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Abstract—In this paper, we propose dynamic power pricing for important to revisit the resource allocation protocolsposed
distributed resource allocation in Iar_ge-scale Dyn_ami_c Spec_trum for DSA networks by taking into consideration the dynamic
Access (DSA) systems. The dynamic power pricing is con5|deredpower pricing to further improve budget efficiency. Even

to influence the users’ spectrum assignment and power allocation th h t trends i irel icati X
in two resource allocation problems. In the first scenario, the ough, recent trends In wireless communication systems ar

objective is to maximize the reward of the obtained throughput OpPting towards smaller cells with low power devices, power
over the time window while not exceeding a fixed budget for savings are still important to consider in the context ofjéar

the power cost. The second problem consists of minimizing scale systems. Thus, of particular interest to us is to addre
the total power cost while guaranteeing a minimum achieved scalability of the proposed resource allocation for DSA.

throughput. Since the optimal solutions are of high computational . . .
complexity, we propose a distributed two-step algorithm to solve Although centralized approaches can be designed to achieve

the optimization problems. In the first step, we rely on "learning”  Optimal performance, they are not suitable for large-steé

to determine the best channel selection for each user. In the networks due to their lack of scalability. On the other hand,

second step, we optimize the allocated power to be used forlearning-based techniques have been viewed as potential ca

the selected channels. Using simulations, we show that dynamicjigates for decentralizing the allocation of spectrum ueses,

power pricing models allow achieving better DSA throughput . I .

when compared to the case of a static pricing for the same budget. thereby enabling -d|str|buted DSA [6], [_7]_’ [8l, [,9]' In p.a..r{
ular, the authors in [6] proposed an efficient private olpject

Index Terms—Energy consumption awareness, spectrum accessfunction that allows each user to maximize the reward that
efficiency, dynamic spectrum access, dynamic power pricing.  a user receives from accessing the DSA network. Although

the proposed objective function is shown to be scalable,
. INTRODUCTION the analysis was conducted without taking into account the

Efficient power consumption has become one of the k@hysical layer aspects. Authors in [7] revisited the olect
design requirements of communication systems, motivayed function, proposed in [6], and enhanced it by generalizivgy t
the emergence of green communication [1] as well as smamrk to the case of multichannel access for every user. In
grids. The latter has been seen as a promise for the futude grddition, cross-layer awareness was taken into considerat
to create a distributed energy delivery network. It is dptited by allowing each user to adapt the power allocated on each
to enhance the capacity and the efficiency of the grid by measeected channel. To overcome the high complexity of th joi
of two-way communications between end-users and powsrectrum and power allocation approaches, the authorsdsolv
plants, as well as by the inclusion and use of various typeseadch problem separately, using learning for the formerlprob
renewable energy sources [2]. and water filling for the latter one.

Smart grids are envisioned to provide, in the near future, aWith this in mind, we propose in this work a distributed
real-time power-usage pricing. It is used to prevent thegne multi-channel spectrum assignment and power allocation fo
concentration and flatten the peak loads. Hence, it could laege-scale DSA networks when using dynamic power pricing.
a great opportunity for wireless communication systems, e consider two resource allocation problems. In the first
general, to follow up the power-pricing and control theivygo problem, the objective is to maximize the total throughput
consumption accordingly. In particular, this could pravid over a time window while meeting the budget limit for the
great opportunity for researches in Dynamic Spectrum Accgsower consumption cost. In the second problem, the obgectiv
(DSA) systems. is to minimize the total power cost of the consumed power

The concept of DSA has emerged as a key solution fahile guaranteeing a minimum achieved throughput. To be
the current spectrum scarcity caused by the static spectrimrine with the actual standards, we assume that the power
allocation policies. It allows an efficient use of the spectiby budget for each band is limited to a maximum transmit power.
allowing the coexistence of license-exempt users withdggaThis limit can also serve to keep the interference under a
users. Due to its potential, DSA has created a significdithited threshold in case of underlay networks. To alleviat
research interest, ranging from spectrum awareness nwethtbe joint spectrum and power allocation processing conifglex
[3], [4] to spectrum sharing protocols [5]. With the emergen at each user, we propose a two step approach. We first use
of smart grids, DSA became more pertinent due to the neeinforcement learning to perform the multi-band spectrum
opportunities given by dynamic power pricing. Therefotési resource allocation. Then, we allocate the power budget to



the selected bands optimally. A. Power Pricing
The rest of this paper is organized as follows. Section Il . . , . .
In an ordinary scenario, the user’s power unit cost is

describes the system model. In Section Ill, we first predet t lelv d dent it nsumotion. and this i
proposed dynamic power pricing model, and then formulate cY dependent on 1ts own power consumption, a S 1S

our resource allocation problems. In Section IV, we propog@g""m”eSS of the gl_obal grid power demanq. Hence, the total
the disjoint spectrum and power allocation algorithm ttsat power cost scales linearly and could be written as

used to solve these problems. Simulation-based analysis is
presented in Section V. Finally, the conclusion are presknt

in Section VI.

Ci(Pi):/Li([Pl,PQ,...,PN]) XPL‘, (3)

where P; is the total power consumption of usérand
Il. SYSTEM MODEL wi([Py, Pa, ..., Py]) is the power price per unit, which d_epends
on the user’'s power consumption only. However, this model
We consider a large-scale distributed DSA system whére does not take into account the power grid load and the power
users, called DSA agents, are competing to acéesacant provider’s pricing policy which depend on many factors (pea
bands. We assume that the users have accurately declarechifts, energy prices, etc.). With the use of dynamic pricing
bands as unused using spectrum sensing. Spectrum seng{Bdnit price not only scales with the user's consumptign,
process is out of the scope of this paper and it is assumed tajg also depends on the other users’ power consumptions and
perfect. Each DSA agent represents a transmitter-receaier the whole system load. Hence, during the peak load time, the
Examples of transmitters could be femto-cell base stationfit cost price is set sufficiently high to urge users to shift
WiFi modems, wireless routers, etc. their consumption. However, when the whole power demand
We assume that each DSA agenbeeds to communicate in the system is low, the unit price is set low to allow users
over a time window!". To do so, each ageritis allowed to to benefit from lower prices and avoid peak hours. However,
select, at each instanf up to[;*** bands, and to use in eachthe price in this situation does not scale well. Here, thaltot
bandj a maximum powerPi(J . Let agj) be the occupation cost could be expressed as
mapping index for the bang If useri has selected the band
j, thena?) = 1, otherwise,a!’) = 0. We denote byy"? the ¢i(P) = pi([Py, P, ..., Px], D) x P (4)
jth channel gain between th&" user and its corresponding
receiver and b)P,i(’) the allocated power in each selected barndhere D denotes the overall demand on the grid.
j. Assuming that users who select the same band will shareNote that in this context, each user is assumed to be
it orthogonally and equally to avoid interference (by usang equipped with a smart meter that captures instantanedusly t
carrier sense multiple access scheme), the achieved tiwatig power pricing parameters and will be used by the user to adapt

by user: at instantt is expressed as its power consumption accordingly.
Lo , @) (4,9
Ri(t) = Zaf”(t) B; log, (1 + L‘(N), (1) B. Resource Allocation Problems
=l Nowitn

As stated above, we consider two resource allocation prob-

where N, is the noise’s power spectral density, which ifems, discussed separately in the following paragraphs.

assumed to remain constant over time and to be equal for) Throughput Reward Maximization: In this problem, the

all bands, and;(t) = Y | al’)(t) is the number of users main objective is to maximize the total throughput over all

sharing band;. users while ensuring that each user reaches over the time win
The power consumed by a useat instant, 7 (t), is written  dow 7" a minimum target throughpu&!" while not exceeding

as the sum of the allocated power over the selected bargdfmaximum cost for the power at each time sjgtt) given

PY(t) plus a constant componeft ") that models the non- the market price. This problem is suitable for elastic tcaffi

radiated power, which is consumed independently regazdigsich as web browsing, file transfer, emails, etc.

of the number of selected bands and the allocated power. lisince we are targeting a distributed scheme for the resource

is essentially consumed by data processing, circuit RFn¢haijiocation, and given that users’ throughputs are mutually

and cooling. HenceP;(t) is written as affected by the allocated spectrum by other users as shown

in (1), we formulate our optimization problem as follows

Pty =3 a? )PV () + PO, 2 |
Q ZGZ WP+ P @ For each uset in {1..N}
j=1
max ;i (Ri(t))
[1l. PROBLEM FORMULATION {a?, P}
h ) ) he d ) . St ci(Pi(t)) < i(t), )
In this section, we start presenting the dynamic pricing 0< PO < PV vie {10

model and describing the main difference compared to that ;
of the static pricing scheme. Then, we formulate our resourc 1< Z o) < qmax
allocation problem for dynamic pricing based DSA systems. B = o



wherer;(R;(t)) represents the reward of the achieved througkystems [6]. However, solving the joint spectrum and power

put R,(t) and can be written as allocation problem is not possible using learning due to the
) very large learning set, which could deteriorate the lewni

ri(Ri(t)) = Ry(t), Qut)—Ra(t) iR (t) .Z Qi(t), performance and increase the computational complexity. Fo

R;(t) exp(—B~“577~—), otherwise. instance, in [7], we showed that the complexity is exponen-

(6) tial on the number of channels as well as on the power
Here r; increases as the throughput increases, but it dropgels. Therefore, approaches yielding suboptimal smhsti
rapidly (exponentially) when the throughput is under a¢éed but with reasonable complexity, are more appealing. Fa, thi
threshold Q; (1) is a targeted threshold at the current instant we propose to di-associate the problem of the spectrum and
computed adaptively as a function of the obtained throughgsbwer allocation. First, we solve the problem of the spewtru

in the previous time slots. Hence, it is written as allocation using Q-learning. Then, once each user selétsed
¢ bands, we solve the power optimization problem.
th /
Ri' — Z Ri(t) A. Spectrum Assignment
t'=1 . . . ..
Qilt) = ———7— (7) 7o alleviate the complexity issue of the joint spectrum and

power resource allocation, we consider learning only tecel
the channels for each user. We use dfggeedy Q-learner [11]

to determine the best channels to select at each instzaded

on their values in the Q-table at each ugerThe Q-table
values are updated recursively based on the observed eward

for inelasti licati N ! > in the past time slots. Then, only the bésthannels, such that
c;r meha.fstlct ap;p |catr|10ns reguwlngd/conI!SUOUSt minimueter -, <; <™*, among the available channels will be selected
at each nstant, such as voice andior video streaming. based on the associated value in the Q-table.

With this in mind, and. usjng the. same approach as in theIn this work, we also adopt the difference objective funatio
previous problem,_ the d'St_”bUtEd Joint spectrum assignme, icp, js shown to ensure, in DSA systems, scalability, high
and power allocation for this problem is given as follows learnability, and distributivity [6]. It is computed by reawving

2) Power Cost Minimization: In this problem, the main ob-
jective is to minimize the total power cost while ensuringtth
the power cost for each user over the time windbwloes not
exceed the user’'s budgBt while achieving a minimum target
throughput at each instant R"(¢). This problem is suitable

For each usef in {1...N} the effects of other users in the global reward from the dctua
min  wu(ci(t)) global reward; a detailed discussion of this function when
{a{ P} applied to DSA can be found in [6].
S:t Ri(t) > RY(t), (8  Inourcase, we compute the difference functioff’ (t) for
0<PY < pY), Vi e {1..1} band; to be allocated to useras follows
l
(]) max . N . N .
DI PO =30 -SAm. ay
k=1 k=1

Similarly to the first problemy;(c;(t)) is a reward function

(7) i
associated with the power cost(t), and can be written as where 7y ~,(¢) stands for the received reward by useiby

accessing bang when useri is supposed to be absent.
(o)) = ci(t), if ei(t) < qi(t), g) B. Power Allocation
uilei(t)) = ¢i(t) exp(B=9: M)y Gtherwise ©) (i
i P ci(h) ) ) Once the channels are selected for each user, ai@.,

whereg;(t) is a targeted power cost at instarend determined are known, the complexity of the problem resulting from the

adaptively as a function of the cost of the total power in tH&xed integer-real problem is removed; the power optinnarat
previous time slotsg;(¢) can be written as problem turns out to be convex. The throughput maximization

can be re-written as
t

Vie {l..N}
I — (1
2 ) max r,(R(t)
ai(t) = 7 (10)  ~"
- St (Bi(t) < bi(t),
IV. JOINT SPECTRUM-ASSIGNMENT AND 0< Pi(j) < pz_(j)’ Vie{l<j<li andal(j) =1}
POWER-ALLOCATION ALGORITHM (12)

Using ordinary tools to solve the two previously presentéd/hereas the power cost minimization can be written as
problems could be computationally costly. In addition,ythe v; ¢ {1.. N}
require a central entity to enable the coordination amoRgsUS iy 4, (¢;(t))
Therefore, simple distributed approaches are needed ve sol {r“’}
these problems. To do so, we rely on Q-learning which hasS.t Ri(t) > RN(1),
already been shown to be a promising approach for solving 0< pi(j) < ﬁi(j), Vie{l<j<l andagj) =1}
spectrum assignment allocation problems in large-scald DS (13)



In simpler scenarios where the reward is exactly equal to t}i€ transmitter and receiver whereass the pathloss exponent
throughput or the consumed power, the problem can be sohastumed to be equal t& We consider a total number of
analytically and the solution can be found via weighted watavailable bands that is equal t& = 10, where each band
filling. Also, in the special case of single-band allocat{oe., is assumed to have a bandwidth= 1 MHz.

;" = 1), the problem can be directly solved by allocating We assume that each DSA agent is equipped with a smart
all the possible powers deduced from the constraint in thafeter that could provide it with (instantaneous) unit prigin
band (the possible power is determined from the maximureal-time. Although we use a simple policy for the pricing of
budget for the power cost in the case of reward throughpiie consumed power where the unit price is a linear function o
maximization and the minimum required throughput in casfe consumed power, we consider two different system models
of cost power minimization). In the general case, an orginafor power pricing of the users. In the first one, each user is
optimization tool can be used to derive the optimal powejonnected independently to the power grid and hence itspowe

allocations for each selected channel. per unit price will depend only on its consumption as follows
For the sake of illustration, we present in Algorithm 1 the
different steps of solving the distributed resource aliioca pi([Pr, Pa, ..., Pn]) = a(t) x P;. (14)

problem. We should emphasize that during the band allatatio

step for throughput reward maximization, thdands with the | the second model, all DSA agents are connected together
highest values in the Q-table are selected while/thieands g the same power generator. Thus, the power per unit price
with the lowest Q-table values are selected in the problem fji depend on their total consumption. In this case, thet uni

Algorithm 1 Spectrum and power allocation for large scale N
DSA system. pi([Pr, Pay oo, PN]) = ot) Y P (15)
INPUT: b;(t), R"(t) Vi € {1..N}. k=1

OUTPUT: a9 (t) and PV () Vi € {1..N}, j € {1..I}.
In (14) and (15).(t) captures the fluctuations of the price

Initialize the Q-table: by the power provider that will depend on the total load and
Qi(1:1)=0 vie {1..N} market energy prices. In Fig. 1, we show the used models
for all episodet do for a(t). The case ofa(t) = a; corresponds to the static
for all DSA agenti in the set of the agentso power pricing where the_ unit cost varies only as a function of

1) Bands’ selection usinge greedy, Q-learner useri’s power consumption. However, the caseswf) = a»

With a probabilitye: select randomly; bands anda(t) = as correspond to the dynamic power pricing case.

With a probabilityl — e: select the thé; bands available |n the modela(t) = as, a(t) follows a uniform distribution

as follows: where the mean i&(a(t)) = o, to ensure a fair comparison.

Throughput maximization: select the highest val- |, the modeln(t) = as, there are mainly two regions: a region

ues in the Q-table. . . . . . . - :
Power cost nQinimization' select the lowest values With high unit cost and a region with low unit cost. Likewise,

in the Q-table. in this model, the mean valuB(«/(t)) = «; guarantees a fair
2) Power allocation comparison.
Throughput maximization: use equation (12). In Fig. 2, we show the per-agent achieved throughput reward
Power cost minimization: use equation (13). for the problem of throughput maximization for the first
3) Update the Q-table pricing policy and witha(t) = «; and a(t) = as. We
Compute the reward as follows: conclude that the achieved throughput reward is higher in
Throughput maximization: use equation (6). the case of dynamic power pricing than in the case of the

Power cost minimization: use equation (9).

Compute the difference functiorD§”(t) Vi e {1...1}.
Update the Q-table:

static pricing. The per-agent fluctuation is explained bg th
fluctuation in the demand(t)).

Qi(j) = aQi() + (1 — )DP(t) Vj € {1...1}. In Fig. 3, we consider the per-agent power cost in the
end for ' problem of power cost minimization for the first pricing pyli
end for with a(t) = a1, a(t) = as and a(t) = as. First, we notice

that for the three cases, the per-agent power price desrease
over time (learnability effect). Second, with smart grick.,
V. SIMULATION RESULTS a(t) = as and a(t) = a3, we achieve a lower power cost
We consider a set ofV = 500 DSA users uniformly compared to the conventional power grig({) = o).
distributed in a cell with a radiugy = 1 Km. Each DSA In Fig. 4, we illustrate the per-agent power cost under the
user tries to communicate with its receiver over a slogecond proposed power consumption pricing policy given by
Rayleigh fading channel. To capture the path loss effect ¢b5). Like the previous result, here with dynamic pricingg w
the different channels, we consider the average channel gachieve lower power costs when compared with static power
as(d/d;)", whered,; represents the distance that separates thecing.
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of reward per time slot for throughput reward maximization. two models of pricing using static and dynamic pricing.
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