for the whole spectrum band.

We assume that each user k exchanges with the users with

whom he shares the jth channel his transmission power level

Pk. Thus, the channel gains can be estimated directly by

the receivers. By this way, the exchange overhead is far less

than the centralized approach for which all the channel gains

between all the users over all the bands are required. Different

objectives Oi(t) could be considered when developing a

distributed optimization problem. A first objective for each

user is to maximize its intrinsic reward which is defined as

his own achieved rate. This is known by the selfish behavior

for each user as it acts independently of the other users. In

this case, it could be written as

Oi(t) = Ri(t). (4)

A second objective function that could be considered is the

global reward which is the sum of the achieved rewards of

all users. This will lead to a cooperative behavior in order to

maximize the total (or equivalently the average) reward of all

users. In this case, the objective function is expressed as

Oi(t) =

n
∑

k=1

Rk(t). (5)

To guarantee more fairness between the users, we could max-

imize the minimum achieved throughput between all users. In

this case, the objective function to be maximized is expressed

as

Oi(t) = min
1≤k≤n

Rk(t). (6)

III. PARTICLE FILTER OVERVIEW

In this section, we provide an in-depth insight about the

principle of particle filtering. The core idea of particle filtering

(PF) is to estimate the conditional probability density through

the use of the Monte Carlo simulation and the importance

sampling techniques [5]. More precisely, it relies on a finite

number of samples, called particles, to track the probability

density by propagating these particles.

A. Background

Considering the following discrete-time state-space model

xt = f(xt−1, ut),

yt = g(xt, vt), (7)

where xt is the state at the time t, yt is the observation, f is the

function that governs the state’s change, g is the function that

links the actual state to the observation, ut and vt are the noise
of the state and the observation, respectively. Note that this

could be seen as an infinite dimensional hidden Markov chain

where the state xt evolves according to a Markov chain with

the transition probability is P(xt|xt−1). Unlike the classical

Kalman filtering and its derivatives, this model describes a

general context where criteria like linear systems or Gaussian

noise are not required. Hence, particle filtering will lead to



more accurate performance in a general scenario where such

conditions are not met.

Broadly speaking, the filtering problem consists of esti-

mating the state at time t given all the past observation

y0:t = [y0, y1, ..., yt] which could be expressed using the

Bayes’ rule as

P(xt|y0:t) =
P(yt|xt)P(xt|y0:t−1)

P(yt|y0:t−1)
, (8)

where P(x) denotes the probability of the event x. As these
conditional probabilities are difficult to compute, the idea of

particle filtering is to rely on a finite number of samples,

called particles, to approximate the conditional density and

to emulate its evolution through the propagation of these

particles. In this case the conditional probability in (8) could

be approximated as

P(xt|y0:t) ∼=

N
∑

i=1

wi
tδ(xt − xi

t), (9)

where
{

xi
t

}N

i=1
are the particles or the samples,

{

wi
t

}N

i=1
are

their correspondent weights, and N is the total number of used

samples. The question that arises now is how to draw these

particles and how to derive their associated weights.

Basically, perfect sampling lies at the basis of Monte Carlo

techniques. It consists of approximating the probability density

using a finite number of samples with equal weights. This

estimate converges to the exact probability density using the

strong law of large numbers. However, the sampling could

not be applied to particle filtering because only the transition

probabilities and observation probabilities are known. Impor-

tance sampling has been introduced to do so. In this case the

samples are drawn with respect to an arbitrary importance

density π(.|.). However, by this way, if a new observation is

available, the weights should be recalculated. Hence, recursive

importance sampling is more convenient to deduce the new

weight from the previous one. This is the basic particle filtering

algorithm known as sequential importance sampling.

However, this algorithm suffers from the problem of de-

generacy where all the weights except one become close to

zero. To deal with this problem, re-sampling is introduced. Re-

sampling consists of eliminating the particles with low weights

and multiplying the ones with high weights.

B. Algorithm

The resulted algorithm is known as Sequential Importance

Sampling with Re-sampling (SISR) which has three main steps

that could be summarized as follows: (a) the update of the

particle
{

xi
0

}N

i=1
according to the importance sampling, (b)

the update of the weights
{

wi
0

}N

i=1
and (c) the re-sampling.

Note that the choice of the importance density is crucial. A

commonly used importance density is

π(xt|xt−1) = P(xt|x
i
t−1). (10)

This choice leads to a normalized weight

wi
t ∝ P(yt|x

i
t), (11)

which is very practical. On the other hand, the re-sampling

importance density used in practice is the one used in equa-

tion (9).

IV. DYNAMIC SPECTRUM ALLOCATION USING PARTICLE

FILTERING

In [11], particle filter has been used to solve optimization

algorithms using randomization method. Our problem is more

challenging as channel gains are varying over time. Thus,

we need to enhance the proposed approach by accounting

for channels variations using (1). In addition, our distributed

formulation of the problem raises a new challenge as the de-

cisions taken by each user will affect the obtained throughput

of the other users due to interference among users that happen

to select the same band as in (3).

Thus, we formulate our dynamic spectrum allocation prob-

lem as a filtering problem as follows

ai(t) = X (ai(t− 1)) + u(t), (12a)

Oi(t) = Ψ(a(t)) + v(t), (12b)

where X (.) is the function that describes the state’s change,

Ψ(.) is the function that links the state ai(t) to the objective

Oi(t) while u and v are the stochastic noises of the state

and the observation models, respectively. The observation

function Ψ(.) can be deduced from the relationship between

the throughput and the channel allocation matrix (3).

Since the particle filter will be applied in a distributed

manner, thus for every user i, the objective function Oi(t)
depends on the channel gain of the direct link as well as

the interference channels at time t which are related to the

previous realizations of these channels at time t−1 according
to (1), which will be referred to as F . Also, the objective

function depends on the channels selected by all the other

users except the user i, which will be denoted as a−i(t). These
two sets of parameters are required to get the new state ai(t).
Therefore, the function X describing the state change equation

can be written as

X (t) = argmax
ai(t)

Oi(t)|{a−i(t) = a−i(t−1), h(t) = F(h(t−1))}.

(13)

Note that the functions X (.) and Ψ(.) are non-linear functions
which limits the performance of the conventional methods of

solving (Kalman filters and its derivatives).

For every user i, each particle will represent a state of

the channel allocation ai(t). Hence, by applying the same

principle of particle filtering discussed in Section III, the

importance density will be given as ai(t) = X (ai(t− 1))

π(ai(t)|ai(t− 1)) = P(ai(t)|a
p
i (t− 1)), (14)

where a
p
i (t − 1) is the pth particle for the user i, and hence,

the normalized weight is then

wk
i (t) ∝ P(Oi(t)|a

k
i (t− 1)). (15)

So, by applying the particle filtering steps, the used algo-

rithm is stated in Algorithm 1.



Algorithm 1 Particle filtering based resource allocation for

large-scale DSA system.

INPUT: The power levels per user: {Pi}1≤i≤n.

OUTPUT: The channel selection for every user: {ai}1≤i≤n.

Initialization of the weights using uniform distribution.

for all time slot t do
for all DSA user i do

1) Prediction: compute possible particles using (14);

2) Decision: select band of the particle giving highest

reward;

3) Start transmission on the selected band;

4) Update channels estimation;

5) Weighting: update the weights of the particles

using (15);

6) Re-sampling: apply re-sampling to avoid degener-

acy.

end for

end for

V. SIMULATION RESULTS

A. System Setup

We consider a large scale DSA system where n = 100 users
are communicating with their associated n = 100 receiver

over m = 10 available bands. The channels between the

transmitter and its correspondent receiver as well as the other

receivers is assumed to be Rayleigh fading channel with an

average channel gain
[

d
dki

]η

where d = 1Km is a reference

distance, dki is the distance between the ith transmitter and

the kth receiver and η is the pathloss exponent that is set

to 3. We consider the channels to be a first order (p = 1)
AR process. We assume the m available bands to have the

same bandwidth B = 6 MHz. We set the average gain of the

direct channel link to be 3 dB stronger than the average of

channel interference gain [2]. The time coherence is chosen

to be Tb = 1 ms.
Our simulation setup is in line with the IEEE 802.22

standard where users operates over the range of frequencies

between 54 MHz and 862 MHz. We assume the bands to

be adjacent such that the carrier frequencies over the 10 bands

will be in range of 645 MHz and 755 MHz. The Doppler

spread fd is caused by the mobility of the receiver at a max-

imum speed v = 70 Km/h. Hence, the channel correlation

over time α will falls in the interval [0.97, 1). We assume that

each user is using a fixed transmit power Pi(t) = 3 dBm
while the noise spectral density N0 is set to −100 dBm. For

the particle filtering, we use N = 100 particles.

B. System performance

In the following, the performance of our proposed spec-

trum allocation scheme is analyzed in terms of the achieved

throughput. In Fig. 1, we show the average achieved through-

put with the system setting described earlier using the intrinsic

objective function (4). We conclude that particle filtering

succeed in each time slot to track the channel changes as well

as the best channel. Also, we compare it to the case where the

resources are allocated using the Q-learning. Particle filtering

gives superior average throughput with comparison with the

Q-learning.

In Fig. 2, we compare the performances for the different

objective functions described earlier in Section II. We plot

the average and standard deviation of the throughput obtained

by the different users. We observe that the "sum" objective

function (5) allows a better average throughput due to the

proportionality between mean and sum functions. On the other

hand, the "min" objective function (6) results in a better

fairness (lower standard deviation between users) on the price

of a loss on the total/average throughput.

In Fig. 3, we compare the performance using intrinsic ob-

jective function (4) to the difference objective function which

was introduced in [12] and shown to improve performance

with Q-learning. This difference objective function aims at

maximizing exactly the contribution of the user on the total

throughput by using a difference function expressed as:

Di(t) =

n
∑

k=1

Rk(t)−

n
∑

k=1

R̂k,−i(t), (16)

where R̂
(j)
k,−i(t) represents the received throughput by user k

in the event user i is absent. This figure reconfirms the results
of [12] and allows to still enhance the proposed spectrum

allocation algorithm based on particle filtering by including

the difference function as objective.

In Fig. 4, we study the effect of the number of particles

employed. This is a key parameter for the particle filtering

algorithm as it affects both computational complexity and op-

timality. In fact, the computational complexity of the algorithm

is proportional to the number of particles while we show in this

figure the obtained average throughput with different number

of particles. We observe that N = 50 particles is sufficient for
convergence thanks to the Re-sampling step which allows to

avoid degeneracy.

VI. CONCLUSIONS

This paper presents an efficient particle filter algorithm for

a distributed spectrum allocation in large-scale DSA systems.

The proposed algorithm uses temporal fading correlation of

the channels to predict channel estimation based on previous

channel states and uses this for the propagation phase of the

spectrum allocation. The weighting is based on the received

throughput taken as observation while different objectives are

used and compared depending on the system’s target. Simu-

lation results show the efficiency of the proposed algorithm

with comparison to reinforcement learning algorithms.
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Fig. 1. Comparison between the average throughput when using particle
filtering with the case when using Q-learning.
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