
Cuckoo Filter-Based Location-Privacy Preservation
in Database-Driven Cognitive Radio Networks

Mohamed Grissa, Attila A. Yavuz, and Bechir Hamdaoui
Oregon State University, grissam,yavuza,hamdaoub@onid.oregonstate.edu

Abstract—Cognitive Radio Networks (CRN s) enable oppor-
tunistic access to the licensed channels by allowing secondary
users (SU s) to exploit vacant channel opportunities. One
effective technique through which SU s acquire whether a
channel is vacant is using geo-location databases. Despite their
usefulness, geo-location database-driven CRN s suffer from
location privacy threats, merely because SU s have to query
the database with their exact locations in order to learn about
spectrum availability.

In this paper, we propose an efficient scheme for database-
driven CRN s that preserves the location privacy of SU s
while allowing them to learn about available channels in their
vicinity. We present a tradeoff between offering an ideal location
privacy while having a high communication overhead and
compromising some of the users’ coordinates at the benefit of
incurring much lower overhead. We also study the effectiveness
of the proposed scheme under various system parameters.

Keywords—Database-driven spectrum availability, location
privacy preservation, cognitive radio networks, Cuckoo Filter.

I. INTRODUCTION

Cognitive radio networks (CRN s) have emerged as a key

technology for addressing the problem of spectrum utilization

inefficiency [1]. CRN s allow unlicensed users, also referred

to as Secondary Users (SU s), to access licensed frequency

bands opportunistically, so long as doing so does not harm

licensed users, also referred to as Primary Users (PU )s. In

order to enable SU s to identify vacant frequency bands, also

called white spaces, the Federal Communications Commis-

sion (FCC ) has adopted two main approaches: spectrum
sensing-based approach and geo-location database-driven
approach.

In the sensing-based approach [2], SU s themselves sense

the licensed channels to decide whether a channel is available

prior to using it so as to avoid harming PU s. In the database-

driven approach, SU s rely on a geo-location database (DB )

to obtain channel availability information. For this, SU s

are required to be equipped with GPS devices so as to

be able to query the DB on a regular basis using their

exact locations. Upon receipt of a query, the DB returns

to the SU the list of available channels in its vicinity, as

well as the transmission parameters that are to be used by

the SU . This DB -driven approach has advantages over the

sensing-based approach. First, it pushes the responsibility and

complexity of complying with spectrum policies to the DB .

Second, it eases the adoption of policy changes by limiting

updates to just a handful number of databases, as opposed

to updating large numbers of devices [3]. Companies like

Google and Microsoft, among others, were selected by FCC

to administrate these geo-location databases, following the

guidelines provided by PAWS.1

Despite their effectiveness in improving spectrum utiliza-

tion efficiency, DB -driven CRN s suffer from serious secu-

rity and privacy threats. The disclosure of location privacy

of SU s has been one of such threats to SU s when it comes

to obtaining spectrum availability from DBs. This is simply

because the users have to share their locations with the DB to

learn about spectrum availability. The fine-grained location,

when combined with publicly available information, could

lead to even greater private information leakage; it could, for

example, be used to infer private information like shopping

patterns, preferences, behavior and beliefs, etc. [4]. Being

aware of such potential privacy threats, SU s may refuse

to use the DB for spectrum availability information, thus

making the need for location-privacy preserving schemes for

DB -driven spectrum access of high importance.

In this paper, we propose a new scheme that preserves

the location privacy of SU s in database-driven CRN s. We

show that our proposed scheme preserves the location privacy

of SU s while outperforming existing approaches in terms

of the amount of overhead to be incurred in the process of

protecting users’ location privacy, thereby making it more

scalable and practical. In addition, we show that a significant

reduction in the scheme’s overhead can be further achieved

by allowing the leakage of some information that makes little

to no compromise of the users’ location, yet reduces the

overhead substantially. We also study the impact of system

parameters on the performances of our proposed scheme, and

compare them against those obtained via existing approaches.

The rest of this paper is organized as follows: we present

the related work in Section II. In Section III, we provide our

system model and a brief overview of the Cuckoo filter. In

Section IV, we present our proposed scheme. We evaluate

and analyze the performance of the proposed scheme in

Section V, and conclude in Section VI.

II. RELATED WORK

Despite the importance of protecting the location privacy

of users, little attention was drawn to cope with it in the

literature. While some works focused on addressing this

issue in the context of collaborative spectrum sensing [5]–

[7], others addressed it in the context of dynamic spectrum

1PAWS (Protocol to Access White-Space) is a protocol introduced to
enable interoperability between devices and databases [3].



Fig. 1: Database-driven CRN

auction [8]. However, these works are skipped here since

they are not within the scope of the paper.

In the context of DB -driven CRN s, Gao et al. [9]

identified a new attack that can compromise the location

privacy of SU s that have to communicate with DB through a

base station. The area controlled by the base station is viewed

as a grid containing multiple cells, where the location of each

SU is determined by the cell in which the SU is located in. In

this attack, DB , which is assumed to know the content of the

communication between users and the base station, can infer

the location of SU s based on their channel utilization pattern.

Basically, since a SU cannot use a channel unless it is outside

the coverage area of any PU currently using the channel and

given that a SU has to keep switching from one channel to

another to avoid interfering with PU s, this allows the DB to

narrow down the location of users by finding the intersection

area of the complements of PU s’ coverage areas over time.

To thwart this attack, they propose a Private Information

Retrieval (PIR)-based scheme, termed PriSpectrum , that,

despite its merits, has several limitations: (i) It assumes

that the users are static over time; (ii) It does not offer

ideal location privacy; and (iii) PIR-based approaches are

known to be expensive in terms of communication and

computation overhead. Troja et al. [10] proposed another

approach that allows users to communicate in a peer-to-

peer manner to share their spectrum availability information

that they obtained from previous queries. This reduces the

number of executions of the PIR protocol used by the users

to privately retrieve spectrum information from DB . This

scheme, just like the previous one, is designed for limited

areas and has also the drawbacks of PIR-based approaches.

III. SYSTEM MODEL AND CUCKOO FILTER

In this section, we first begin by stating our system model.

Then, for completeness, we overview the Cuckoo filter

approach, which is used in our privacy-preserving scheme

that we present in the next section.

A. Database-driven CRN Model

We consider a CRN that consists of a set of SU s and a

geo-location database (DB ). SU s are assumed to be enabled

Fig. 2: Cuckoo Filter: 2 hashes per item, 8 buckets each

containing 4 entries

with GPS capability, and to have access to the DB for

obtaining spectrum availability information, as shown in

Figure 1. To obtain spectrum availability information, a

SU queries the database by including its location and its

device characteristics. DB responds with a list of available

channels at the specified location and a set of parameters

for transmission over those channels. The user then selects

and uses one of the returned channels, and while using

the channel, needs to recheck the channel’s availability on

a daily basis or whenever it changes its location by 100

meters as mandated by the PAWS protocol [3]. For more

information about the requirements and policies of database-

driven CRN s, readers are referred to [3].

B. Cuckoo Filter

The novelty of our proposed privacy-preserving scheme, to

be presented in the next section, lies in the use of the Cuckoo
Filter technique. Therefore, for completeness, we provide in

this section a quick overview of this filter.

Essentially, Cuckoo Filter is a new data structure proposed

in [11] to replace Bloom Filter as a method for testing set

membership; i.e., for testing whether an element is a member

of a set. It uses Cuckoo Hashing [12] and was designed to

serve applications that need to store a large number of items

while targeting low false positive rates and requiring storage

space smaller than that required by Bloom Filters. A false

positive occurs when the membership test returns that an

item exists in the Cuckoo Filter (i.e., belongs to the set)

while it actually does not. A false negative, on the other

hand, occurs when the membership test returns that an item

does not exist while it actually exists. In Cuckoo filters, false

positives are possible, but false negatives are not, and the

target false positive rate, denoted throughout this paper by ε,
can be controlled and has a direct impact on the size of the

filter.

Figure 2 shows an example of a Cuckoo filter that uses two

hashes per item and contains 8 buckets each with 4 entries. A

Cuckoo Filter has mainly two functions: An Insert function

that stores items in the filter, and a Lookup function that

checks whether an item exists in the filter. We describe the

operations of these two functions in Algorithms 1 & 2 [11].

For the Insert operation, explained in Algorithm 1,

Cuckoo Filters store a fingerprint f of each item x, as

opposed to storing the item itself. For this, each item is

first hashed into a constant-sized fingerprint (step 1). This



fingerprint is then stored in the filter as follows. The algo-

rithm checks if there is an empty entry in one of the two

buckets indexed by i1 and i2 (steps 2 to 5). If an empty

entry is found, then f is added to the bucket. Otherwise,

one of the two buckets is picked randomly (step 6), and f is

swapped with one of the items in the bucket while the victim

item (being swapped with f ) is relocated to its alternate

location, as shown in Algorithm 1. The space cost, in bits,

of storing one item in the Cuckoo Filter using the Insert
function depends on the target false positive rate ε and is

given by (log2(1/ε) + 2)/α where α is the load factor of

the filter which defines the maximum filter capacity. Once

the maximum feasible, α, is reached, insertions are (non-

trivially and increasingly) likely to fail, and hence, the filter

must expand in order to store more items [11].

Algorithm 1 Insert(x)

1: f = fingerprint(x);
2: i1 = hash(x);
3: i2 = i1 ⊕ hash(f);
4: if bucket[i1] or bucket[i2] has an empty entry then
5: add f to that bucket;

return Done
// must relocate existing items if no empty entries;

6: i = randomly pick i1 or i2;

7: for n = 0;n < MaxNumKicks;n++ do
8: randomly select an entry e from bucket[i];
9: swap f and the fingerprint stored in entry e;

10: i = i⊕ hash(f);
11: if bucket[i] has an empty entry then
12: add f to bucket[i];

return Done
// Hashtable is considered full;

return Failure;

The Lookup operations are highlighted in Algorithm 2. In

order to check whether an item x belong to the filter, we only

need to compute its fingerprint and its potential locations

i1 and i2 and then check whether bucket[i1] or bucket[i2]
contains the fingerprint of x.

Algorithm 2 Lookup(x)

1: f = fingerprint(x);
2: i1 = hash(x);
3: i2 = i1 ⊕ hash(f);
4: if bucket[i1] or bucket[i2] has f then

return True
return False;

In this paper, Cuckoo Filter is used to construct a repre-

sentation of the spectrum geo-location database as explained

in Section IV. What motivated the use of the Cuckoo Filter is

that it offers the highest space efficiency among all existing

approaches, and is much more efficient than Bloom Filters,

especially for very large sets, which is the case of geo-

location databases that contain entries corresponding to spec-

trum availability with a location resolution that can go up to

50 meters. Cuckoo Filter enjoys extremely fast Lookup and

Insert operations, thus reducing the computation overhead

of our proposed scheme substantially as will be seen later.

Cuckoo Filter is the building block of our scheme that we

present next in Section IV.

IV. LOCATION-PRIVACY PRESERVATION: THE PROPOSED

CUCKOO FILTER-BASED SCHEME

Protecting the location privacy of SU s in database-driven

CRN s is a very challenging task, since the users need to

provide their locations to the database to be able to learn

about spectrum opportunities in their vicinities. There have

been some proposed techniques that do protect such privacy

in these database-driven CRN s, but not without incurring

substantial overhead in terms of communication and/or com-

putation (e.g., [9]). One straightforward and trivial approach,

which provides ideal location privacy preservation of the

users, is to simply send the whole database to the user, and

let the user search the database itself to figure out whether

spectrum is available in its vicinity. This is of course very

costly and unpractical and just mentioned here to show the

tradeoffs between having ideal privacy and incurring lots of

overhead. Other more efficient approaches, such as the one

proposed in [9], do reduce the amount of overhead while still

providing a high level of location privacy.

In this paper, we propose an approach that strikes a good

balance between achieving high location privacy level and in-

curring little overhead. The novelty of our proposed scheme,

referred to as Location Privacy in DataBase-driven CRN s
(LPDB ), lies in the use of the Cuckoo Filter technique,

explained in the previous section, to construct a compact

(space efficient) representation of the database that can be

sent to the SU to figure out about spectrum availability.

Our reliance on the Cuckoo filter to represent the spectrum

availability reduces the amount of communication overhead

substantially without needing to compromise the location

privacy of users. In our proposed LPDB , instead of sending

its location, a user sends its characteristics (e.g., its device

type, its antenna type, etc.), as specified by PAWS [3], to

the DB which then uses them to retrieve the corresponding

entries in all possible locations. The DB then puts these

entries in a Cuckoo Filter and sends it back to the user.

Upon receiving the new representation of the database (i.e.,

the Cuckoo Filter representation), the user constructs a query

that includes its characteristic information, its location, and

one of the possible channels with its associated parameters,

and then looks up the received Cuckoo Filter using this

constructed query to see whether that channel is available

in its current location. As will be shown later, this method

does incur substantially small amounts of overhead, thanks

to the Cuckoo Filter technique.

An example of parameters that could be included in the

response of DB in addition to the time stamp, the location,

and the available channels is the transmission power to be

considered when using those channels. User characteristics

and DB parameters could be agreed upon beforehand be-



tween DB and SU s to make sure that the user queries the

Cuckoo Filter with the right parameters.
We provide a simple structure of the geo-location database

that we follow in the description of our scheme as shown in

Table I. Each row corresponds to a different combination of

location pairs (locX ,locY ) and channel chn . One location

may contain several available channels at the same time.

The different steps of the proposed approach are illustrated

TABLE I: Simplistic structure of DB

locX locY ts chn avl par1 · · · parn

row1 locX 1 locY 1 t chn1 0 par11 · · · parn1
row2 locX 1 locY 1 t chn2 1 par12 · · · parn2

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

row i locX 2 locY 2 t chn1 1 par1i · · · parni
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

rowr locX r locY r t chn1 0 par1r · · · parnr

avl = 1 means channel is available and avl = 0 means a channel is being used by

the primary user

in Algorithm 3 and are briefly explained as follows: Each

user SU i starts by constructing the query query i that it will

send to DB by including a set of characteristics that are

specific to the device querying DB and a time stamp ts .

DB then retrieves the entries that correspond to query i and

constructs Cuckoo Filter (which could be done offline). Since

DB contains availability status for each channel in each

location, the number of entries satisfying query i will still

be huge and one way to further reduce it is to retrieve only

the information about available channels and ignore the other

ones. DB then concatenates the different data in each row to

construct xj as illustrated in Step 7 and inserts it to Cuckoo

Filter. DB then sends Cuckoo Filter to SU which constructs

a string y by concatenating its location coordinates with a

combination of one channel and its possible transmission

parameters and tries to find if y exists in the filter by using

the Lookup operation of the Cuckoo Filter. The user keeps

changing the channel and the associated parameters until it

finds the string y in the filter or until the user tries all the

channels. If the user finds y in the filter, it can conclude

that the channel used to construct y is free and thus can

use it. Note that, depending on the false positive rate ε of

Cuckoo Filter, even if the Lookup operation returns True
it doesn’t necessarily mean that the specified channel is

available. Setting ε to be very small makes the probability

of having such a scenario very small, as well and limiting

the risk of using a busy channel, but this cannot be done

without increasing the size of Cuckoo Filter. If after trying

out all possible combinations, SU does not find y in Cuckoo

Filter, this certainly means that no channel is available in the

specified location as the Cuckoo Filter does not incur any

false negatives.
When the size of the database is not too large (e.g., when

the location resolution is not too small and the area covered

by the database is not too large), then this proposed scheme

works well (as will be shown later in the evaluation section)

by providing ideal privacy with reasonably small amounts

Algorithm 3 LPDB Algorithm

1: SU constructs query query ← f(char , ts);
2: SU queries DB with query ;

3: DB retrieves resp containing all possible r entries

satisfying query each having c columns;

4: DB constructs the Cuckoo Filter CuckooF ilter;

5: for j = 1, . . . , r do
6: if avl j = 1 then
7: x j ← (locX j‖locY j‖ts‖ . . . ‖row j(c));
8: DB inserts x j into CuckooF ilter:

CuckooF ilter.Insert(x j);

9: DB sends CuckooF ilter to SU ;

10: SU initializes decision ← Channel is busy

11: for all possible combinations of par do
12: SU constructs y ← (locX ‖locY ‖ts‖ . . . ‖parn);
13: if CuckooF ilter.Lookup(y) then
14: decision ← Channel is free; break;

return decision

of overhead. However, a serious scalability issue may arise

when the location resolution is very small (resolution used

in the database could be as small as 50 meters) and/or the

area covered by the DB is large. In this case, the number

of locations, and thus the number of entries in the database,

can be very large, and then even after relying on the Cuckoo

Filter, the size of the data to be transmitted may still be

unpractical/huge. This depends on the desired resolution as

well as on the area the DB covers.

In this work, we address this scalability issue through

the following observation. When the covered area is very

large and/or the location resolution is very small, allowing

the DB to learn one of the coordinates of the user can

drastically reduce the number of entries that DB retrieves and

thus considerably reduce the size of the Cuckoo Filter to be

transmitted, thus making the approach scalable. Interestingly,

in the case of large areas, revealing one coordinate of the

user does not make it any easier for the DB to infer the

user’s location. To illustrate, let’s for example assume that

the DB covers the entire United States, as shown in Figure 3.

Allowing the DB to learn about one coordinate (say the

latitude only) means that all what the DB learns is that SU is

located somewhere on the blue line that spans the latitude

of the whole country. But since the DB does not know the

longitude of the SU , then knowing the latitude only is as if

nothing is known about the SU ’s location. Throughout, we

refer to this proposed scheme as LPDB with leakage.

It is worth reiterating that when the covered area is not

very large, then the size of the Cuckoo Filter is practical

and there is no need to reveal one coordinate of the user. In

this case, our scheme, LPDB , provides ideal privacy without

incurring much overhead.

The system regulator can decide about which approach

to follow depending on the system constraints; that is,

LPDB (for small areas) or LPDB with leakage (for large

areas).



V. EVALUATION AND ANALYSIS

In this section, we evaluate the performance of our pro-

posed scheme and compare it to that of PriSpectrum [9] in

terms of: (i) location privacy, (ii) computation overhead, and

(iii) communication overhead. But before starting our evalu-

ation analysis, we begin by briefly describing PriSpectrum .

PriSpectrum was proposed by Gao et al. [9] to thwart a

newly identified attack. In this scheme, the area controlled by

the database is modeled as a grid containing multiple cells,

and the user’s location is determined by the cell in which the

user is located. In the identified attack, DB , which is assumed

to know the content of the communication between users and

the database, can infer the location of SU s from their channel

utilization patterns. The observation the authors made is that

a SU cannot use a channel unless it is situated outside the

coverage area of PU that transmits over that channel, since

otherwise SU will interfere with the primary transmission.

Now by looking at the different PU channels used by a user

over some time period, the DB can narrow down a user’s

location by intersecting the complements of PU s coverage

areas. PriSpectrum was designed to prevent this attack and

preserve the privacy of the location information contained

in the query of SU s. It uses a blinding factor to hide the

indices of the cell that contains the user within the location

grid. Now instead of sending indices i and j of the cell in

their queries, SU sends two vectors containing i and j with

blinding factors that only the user can remove.

A. Location Privacy

We start by evaluating LPDB in terms of location privacy.

Our goal in this work is to preserve the location privacy of

SU s as stated previously. This means that this information

has to be hidden from DB , which usually gets the location

from the query sent by the user, or any other entity that

can intercept the query and retrieve the location from it.

LPDB can achieve an optimal and ideal location privacy

since SU s, through this scheme, do not have to include their

location in their queries in order to learn about spectrum

availability. Furthermore, DB sends to the user all available

channels in different locations that comply with the query

sent by the user. This prevents it from learning which

entry SU picks up and thus its location is unconditionally

unknown to DB . This allows our scheme to have better

location privacy than PriSpectrum which cannot reach an

ideal privacy for SU s since a small number of users may

have their location exposed under PriSpectrum [9].

As discussed previously, one way to further reduce the

size of the Cuckoo Filter is to allow SU s to reveal one

of their coordinates. This, as shown in Section V-B, will

drastically reduce the size of the filter transmitted by DB at

the cost of loosing the ideal location privacy of the users.

However, when the coverage area of DB is very large, even

revealing one of the coordinates still achieves high location

privacy of SU s. Indeed, since our scheme is designed for

locating spectrum availability in database-driven CRN s and

databases (like those managed by Microsoft and Google)

cover an entire nation of the size of the United States, the

leaked information is not sufficient to localize the user, yet

reduces the lookup complexity substantially. As discussed

in the previous section, the example of the United States in

Figure 3 shows that our scheme can offer high privacy even

when one of the coordinates is revealed. We can see, through

this Figure, that all what DB can learn is that SU is located

somewhere on the blue line that spans the latitude of the

whole country when the latitude coordinate is leaked to the

DB .

Fig. 3: Location Leakage

B. Communication and Computation Overhead

Now we evaluate the overhead incurred by our scheme. We

provide the notations that we use in the rest of this section

in the table below:

m number of cells of DB coverage area
� percentage of DB entries with available channels
ε target false positive rate in Cuckoo F ilter
α load factor (0 ≤ α ≤ 1) in Cuckoo F ilter
s number of tv channels
p large prime used in the blinding factor of PriSpectrum

Here we consider the same setup used in [9] where DB ’s

covered area is modeled as a
√
m ×√m grid that contains

m cells each represented by one location pair (locX ,locY )

in the database. We use a large prime p of size 2048 bits

for PriSpectrum as in [9]. We use the efficient Cuckoo
Filter implementation provided in [13] for our performance

analysis with a very small false positive rate ε = 10−8 and a

load factor α = 0.95. In addition, since personal/portable

TVBD devices of SU s can only transmit on available

channels in the frequency bands 512-608 MHz (TV channels

21-36) and 614-698 MHz (TV channels 38-51), this means

that users can only access 31 white-space TV band channels

in a dynamic spectrum access manner [14]. Therefore, in our

evaluation we set s to be equal to 31.

We also ran an experiment to learn what a realistic value

of � might be, where again � represents the percentage

(averaged over time and space) of channels that are available.

We used the Microsoft online white spaces database applica-

tion [15] to identify and measure the percentage of available

channels by monitoring 8 different US locations (Portland,

San Faransico, Houston, Miami, Seattle, Boston, New York

and Salt Lake City) for two days with an interval between

successive measurements of 3 hours. Our measurements

show that � is about 6.8%.



TABLE II: Communication and computation overhead of proposed and existent schemes

Scheme Communication Computation
DB SU

LPDB w/ leakage query + � · s · √m · (log2(1/ε) + 2)/α � · s · √m · insert s · lookup
LPDB w/o leakage query + � · s ·m · (log2(1/ε) + 2)/α � · s ·m · insert s · lookup

PriSpectrum (2
√
m + 3)�log p� O(m) 4

√
m ·Mulp

Variables: insert and lookup denote the cost of one Insert and lookup operations in the Cuckoo Filter. Mulp is a modular multiplication operation over modulus p.

Communication Overhead: We first study the commu-

nication overhead of our scheme and we compare it again

against PriSpectrum . We provide the overhead of both

schemes in Table II. For LPDB we provide two expressions

of the overhead with respect to two scenarios: first, when one

of the coordinates is leaked by the user and second, when

there is no leakage. In both scenarios the data transmitted

consists basically of the query sent by an SU , query , and

the response of DB to that query. The size of the response

generated by DB depends on the number of entries in the

database that satisfy query and on the space needed to store

each of these entities in the Cuckoo Filter. The number of

entries for LPDB is given by �·s ·m and reduces to �·s ·√m
when one of the coordinates is revealed by the user. s · m
and s ·√m provide the number of entries in DB that satisfy

the query of SU for both scenarios. � gives the percentage

of those entries with available channels.

Computational Overhead: We also investigate the effi-

ciency of our proposed scheme in terms of its computational

overhead. We evaluate the computation required at DB and

SU sides separately, as shown in Table II. Again we provide

two estimated costs for both scenarios of LPDB . The com-

putation of DB is given in terms of the number of insertions

it has to perform into Cuckoo Filter. This depends on the

number of DB entries that comply with query considering

only the available channels. When there is no leakage, this

number is equal to � · s ·m and when there is leakage of one

of the coordinates, the number becomes � · s · √m .

For the computation cost in the SU side, LPDB ’s over-

head depends solely on the number of possible channels,

s , and the cost of one Lookup operation, lookup, for both

scenarios, as shown in Table II. One of the reasons that

motivated our use of the Cuckoo filter, as we mentioned

earlier, is that it is characterized by an extremely fast Lookup
operation. This allows the users to check whether a specific

combination, y , exists in the filter, i.e. whether channel

is available, very efficiently. LPDB ’s overhead does not

depend on the size of the database since any lookup query

to Cuckoo Filter always reads a fixed number of buckets

(at most two) [11], which makes our scheme more scalable

than PriSpectrum in terms of computation when the size of

DB increases.

1) Impact of varying �: We also study the impact of � on

the overhead incurred by our scheme for both scenarios:

with and without leakage. For this, we plot in Figure 4

the communication and the end-to-end (from SU to DB )

computation overheads, using the expressions established in

Table II, as a function of the number of cells m .

(a) Communication overhead

(b) Computational Overhead

Fig. 4: Performance Comparison

As shown in the Figure, both overheads behave simi-

larly in the way that decreasing � when one of the co-

ordinates is revealed doesn’t impact much our scheme.

LPDBs w/ Leakage have the smallest overhead com-

pared to the case where no leakage is allowed. In the

other hand, decreasing this parameter drastically reduces

the overhead of LPDB and even makes it comparable

to LPDBs w/ Leakage in terms of communication and

computation. This means that in the case where only 1% or

less of DB entries have available channels, there is no need

to reveal one of the coordinates to reduce the overhead.

2) Comparison with PriSpectrum: We now compare the

performance of our scheme to that of PriSpectrum . We first

compare the communication overhead incurred by the differ-

ent schemes. For this, we plot in Figure 5 the expressions in

Table II as a function of the number of cells m .

As shown in the Figure and as expected, LPDB is

clearly more expensive than PriSpectrum in terms of com-

munication even when �, determined experimentally, is



Fig. 5: DB Computational Overhead

(a) DB Computational Overhead

(b) SU Computational Overhead

Fig. 6: Computation Comparison

equal to 6.8%. However, revealing one of the coordinates

brings a huge gain and makes our scheme even better

than PriSpectrum , yet without compromising the location

privacy.

We also compare the computation overhead incurred at

SU and DB sides for the different schemes as shown

in Figure 6. Our scheme is much more efficient than

PriSpectrum in both scenarios even for � = 6.8% and

at both DB and SU sides as in Figure 6(a) & 6(b). The

gap keeps increasing considerably as the number of cells

(i.e., the size of DB ) increases. This is due to the fact that

PriSpectrum’s cost is dominated by an increasing number of

modular multiplications which are very expensive compared

to the Insert and Lookup operations of the Cuckoo filter.

VI. CONCLUSION

In this paper, we proposed an efficient scheme, called

LPDB , that aims to preserve the location privacy of SU s

in database-driven CRN s. It uses the concept of Cuckoo

Filter to transmit the content of the geo-location database

to the user that can query the filter to check whether a

specific channel is available in its vicinity. This technique

offers an ideal or very high location privacy to SU s and is

very efficient especially in terms of computational overhead.

ACKNOWLEDGMENT

This work was supported in part by the US National

Science Foundation under NSF award CNS-1162296.

REFERENCES

[1] “Spectrum policy task force report,” Federal Communications Com-
mission, Tech. Rep. ET Docket No.02-135, 2002.

[2] W. Wang and Q. Zhang, Location Privacy Preservation in Cognitive
Radio Networks. Springer, 2014.

[3] L. Zhu, V. Chen, J. Malyar, S. Das, and P. McCann, “Protocol to access
white-space (paws) databases,” 2015.

[4] S. B. Wicker, “The loss of location privacy in the cellular age,”
Communications of the ACM, vol. 55, no. 8, pp. 60–68, 2012.

[5] S. Li, H. Zhu, Z. Gao, X. Guan, K. Xing, and X. Shen, “Location
privacy preservation in collaborative spectrum sensing,” in INFOCOM,
2012 Proceedings IEEE. IEEE, 2012, pp. 729–737.

[6] M. Grissa, A. A. Yavuz, and B. Hamdaoui, “Lpos: Location privacy
for optimal sensing in cognitive radio networks,” in Global Commu-
nications Conference (GLOBECOM), 2015 IEEE. IEEE, 2015.

[7] W. Wang and Q. Zhang, “Privacy-preserving collaborative spectrum
sensing with multipleservice providers,” Wireless Communications,
IEEE Transactions on, 2015.

[8] S. Liu, H. Zhu, R. Du, C. Chen, and X. Guan, “Location privacy
preserving dynamic spectrum auction in cognitive radio network,” in
Distributed Computing Systems (ICDCS), 2013 IEEE 33rd Interna-
tional Conference on. IEEE, 2013, pp. 256–265.

[9] Z. Gao, H. Zhu, Y. Liu, M. Li, and Z. Cao, “Location privacy in
database-driven cognitive radio networks: Attacks and countermea-
sures,” in INFOCOM, 2013 Proceedings IEEE. IEEE, 2013, pp.
2751–2759.

[10] E. Troja and S. Bakiras, “Leveraging p2p interactions for efficient
location privacy in database-driven dynamic spectrum access,” in
Proceedings of the 22nd ACM SIGSPATIAL International Conference
on Advances in Geographic Information Systems. ACM, 2014.

[11] B. Fan, D. G. Andersen, M. Kaminsky, and M. D. Mitzenmacher,
“Cuckoo filter: Practically better than bloom,” in Proceedings of
the 10th ACM International on Conference on emerging Networking
Experiments and Technologies. ACM, 2014, pp. 75–88.

[12] R. Pagh and F. F. Rodler, “Cuckoo hashing,” Journal of Algorithms,
vol. 51, no. 2, pp. 122–144, 2004.

[13] “Cuckoo filter implementation,” https://github.com/efficient/
cuckoofilter.

[14] F. C. Commission, “Electronic code of federal regulations title 47,
chapter 1, subchapter a: Part 15-television band devices,” 2015.

[15] “Microsoft white spaces database,” http://whitespaces-demo.cloudapp.
net.


