
Energy-Efficient Cloud Resource Management
Mehiar Dabbagh, Bechir Hamdaoui, Mohsen Guizani† and Ammar Rayes‡

Oregon State University, Corvallis, OR 97331, dabbaghm,hamdaoub@onid.orst.edu
† Qatar University, mguizani@ieee.org

‡ Cisco Systems, San Jose, CA 95134, ‡ rayes@cisco.com

Abstract—We propose a resource management framework that
reduces energy consumption in cloud data centers. The proposed
framework predicts the number of virtual machine requests along
with their amounts of CPU and memory resources, provides
accurate estimations of the number of needed physical machines,
and reduces energy consumption by putting to sleep unneeded
physical machines. Our framework is based on real Google traces
collected over a 29-day period from a Google cluster containing
over 12,500 physical machines. Using this Google data, we show
that our proposed framework makes substantial energy savings.

Index Terms—Cloud computing, energy efficiency, cloud data
centers, cloud data clustering, cloud load prediction.

I. INTRODUCTION

Data centers consumed about 1.5% of the total generated
electricity in the U.S. in 2006, an amount that is equivalent to
the annual energy consumption of 5.8 million households [1].
This consumption is expected to increase even further as data
centers are anticipated to grow in both size and numbers. For
example, a recent study by Cisco predicts that cloud traffic will
grow 12-fold by 2015 [2]. It is therefore important to develop
efficient techniques to reduce data center energy consumption.

Large data centers such as cloud centers consist typically
of tens of thousands of servers, often referred to as physical
machines (PMs) and grouped into clusters. Upon receiving a
client request, the cluster scheduler creates a virtual machine
(VM) for the requested resources and assigns it to a PM.
According to a Google study [3], idle PMs consume around
50% of their peak power. Therefore, it is very important to
switch PMs to the sleep mode whenever they are not in use
in order to save energy. In this paper, we propose an integrated
resource management framework that predicts VM requests to
make energy-efficient resource management decisions.

Approaches that predict workloads to allocate resources effi-
ciently have already been proposed in the context of distributed
systems, such as Grid systems. Hidden Markov models [4], poly-
nomial fitting [5], and hybrid models [6] are workload prediction
methods that have been used in Grid systems. As for cloud
centers, machine learning techniques, such as Neural Networks,
have been proposed [7, 8] to predict the number of requests that
could arrive at cloud-hosted web servers. The problem being
addressed in this paper is different from these previous works,
as not only do we predict the number of VM requests to arrive
at a cloud cluster, but also the requested amount of each type
of resources associated with each VM request. Specifically, our
proposed framework i) combines machine learning clustering
and stochastic theory to predict future VM request loads, ii)
provides accurate estimations of the number of PMs to be
needed in the future, and iii) makes energy-efficient resource

This work was supported in part by Cisco (CG-573228) and National Science
Foundation (CAREER award CNS-0846044)

management decisions to reduce energy consumption in cloud
data centers. Our framework is evaluated through real Google
traces [9] collected over a 29-day period from a Google cluster
containing over 12,500 PMs.

The rest of the paper is organized as follows. In Section II,
we overview our proposed framework. In Section III, we present
the Google data traces and clustering. In Section IV, we present
our prediction approach. In Section V, we evaluate our proposed
framework. Finally, we conclude the paper in Section VI.

II. AN OVERVIEW OF PROPOSED FRAMEWORK

Our framework has three major components: data clustering,
workload prediction, and power management. In this section,
we briefly describe these components so as the reader will have
a global picture of the entire framework before delving into
the details. Detailed descriptions are provided in later sections.
Throughout this section, we refer to Fig. 1 for illustration.

A. Data Clustering

Our prediction approach relies on observing and monitoring
workload variations during a past time period, referred to as the
observation window, in order to predict the workload coming
in a certain future time period, referred to as the prediction
window. A VM request typically consists of multiple different
cloud resources (e.g., CPU, memory, bandwidth, etc.) with dif-
ferent amounts. This multi-resource nature of these VM requests
poses unique challenges when it comes to developing prediction
techniques. Also, different cloud clients may request different
amounts of the same resources. Therefore, it is both unpractical
and too difficult to predict the demand of each type of resource
separately (though ideally this is what is needed to be able
to make optimal power management decisions). To overcome
these challenges, we instead first divide/group VM requests into
several categories, and then develop prediction techniques for
each of these categories. This is known as clustering.

1) k-Means clustering: Our first step is then to create a set
of clusters to contain all types of VM requests; i.e., each VM
request is mapped into one and only one cluster, and all requests
belonging to the same cluster possess similar characteristics in
terms of requested resources. Our clusters are created based on
real Google data traces [9]. Since these Google traces consider
only two types of resources, CPU and memory, we also consider
only these two types in our framework. In order to divide
requests into multiple categories, we represent them in the R2

space, where each point is a request and the two dimensional
coordinates of the point are the amounts of CPU and memory
resources associated with the request. Clustering these data
points into a number of clusters is done using k-Means [10].

As shown in Fig. 1, the k-Means algorithm takes as an input
the Google traces and the number of clusters, k, and outputs k

k-Means

Traces

Decomposer

k=2

Observation Window

Traces

x[n]

Traces Decomposer Output

Data Clustering

Wiener

Predictor

Wiener

Predictor

Power

Management

W2

Resource Table

Energy

Decisions

W1

...

x[n-1]x[n-L] x[n]

...

x[n-1]x[n-L]

24...

31...

x[n]x[n-1]x[n-L1]

x[n-L2] x[n]x[n-1]

c1, c2

d2
^

d1
^

CPU

M
e

m
o

ry

CPU

M
e

m
o

ry

Traces

x

xc2

c1

Workload Prediction

Fig. 1. Flow chart of the proposed framework

clusters, each specified by its center point (in the example given
in the figure, k = 2 and the two clusters are shown in Red and
Blue). Note that the parameter k needs to be chosen a priori and
given as an input to the clustering algorithm. In Section III-B,
we show how such a parameter is chosen.

2) Traces Decomposer: Once the k clusters and their center
points are determined, they are given as an input to the Traces
Decomposer module (shown in Fig. 1), which is responsible for
mapping each request received during the observation window
into one cluster. The observation window is split into L+1 time
slots, n, n−1, . . . , n−L, as follows. Suppose a prediction needs
to be made at time t. In this case, slot n corresponds to time
interval [t − 10, t] (in seconds); slot n − 1 corresponds to time
interval [t − 20, t − 10], slot n − i corresponds to time interval
[t−10(i+1), t−10i], and so on. The Traces Decomposer tracks
the number x[n− i] of received requests in time slot [t− 10(i+
1), t − 10i] of the observation window for all i = 0, 1, . . . , L,
and maps each request within the slots into one cluster.

B. Workload Prediction

We use stochastic Wiener filter prediction to estimate the
workload of each category/cluster. The Stochastic Predictor, as
shown in Fig. 1, is made of k Wiener filters. Each filter takes as
an input the number of received requests for a certain category
during the observation window, and uses it to predict the number
of requests of that same category to arrive in the prediction
window. This makes the problem easier to solve as there is an
infinite number of possible combinations of the amounts of CPU
and memory that a client may request.

The prediction for each category is a weighted linear com-
bination of the number of requests of that category observed
during the observation window. The parameters that need to
be determined for each filter branch are: the length of the
observation window, the length of the prediction window, and the
weight vector. These parameters are determined in Section IV.

C. Power Management

The predictions of all categories along with their center points
are all next passed to the Power Management module, which uses
this information to decide which PMs need to go to sleep and
which ones need to be kept ON. This unit keeps track of current
utilizations and states (ON or sleep) of all PMs in the cloud
cluster which are stored in a table called Resource Table. It uses

a modified Best Fit Decreasing (BFD) heuristic [11] to fit the
predicted VM requests in PMs in order to determine the number
of PMs to be needed during the next prediction window period.

The original BFD algorithm [11] tries to pack VM requests in
the fullest PM with enough space. In order to do that, it sorts PMs
from the fullest to the least full and iterates over the ordered list
of PMs trying to pack the VM request within the first PM that has
enough space. The original algorithm can not be applied directly
to our framework due to the following limitations. First, it was
introduced for homogeneous bins where all bins (i.e., PMs) are
assumed to have the same capacity. In cloud centers, different
PMs may have different capacities, as will be seen in Section III.
Second, it only considers one dimension (i.e., one resource
only), whereas our cloud centers consider two dimensions, CPU
and memory. We overcome the first limitation by considering
the PM’s utilization as the metric for measuring how full a
PM is, and overcome the second limitation by mapping the
two dimensions into a single-dimension metric that combines
both dimensions. The single-dimension metric considered in our
heuristic is the product of the two dimensions. Furthermore, our
proposed heuristic takes energy efficiency into account by sorting
the PMs according to the following criteria (in ascending order):

(i) PMs that are ON
(ii) PMs that have higher utilizations. The utilization metric

is defined as the product of the CPU utilization and the
memory utilization of the PM.

(iii) PMs that have higher capacities. Similarly, the capacity
metric of a PM is defined as the product of its memory
and CPU capacities.

The intuition behind our sorting criteria is as follows: we want
to make use of the available ON PMs that already have some
scheduled VMs; so ON PMs are ranked first. We then use the
utilization metric as the next sorting criterion, since PMs are
more energy efficient when they have higher utilization [3]. So,
it is better to increase their utilization when scheduling new VMs.
Finally, PMs are sorted based on their capacities, as one can fit
more VMs in PMs that have large capacities. After placing all
predicted VM requests in PMs, we either end up with redundant
ON PMs that need to be turned to the sleep mode, or more
PMs will be needed in the future and therefore are turned back
ON from the sleep mode to cover the predicted workload. This
guarantees that only PMs needed for the predicted workload are

to be kept ON and the rest are put to sleep to save energy.

III. DATA CLUSTERING

In this section, we first begin by presenting the Google data
traces that we used in this work to train and test our developed
energy-aware resource provisioning models, and then present our
workload clustering and classification findings.

A. Google Traces
We conduct our experiments on real Google data [9] that

was released in November 2011 and consists of a 29-day traces
collected from a cluster that contains more than 12,500 PMs. To
the best of our knowledge, this is the first work that considers
developing a workload prediction approach based on this data.

The Google cluster supports different PM configurations. The
characteristics and number of PMs of each configuration are
described in Table I. Note that there are three different types
of architecture, labeled by Google as A, B and C (their actual
types are not given for privacy reasons). Note also that PMs
from the same architecture may have different CPU and mem-
ory capacities. Only normalized capacities (w.r.t. the maximum
capacity) are provided, also for privacy reasons; thus the reported
capacities are all less than or equal to one.

TABLE I
CONFIGURATIONS OF THE PMS WITHIN THE GOOGLE CLUSTER

Number of PMs PM Configurations
Architecture CPU Memory

6732 A 0.50 0.50
3863 A 0.50 0.25
1001 A 0.50 0.75
795 C 1.00 1.00
126 B 0.25 0.25
52 A 0.50 0.12
5 A 0.50 0.03
5 A 0.50 0.97
3 C 1.00 0.50
1 A 0.50 0.06

Our experiments utilize the data provided in the task event
table, where each VM request is called a task and each VM
submission/termination request is referred to as an event. A
detailed description of the data is provided in [12], and in the
following, we only describe the features used by our framework:
• Timestamp: time at which the event happened.
• VM ID: a unique identifier for each VM. Kept anonymous

and replaced by its hash value.
• Client ID: a unique identifier for each cloud client. Kept

anonymous and replaced by its hash value.
• Event type: specifies whether the event is a submission or

a release request. It is worth noting that clients may submit
or release a VM request whenever they desire.

• Requested CPU: amount of requested CPU.
• Requested memory: amount of requested memory.
Since the size of the Google data is huge (compressed size

is about 39GB), we use two (different) chunks of the traces to
tune our framework parameters. We refer to these chunks as the
training data set and the validation data set, and are of length
24 and 16 hours, respectively. A different testing data set, also
taken from the Google traces, with a duration of 29 hours is
used later to estimate the accuracy and measure energy savings
that our framework achieves.

0 2 4 6 8 10
0

25

50

75

100

Number of clusters: k

S
S

D

Fig. 2. The elbow criteria for selecting k.

B. Workload Clustering

We use k-Means, a well-known unsupervised learning algo-
rithm, to cluster VM requests into k categories [10]. k-Means
assigns N data points to k different clusters, where k is a
parameter that needs to be specified a priori. The number of
clusters, k, is one of the important parameters that needs to
be tuned when using k-Means. For this, a heuristic approach
is implemented, in which the Sum of Squared Distances (SSD)
is plotted as a function of k. SSD represents the error when each
point in the data set is represented by its corresponding cluster
center, and is mathematically equal to

∑k
i=1

∑
r∈Ci d(r, ci)

2

where Ci denotes cluster i; i.e., set of all points belonging to
the ith cluster, ci denotes cluster i’s center point, and d(r, ci) is
the Euclidean distance between r and ci.

Fig. 2 shows SSD as a function of k plotted based on
the Google traces. Note that as k increases, SSD decrease
monotonically, and hence so does the error. Recall that while
increasing k reduces the error, it also increases the overhead
incurred by the prediction technique (to be presented in next
sections), since a predictor branch needs to be built for each
cluster/category. For this, the heuristic searches then for the
"elbow" or "knee" point of the plot, which is basically the point
that balances between these two conflicting objectives: reducing
errors and maintaining low overhead. As can be seen from Fig.
2, the value 4 for k strikes a good balance between accuracy and
overhead. Hence, in what follows we use k = 4.

Fig. 3 shows the resulting clusters for k = 4, where each
category is marked by a different color/shape and the centers of
these clusters c1, c2, c3 and c4 are marked by ’x’. Category 1
represents VM requests with small amounts of CPU and small
amounts of memory; Category 2 represents VM requests with
medium amounts of CPU and small amounts of memory; Cat-
egory 3 represents VM requests with large amounts of memory
(and any amounts of requested CPU). Category 4 represents
VM requests with large amounts of CPU (and any amounts
of requested memory). Observe from the obtained clusters that
requests with smaller amounts of CPU and memory are denser
than those with large amounts.

IV. WORKLOAD PREDICTION

In this section, we determine and estimate the parameters of
the proposed prediction approach.

A. Length of the Prediction Window

An important parameter that needs to be estimated for the
stochastic predictor is the length of the prediction window, Tp.
This is the time period for which the workload needs to be
predicted to decide whether PMs need to be switched to the
sleep mode. When a PM is switched to the sleep mode, then

Fig. 3. The resulting four clusters/categories for Google traces.

w0

Z
-1

+

w1

x[n] Z
-1

+

w2

Z
-1

+

wL

^
d[n]

...

...

Fig. 4. The general structure of Wiener filter.

its consumed energy while in the sleep mode, Esleep, is equal
to Eo + Psleep(Tp − To), where Psleep is the consumed power
when in the sleep mode; Eo is the transition energy, equaling
the energy needed to switch the machine to the sleep mode
plus the energy needed to wake up the machine later; and To
is the transitional switching time. Now let Tbe be the break-
even time, the time during which keeping the PM ON and idle
consumes an amount of energy that is equal to Esleep. We then
have PidleTbe = Eo+Psleep(Tbe−To), where Pidle is the power
the PM consumes while being ON and idle. Putting a PM to sleep
saves energy only when the PM stays idle for a period longer
than Tbe; i.e., when Tp ≥ Tbe.

In this work, we rely on the energy measurements conducted
in [13] to estimate Tbe. These measurements, shown in Table
II, yield Tbe = 47 seconds. It is worth noting that these energy
measurements were based on a certain type of commercial PMs,
and hence, these numbers might change slightly depending on
the PM type. In our framework, we chose a conservative value
of Tp = 60 seconds so as to accommodate for all types. But as
mentioned before, Google does not provide information about
the types of their PMs; so this number can still be off.

TABLE II
ENERGY MEASUREMENTS NEEDED TO CALCULATE Tbe

Parameter Value Unit
Pidle 300.81 Watt
Psleep 107 Watt

Eon→sleep 5510 Joule
Esleep→on 4260 Joule

To 6 Seconds

B. Weights of the Stochastic Predictor

Suppose that the prediction needs to be made at time t. The
general structure of the Wiener predictor for each of the four
categories can be represented as shown in Fig. 4, where:
• x[n − i]: is the number of requests received in the period

between t− 10(i+ 1) and t− 10i seconds.

• d[n]: the desired output of the category predictor. This
represents the actual number of requests for the considered
category in the coming prediction window.

• d̂[n]: is the predicted number of requests for the considered
category in the coming prediction window.

• L: is the number of taps that the predictor relies on in
making predictions.

• wi: is the ith tap’s weight.
Wiener filter predicts the future requests, assuming x[n] is a
wide-sense stationary process. The predicted number of re-
quests, d̂[n], is a weighted average of the previous observed
requests; i.e., d̂[n] =

∑L
i=0 wix[n − i]. The prediction error,

e[n], can be calculated as the difference between the actual
and predicted number of requests; i.e., e[n] = d[n] − d̂[n] =
d[n] −

∑L
i=0 wix[n − i]. The objective is to find the weights

that minimize the Mean Squared Error (MSE) of the training
data, where MSE = E[e2[n]] represents the second moment
of error. The reason for choosing it as an objective is because
it minimizes both the average and variance of the error while
putting more weight on the average (E[e2[n]] = (E[e[n]])

2
+

var(e[n])). Differentiating MSE with respect to wk and setting
this derivative to zero yields, after some algebraic simplifications,
E
[
d[n]x[n− k]

]
−
∑L

i=0 wiE
[
x[n− k]x[n− i]

]
= 0. By letting

Rxx(i− k) = E
[
x[n− k]x[n− i]

]
(1)

Rdx(k) = E
[
d[n]x[n− k]

]
(2)

it follows that Rdx(k) =
∑L

i=0 wiRxx(i− k).
Similar equations expressing the other weights can also be

obtained in the same way. These equations can be presented in
a matrix format as Rdx = RxxW , where

Rxx =

Rxx(0) Rxx(1) . . . Rxx(L)
Rxx(1) Rxx(0) . . . Rxx(L− 1)

...
...

. . .
...

Rxx(L) Rxx(L− 1) . . . Rxx(0)

W =

[
w0 w1 . . . wL

]T
Rdx =

[
Rdx(0) Rdx(1) . . . Rdx(L)

]T
Given Rxx and Rdx, the weights can then be calculated as

W = R−1xxRdx. We rely on the training data set to calculate Rxx

and Rdx for each category. To estimate these parameters for a
certain category, we divide the training data into N slots where
the duration of each slot is 10 seconds. We first calculate the
number of requests of the considered category that are received
in each slot. Then, we calculate the elements of Rxx using the
unbiased correlation estimation as:

Rxx(m) =
1

N −m

N−m−1∑
j=0

x[j +m]x[j]

The elements of Rdx can also be estimated using the corre-
lation coefficients. Since d[n] represents the number of requests
in the coming prediction window which has a duration of 60
seconds, we can write d[n] =

∑6
i=1 x[n + i]. Plugging the

expression of d[n] in Eq. (2) yields the correlations that can
be estimated from the training data. An estimation of the weight
vector follows then for each category predictor provided Rdx

and Rxx are known. These weights lead, in turn, to the lowest
MSE for the training data.

0 50 100 150 200 250
2000

2500

3000

3500

4000

4500

5000

5500
V

al
id

at
io

n
D

at
a

R
M

S
E

Number of Taps: L
0 50 100 150 200 250

800

820

840

860

880

900

920

940

T
ra

in
in

g
D

at
a

R
M

S
E

Training
Validation

Fig. 5. RMSE for 3rd category predictor

C. Length of the Observation Window

The last parameter that needs to be tuned for each category
predictor is the length of the observation window. As mentioned
before, the observation window is divided into L slots or (also
called) taps, each tap/slot is of length 10 seconds. This Wiener
filter is referred to as an L-tapped filter. To determine L for
a category predictor, we first need to find the optimal weight
vectors of the Wiener predictor under different values of L on
the training data, and then test the performance of these weight
vectors on the unseen validation data.

Fig. 5 shows the Root Mean Square Error (RMSE) of the 3rd
category predictor for both training and validation data sets for
different values of L. Observe that the training data RMSE
decreases monotonically as L increases. To understand this,
consider two Wiener filters: one with L taps and the other with
L + R taps. Recall that we need to find optimal weights that
when multiplied by these taps leads to the minimum MSE of
the training data. As a result, the model with L + R taps can
achieve the same accuracy on the training data set as the model
with L taps by setting the weights of all the additional R taps to
0. Thus, the model with a given number of taps will, in the worst-
case scenario, achieve the same accuracy as any model with
lower numbers of taps. In general, models with larger numbers
of taps can still find some correlations specific to the training
data that lead to a better accuracy. Consequently, the training
error continues to decrease as the number of taps increases.

However, by observing the behavior of the validation data,
note that RMSE decreases first until it reaches a point beyond
which the error can no longer be reduced even if L is increased
further. Also, observe that if we continue to increase L, the
validation data RMSE starts to increase. This behavior is
expected and is known as the overfitting phenomenon. After
increasing the number of taps beyond a certain limit, the model
tries to find correlations between the different requests over
time. These correlations are specific to the training data. We
say then that increasing the number of taps beyond a certain
point results in increasing the complexity of the model and starts
finding correlations that do not exist in the general traces but are
specific to the training data. Based on our experiments, we chose
L = 80, as it achieves the best accuracy on the unseen validation
data, meaning that the observation window of the 3rd category
predictor relies on the traces in the previous 80 taps collected in
the previous 80× 10 = 800 seconds.

Using a similar approach, the optimal numbers of taps of
the other three categories are determined to be 20 (category 1),

TABLE III
RMSE OF DIFFERENT PREDICTIVE APPROACHES.

Wiener Min Average Last Minute Max
Predictor Predictor Predictor Predictor Predictor

RMSE 2497 2547 2575 3117 5226

80 (category 2), and 34 (category 4). Graphs for these three
categories are omitted due to space limitation.

D. Prediction Accuracy

We assess the accuracy of the proposed predictors and com-
pare it against those of the following four basic techniques:

• Last minute predictor: returns the same number of requests
observed during the previous minute.

• Average Predictor: observes the number of requests received
in each minute during the last five minutes, and returns the
average over these five observations.

• Min Predictor: observes the number of requests received in
each minute during the last five minutes, and returns the
minimum of these five observations.

• Max Predictor: observes the number of requests received in
each minute during the last five minutes, and returns the
maximum of these five observations.

Table III shows RMSE of each prediction approach. For
each approach, RMSE =

∑4
i=1RMSEi where RMSEi is

the approach’s RMSE corresponding to the ith category. These
evaluations are conducted on a testing data of Google traces
that includes 2.5 milion VM requests received during a 29-
hour period. The testing data set is different from the training
and validation data sets used for tuning the parameters, thus
providing a fair comparison by showing the performance of our
predictor over new data that it did not see before. The table
shows that the proposed Wiener predictor yields RMSE that is
lower than those of all the other approaches. We want to mention
that these basic prediction techniques have also been tested for
different time durations (not only 5 minutes, but also 10, 15
minutes, etc.). For all of these cases, the basic approaches achieve
a performance worse than that of the Wiener predictor. Due to
space limitation, results reported in Table III consider the number
of requests received only during the last 5-minute duration.

E. Safety Margin

Our stochastic predictors can still be a little off, leading to
an under- or over-estimation of the number of requests. Under-
estimating the number of future requests results in extra delays
when allocating cloud resources to clients due to the need for
waking up machines upon arrival of any unpredicted request(s).
In order to reduce the occurrences of such cases, we add a
safety margin to accommodate for such variations. The cost of
this safety margin is that some PMs will need to be kept idle
even though they may or may not be needed. We use a dynamic
approach for selecting the appropriate safety margin value. The
value depends on the accuracy of our predictors, and increases
when the predictions deviate much from the actual number of
requests and decreases otherwise. Since these deviations may
vary over time, we calculate an exponentially weighted moving
average (EWMA) of the deviations while giving higher weights

0 100 200 300 400
0

1

2

3

4x 10
4

Minute

N
um

be
r

of
 R

eq
ue

st
s

Actual Number of Requests

Wiener Predictions

Wiener Predictions with Safety Margin

Fig. 6. Wiener prediction with and without safety margin for category 3.

to the most recent ones. Initially, Dev is set to zero; i.e.,
Dev[0] = 0, and for later time n, Dev[n] is updated as

Dev[n] = (1− α)Dev[n− 1] + α
∣∣∣d[n− 1]− d̂[n− 1]

∣∣∣
where 0 < α < 1 is the typical EWMA weight factor used
to tune between the weight given to most recent deviations
over that given to the previous ones. Dev is updated before
the next prediction is made by observing the deviation between
the predicted and actual number of requests in the previous
minute. One advantage of EWMA is that the moving average
is calculated without needing to store all observed deviations.

We add the weighted average Dev to our predictions in the
next minute after we multiply it by a certain parameter β. The
predicted number of requests with safety margin d̄[n] can then
be calculated as d̄[n] = d̂[n] + βDev[n].

Fig. 6 shows the predicted and actual numbers of requests with
and without safety margin for the third category (Graphs for the
remaining categories are omitted due to space limitation). We set
α = 0.25 and β = 4; these values are selected experimentally
by picking the values that provide the best predictions. Note
from these figures that the prediction with safety margin forms
an envelop above the actual number of requests, and the more
accurate the predictions are, the tighter the envelop is.

V. ENERGY SAVINGS

We now evaluate the performance of our framework in terms
of energy savings. We rely on the energy measurements and
findings provided in [13] and summarized in Table II. The
amount of energy saved under our framework when compared
to when there is no power management is calculated in each
minute as follows. Let Tsleep(i) be the length of the time period
during which PM i remains in the sleep mode during the last
minute. The energy difference Ediff (i) between leaving the PM
ON and putting it to sleep is equal to (Pidle − Psleep)Tsleep(i).
Letting Nsleep denote the set of PMs that were in the sleep mode
during the last minute, the total saved energy (in that minute) is
Total SavedEnergy =

∑
i∈Nsleep

Ediff (i) − Eo→s − Es→o,
where Eo→s and Es→o are the energy overheads of all the
switches respectively from the ON to the sleep mode and from
the sleep mode to the ON mode during the last minute.

Fig. 7 shows the amount of energy saved when our power
management framework is used. For comparison, we also plot the
energy savings achieved under the optimal power management,
which represents the case when the predictor knows the exact
number of future VM requests, as well as the exact amounts

20 40 60 80 100 120 140
60

80

100

120

140

160

Minute

S
av

ed
 E

ne
rg

y
(M

eg
a

Jo
ul

e)

Optimal Power Management
Our Framework

Fig. 7. Energy savings.

of CPU and memory associated with each request (i.e., perfect
prediction). This represents the best-case scenario and serves
here as an upper bound. The figure shows that our framework
achieves great energy savings, and that the amount of saved
energy is very close to the optimal case. The gap between
our framework and the optimal power saving mode is due to
prediction errors and to the redundant PMs that are left ON
as a safety margin. Our results indicate that the total amount
of saved energy during the entire testing period, calculated by
accumulating the energy savings in each minute during the whole
testing period, is 18.92 Mega Joules (under our framework) and
19.67 Mega Joules (under optimal power management).

VI. CONCLUSION

We proposed an integrated energy-aware resource manage-
ment framework for cloud data centers. Our proposed framework
monitors PMs in real time, and effectively decides whether and
when PMs need to be put to sleep to save energy. We evaluated
our proposed framework through real Google data traces, and
showed that it yields great energy savings.

REFERENCES

[1] R. Brown et al., “Report to congress on server and data center energy
efficiency: Public law 109-431,” 2008.

[2] “Cisco global cloud index: Frocast and methodology, 2011-2016,” Cicso
Inc., White Paper, 2012.

[3] L. Barroso and U. Holzle, “The case for energy-proportional computing,”
Computer Journal, vol. 40, pp. 33–37, 2007.

[4] C. Dabrowski and F. Hunt, “Using Markov chain analysis to study dynamic
behaviour in large-scale grid systems,” in Proceedings of ACM Symposium
on Grid Computing and e-Research, 2009.

[5] Y. Zhang, W. Sun, and Y. Inoguchi, “CPU load predictions on the
computational grid,” in Proceedings of IEEE International Symposium on
Cluster Computing and the Grid (CCGRID), 2006.

[6] Y. Wu, Y. Yuan, G. Yang, and W. Zheng, “Load prediction using hybrid
model for computational grid,” in Proceedings of ACM International
Conference on Grid Computing, 2007.

[7] T. Heath, B. Diniz, E. Carrera, W. Meira Jr, and R. Bianchini, “Energy
conservation in heterogeneous server clusters,” in Proc. of ACM SIGPLAN
Symp. on Principles and Practice of Parallel Programming, 2005.

[8] J. Prevost, K. Nagothu, B. Kelley, and M. Jamshidi, “Prediction of cloud
data center networks loads using stochastic and neural models,” in Proc.
of IEEE Int’l Conf. on System of Systems Engr. (SoSE), 2011.

[9] http://code.google.com/p/googleclusterdata/ .
[10] J. Han, M. Kamber, and J. Pei, “Data mining: concepts and techniques,”

2006, Morgan kaufmann.
[11] E. Man Jr, M. Garey, and D. Johnson, “Approximation algorithms for bin

packing: A survey,” Journal of Approximation Algorithms for NP-Hard
Problems, pp. 46–93, 1996.

[12] C. Reiss, J. Wilkes, and J. Hellerstein, “Google cluster-usage traces:
format+ schema,” Google Inc., White Paper, 2011.

[13] I. Sarji, C. Ghali, A. Chehab, and A. Kayssi, “CloudESE: Energy efficiency
model for cloud computing environments,” in Proceedings of IEEE
International Conference on Energy Aware Computing, 2011.

