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Abstract—In this paper, we propose dynamic power pricing for
distributed resource allocation in large-scale Dynamic Spectrum
Access (DSA) systems. The dynamic power pricing is considered
to influence the users’ spectrum assignment and power allocation
in two resource allocation problems. In the first scenario, the
objective is to maximize the reward of the obtained throughput
over the time window while not exceeding a fixed budget for
the power cost. The second problem consists of minimizing
the total power cost while guaranteeing a minimum achieved
throughput. Since the optimal solutions are of high computational
complexity, we propose a distributed two-step algorithm to solve
the optimization problems. In the first step, we rely on "learning"
to determine the best channel selection for each user. In the
second step, we optimize the allocated power to be used for
the selected channels. Using simulations, we show that dynamic
power pricing models allow achieving better DSA throughput
when compared to the case of a static pricing for the same budget.

Index Terms—Energy consumption awareness, spectrum access
efficiency, dynamic spectrum access, dynamic power pricing.

I. I NTRODUCTION

Efficient power consumption has become one of the key
design requirements of communication systems, motivated by
the emergence of green communication [1] as well as smart
grids. The latter has been seen as a promise for the future grid
to create a distributed energy delivery network. It is anticipated
to enhance the capacity and the efficiency of the grid by means
of two-way communications between end-users and power
plants, as well as by the inclusion and use of various types of
renewable energy sources [2].

Smart grids are envisioned to provide, in the near future, a
real-time power-usage pricing. It is used to prevent the energy
concentration and flatten the peak loads. Hence, it could be
a great opportunity for wireless communication systems, in
general, to follow up the power-pricing and control their power
consumption accordingly. In particular, this could provide a
great opportunity for researches in Dynamic Spectrum Access
(DSA) systems.

The concept of DSA has emerged as a key solution for
the current spectrum scarcity caused by the static spectrum
allocation policies. It allows an efficient use of the spectrum by
allowing the coexistence of license-exempt users with legacy
users. Due to its potential, DSA has created a significant
research interest, ranging from spectrum awareness methods
[3], [4] to spectrum sharing protocols [5]. With the emergence
of smart grids, DSA became more pertinent due to the new
opportunities given by dynamic power pricing. Therefore, it is

important to revisit the resource allocation protocols proposed
for DSA networks by taking into consideration the dynamic
power pricing to further improve budget efficiency. Even
though, recent trends in wireless communication systems are
opting towards smaller cells with low power devices, power
savings are still important to consider in the context of large-
scale systems. Thus, of particular interest to us is to address
scalability of the proposed resource allocation for DSA.

Although centralized approaches can be designed to achieve
optimal performance, they are not suitable for large-scaleDSA
networks due to their lack of scalability. On the other hand,
learning-based techniques have been viewed as potential can-
didates for decentralizing the allocation of spectrum resources,
thereby enabling distributed DSA [6], [7], [8], [9]. In partic-
ular, the authors in [6] proposed an efficient private objective
function that allows each user to maximize the reward that
a user receives from accessing the DSA network. Although
the proposed objective function is shown to be scalable,
the analysis was conducted without taking into account the
physical layer aspects. Authors in [7] revisited the objective
function, proposed in [6], and enhanced it by generalizing the
work to the case of multichannel access for every user. In
addition, cross-layer awareness was taken into consideration
by allowing each user to adapt the power allocated on each
selected channel. To overcome the high complexity of the joint
spectrum and power allocation approaches, the authors solved
each problem separately, using learning for the former problem
and water filling for the latter one.

With this in mind, we propose in this work a distributed
multi-channel spectrum assignment and power allocation for
large-scale DSA networks when using dynamic power pricing.
We consider two resource allocation problems. In the first
problem, the objective is to maximize the total throughput
over a time window while meeting the budget limit for the
power consumption cost. In the second problem, the objective
is to minimize the total power cost of the consumed power
while guaranteeing a minimum achieved throughput. To be
in line with the actual standards, we assume that the power
budget for each band is limited to a maximum transmit power.
This limit can also serve to keep the interference under a
limited threshold in case of underlay networks. To alleviate
the joint spectrum and power allocation processing complexity
at each user, we propose a two step approach. We first use
reinforcement learning to perform the multi-band spectrum
resource allocation. Then, we allocate the power budget to



the selected bands optimally.
The rest of this paper is organized as follows. Section II

describes the system model. In Section III, we first present the
proposed dynamic power pricing model, and then formulate
our resource allocation problems. In Section IV, we propose
the disjoint spectrum and power allocation algorithm that is
used to solve these problems. Simulation-based analysis is
presented in Section V. Finally, the conclusion are presented
in Section VI.

II. SYSTEM MODEL

We consider a large-scale distributed DSA system whereN
users, called DSA agents, are competing to accessl vacant
bands. We assume that the users have accurately declared the
bands as unused using spectrum sensing. Spectrum sensing
process is out of the scope of this paper and it is assumed to be
perfect. Each DSA agent represents a transmitter-receiverpair.
Examples of transmitters could be femto-cell base stations,
WiFi modems, wireless routers, etc.

We assume that each DSA agenti needs to communicate
over a time windowT . To do so, each agenti is allowed to
select, at each instantt, up to lmax

i bands, and to use in each
band j a maximum powerP̂ (j)

i . Let a(j)i be the occupation
mapping index for the bandj. If user i has selected the band
j, thena(j)i = 1, otherwise,a(j)i = 0. We denote byg(j)i the
jth channel gain between theith user and its corresponding
receiver and byP (j)

i the allocated power in each selected band
j. Assuming that users who select the same band will share
it orthogonally and equally to avoid interference (by usinga
carrier sense multiple access scheme), the achieved throughput
by useri at instantt is expressed as

Ri(t) =

l
∑

j=1

a
(j)
i (t)

Bj

nj(t)
log2
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)
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where N0 is the noise’s power spectral density, which is
assumed to remain constant over time and to be equal for
all bands, andnj(t) =

∑N
i=1 a

(j)
i (t) is the number of users

sharing bandj.
The power consumed by a useri at instantt, Pi(t), is written

as the sum of the allocated power over the selected bands
P

(j)
i (t) plus a constant componentP (0)

i that models the non-
radiated power, which is consumed independently regardless
of the number of selected bands and the allocated power. It
is essentially consumed by data processing, circuit RF chain,
and cooling. Hence,Pi(t) is written as

Pi(t) =
l

∑

j=1

a
(j)
i (t)P

(j)
i (t) + P

(0)
i . (2)

III. PROBLEM FORMULATION

In this section, we start presenting the dynamic pricing
model and describing the main difference compared to that
of the static pricing scheme. Then, we formulate our resource
allocation problem for dynamic pricing based DSA systems.

A. Power Pricing

In an ordinary scenario, the user’s power unit cost is
solely dependent on its own power consumption, and this is
regardless of the global grid power demand. Hence, the total
power cost scales linearly and could be written as

ci(Pi) = µi([P1, P2, ..., PN ])× Pi, (3)

where Pi is the total power consumption of useri and
µi([P1, P2, ..., PN ]) is the power price per unit, which depends
on the user’s power consumption only. However, this model
does not take into account the power grid load and the power
provider’s pricing policy which depend on many factors (peak
hours, energy prices, etc.). With the use of dynamic pricing,
the unit price not only scales with the user’s consumption,Pi,
but also depends on the other users’ power consumptions and
the whole system load. Hence, during the peak load time, the
unit cost price is set sufficiently high to urge users to shift
their consumption. However, when the whole power demand
in the system is low, the unit price is set low to allow users
to benefit from lower prices and avoid peak hours. However,
the price in this situation does not scale well. Here, the total
cost could be expressed as

ci(Pi) = µi([P1, P2, ..., PN ], D)× Pi, (4)

whereD denotes the overall demand on the grid.
Note that in this context, each user is assumed to be

equipped with a smart meter that captures instantaneously the
power pricing parameters and will be used by the user to adapt
its power consumption accordingly.

B. Resource Allocation Problems

As stated above, we consider two resource allocation prob-
lems, discussed separately in the following paragraphs.

1) Throughput Reward Maximization: In this problem, the
main objective is to maximize the total throughput over all
users while ensuring that each user reaches over the time win-
dow T a minimum target throughputRth

i while not exceeding
a maximum cost for the power at each time slotγi(t) given
the market price. This problem is suitable for elastic traffic,
such as web browsing, file transfer, emails, etc.

Since we are targeting a distributed scheme for the resource
allocation, and given that users’ throughputs are mutually
affected by the allocated spectrum by other users as shown
in (1), we formulate our optimization problem as follows

For each useri in {1...N}
max

{a
(j)
i

,P
(j)
i

}

ri(Ri(t))

S.t ci(Pi(t)) ≤ γi(t),

0 ≤ P
(j)
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(j)
i , ∀j ∈ {1...l}
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l
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j=1

a
(j)
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i ,

(5)



whereri(Ri(t)) represents the reward of the achieved through-
put Ri(t) and can be written as

ri(Ri(t)) =

{

Ri(t), ifRi(t) ≥ Qi(t),

Ri(t) exp(−βQi(t)−Ri(t)
Ri(t)

), otherwise.
(6)

Here ri increases as the throughput increases, but it drops
rapidly (exponentially) when the throughput is under a targeted
threshold.Qi(t) is a targeted threshold at the current instantt,
computed adaptively as a function of the obtained throughput
in the previous time slots. Hence, it is written as

Qi(t) =

Rth
i −

t
∑

t′=1

Ri(t
′)

T − t
. (7)

2) Power Cost Minimization: In this problem, the main ob-
jective is to minimize the total power cost while ensuring that
the power cost for each user over the time windowT does not
exceed the user’s budgetΓi while achieving a minimum target
throughput at each instantt, Rth

i (t). This problem is suitable
for inelastic applications requiring continuous minimum rate
at each instant, such as voice and/or video streaming.

With this in mind, and using the same approach as in the
previous problem, the distributed joint spectrum assignment
and power allocation for this problem is given as follows

For each useri in {1...N}
min

{a
(j)
i

,P
(j)
i

}

ui(ci(t))

S.t Ri(t) ≥ Rth
i (t),

0 ≤ P
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a
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(8)

Similarly to the first problem,ui(ci(t)) is a reward function
associated with the power costci(t), and can be written as

ui(ci(t)) =

{

ci(t), if ci(t) ≤ qi(t),

ci(t) exp(β
ci(t)−qi(t)

ci(t)
), otherwise,

(9)

whereqi(t) is a targeted power cost at instantt and determined
adaptively as a function of the cost of the total power in the
previous time slots.qi(t) can be written as

qi(t) =

Γi −

t
∑

t′=1

ci(t
′)

T − t
. (10)

IV. JOINT SPECTRUM-ASSIGNMENT AND

POWER-ALLOCATION ALGORITHM

Using ordinary tools to solve the two previously presented
problems could be computationally costly. In addition, they
require a central entity to enable the coordination among users.
Therefore, simple distributed approaches are needed to solve
these problems. To do so, we rely on Q-learning which has
already been shown to be a promising approach for solving
spectrum assignment allocation problems in large-scale DSA

systems [6]. However, solving the joint spectrum and power
allocation problem is not possible using learning due to the
very large learning set, which could deteriorate the learning
performance and increase the computational complexity. For
instance, in [7], we showed that the complexity is exponen-
tial on the number of channels as well as on the power
levels. Therefore, approaches yielding suboptimal solutions,
but with reasonable complexity, are more appealing. For this,
we propose to di-associate the problem of the spectrum and
power allocation. First, we solve the problem of the spectrum
allocation using Q-learning. Then, once each user selectedits
bands, we solve the power optimization problem.

A. Spectrum Assignment

To alleviate the complexity issue of the joint spectrum and
power resource allocation, we consider learning only to select
the channels for each user. We use theǫ-greedy Q-learner [11]
to determine the best channels to select at each instantt based
on their values in the Q-table at each useri. The Q-table
values are updated recursively based on the observed rewards
in the past time slots. Then, only the bestli channels, such that
0 ≤ li ≤ lmax

i , among the available channels will be selected
based on the associated value in the Q-table.

In this work, we also adopt the difference objective function,
which is shown to ensure, in DSA systems, scalability, high
learnability, and distributivity [6]. It is computed by removing
the effects of other users in the global reward from the actual
global reward; a detailed discussion of this function when
applied to DSA can be found in [6].

In our case, we compute the difference functionD
(j)
i (t) for

bandj to be allocated to useri as follows

D
(j)
i (t) =

N
∑

k=1

r
(j)
k (t)−

N
∑

k=1

r̂
(j)
k,−i(t), (11)

where r̂
(j)
k,−i(t) stands for the received reward by userk by

accessing bandj when useri is supposed to be absent.

B. Power Allocation

Once the channels are selected for each user, i.e.,a
(j)
i

are known, the complexity of the problem resulting from the
mixed integer-real problem is removed; the power optimization
problem turns out to be convex. The throughput maximization
can be re-written as

∀i ∈ {1...N}
max
{P

(j)
i

}

ri(Ri(t))

S.t ci(Pi(t)) ≤ bi(t),

0 ≤ P
(j)
i ≤ P̂

(j)
i , ∀j ∈ {1 ≤ j ≤ l anda(j)i = 1}.

(12)
Whereas the power cost minimization can be written as

∀i ∈ {1...N}
min
{P

(j)
i

}

ui(ci(t))

S.t Ri(t) ≥ Rth
i (t),

0 ≤ P
(j)
i ≤ P̂

(j)
i , ∀j ∈ {1 ≤ j ≤ l anda(j)i = 1}.

(13)



In simpler scenarios where the reward is exactly equal to the
throughput or the consumed power, the problem can be solved
analytically and the solution can be found via weighted water
filling. Also, in the special case of single-band allocation(i.e.,
lmax
i = 1), the problem can be directly solved by allocating

all the possible powers deduced from the constraint in that
band (the possible power is determined from the maximum
budget for the power cost in the case of reward throughput
maximization and the minimum required throughput in case
of cost power minimization). In the general case, an ordinary
optimization tool can be used to derive the optimal power
allocations for each selected channel.

For the sake of illustration, we present in Algorithm 1 the
different steps of solving the distributed resource allocation
problem. We should emphasize that during the band allocation
step for throughput reward maximization, theli bands with the
highest values in the Q-table are selected while theli bands
with the lowest Q-table values are selected in the problem of
the power cost minimization.

Algorithm 1 Spectrum and power allocation for large scale
DSA system.

INPUT: bi(t), Rth
i (t) ∀i ∈ {1...N}.

OUTPUT: a
(j)
i (t) andP (j)

i (t) ∀i ∈ {1...N}, j ∈ {1...l}.

Initialize the Q-table:
Qi(1 : l) = 0 ∀i ∈ {1...N}
for all episodet do

for all DSA agenti in the set of the agentsdo
1) Bands’ selection usingǫ greedy, Q-learner

With a probabilityǫ: select randomlyli bands
With a probability1− ǫ: select the theli bands available
as follows:

Throughput maximization: select the highest val-
ues in the Q-table.
Power cost minimization: select the lowest values
in the Q-table.

2) Power allocation
Throughput maximization: use equation (12).
Power cost minimization: use equation (13).

3) Update the Q-table
Compute the reward as follows:

Throughput maximization: use equation (6).
Power cost minimization: use equation (9).

Compute the difference function:D(j)
i (t) ∀j ∈ {1...l}.

Update the Q-table:
Qi(j) = αQi(j) + (1− α)D

(j)
i (t) ∀j ∈ {1...l}.

end for
end for

V. SIMULATION RESULTS

We consider a set ofN = 500 DSA users uniformly
distributed in a cell with a radiusd0 = 1 Km. Each DSA
user tries to communicate with its receiver over a slow
Rayleigh fading channel. To capture the path loss effect on
the different channels, we consider the average channel gain
as(d/dj)η, wheredj represents the distance that separates the

jth transmitter and receiver whereasη is the pathloss exponent
assumed to be equal to3. We consider a total number of
available bands that is equal tom = 10, where each band
is assumed to have a bandwidthB = 1 MHz.

We assume that each DSA agent is equipped with a smart
meter that could provide it with (instantaneous) unit pricing in
real-time. Although we use a simple policy for the pricing of
the consumed power where the unit price is a linear function of
the consumed power, we consider two different system models
for power pricing of the users. In the first one, each user is
connected independently to the power grid and hence its power
per unit price will depend only on its consumption as follows:

µi([P1, P2, ..., PN ]) = α(t)× Pi. (14)

In the second model, all DSA agents are connected together
to the same power generator. Thus, the power per unit price
will depend on their total consumption. In this case, the unit
price is written as follows

µi([P1, P2, ..., PN ]) = α(t)

N
∑

k=1

Pi. (15)

In (14) and (15),α(t) captures the fluctuations of the price
by the power provider that will depend on the total load and
market energy prices. In Fig. 1, we show the used models
for α(t). The case ofα(t) = α1 corresponds to the static
power pricing where the unit cost varies only as a function of
useri’s power consumption. However, the cases ofα(t) = α2

andα(t) = α3 correspond to the dynamic power pricing case.
In the modelα(t) = α2, α(t) follows a uniform distribution
where the mean isE(α(t)) = α1 to ensure a fair comparison.
In the modelα(t) = α3, there are mainly two regions: a region
with high unit cost and a region with low unit cost. Likewise,
in this model, the mean valueE(α(t)) = α1 guarantees a fair
comparison.

In Fig. 2, we show the per-agent achieved throughput reward
for the problem of throughput maximization for the first
pricing policy and withα(t) = α1 and α(t) = α2. We
conclude that the achieved throughput reward is higher in
the case of dynamic power pricing than in the case of the
static pricing. The per-agent fluctuation is explained by the
fluctuation in the demand (α(t)).

In Fig. 3, we consider the per-agent power cost in the
problem of power cost minimization for the first pricing policy
with α(t) = α1, α(t) = α2 andα(t) = α3. First, we notice
that for the three cases, the per-agent power price decreases
over time (learnability effect). Second, with smart grid, i.e.,
α(t) = α2 and α(t) = α3, we achieve a lower power cost
compared to the conventional power grid (α(t) = α1).

In Fig. 4, we illustrate the per-agent power cost under the
second proposed power consumption pricing policy given by
(15). Like the previous result, here with dynamic pricing, we
achieve lower power costs when compared with static power
pricing.
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Fig. 2. Comparison between static and dynamic pricing performance in terms
of reward per time slot for throughput reward maximization.

VI. CONCLUSION

This paper proposed a joint power and spectrum allocation
scheme based on learning for large-scale dynamic spectrum
access with dynamic power pricing. Since the joint power-
spectrum problem is of high computation complexity, we
proposed a two-phase spectrum and power allocation approach
to tackle the complexity issue. We rely on Q-learning to
allocate the available spectrum among different users while
relying on optimization to allocate power levels. We solve
the problem for two different scenarios; one for throughput
reward maximization and one for power cost minimization.
We showed that dynamic pricing could be of great promise for
the two scenarios since the users could adjust their resources
according to the given price and profit to improve their
performance and/or save the power budget. As of possible
future research work in this area, we plan to improve the
achieved results through studies with realistic data for power
pricing and enhance the algorithm by predicting the power
pricing.
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