
1

Energy-Efficient Resource Allocation and
Provisioning Framework for Cloud Data Centers

Mehiar Dabbagh, Bechir Hamdaoui, Mohsen Guizani† and Ammar Rayes‡
Oregon State University, Corvallis, OR 97331, dabbaghm,hamdaoub@onid.orst.edu

† Qatar University, mguizani@ieee.org
‡ Cisco Systems, San Jose, CA 95134, ‡ rayes@cisco.com

Abstract—Energy efficiency has recently become a major issue in
large data centers due to financial and environmental concerns. This
paper proposes an integrated energy-aware resource provisioning
framework for cloud data centers. The proposed framework: i)
predicts the number of virtual machine (VM) requests, to be
arriving at cloud data centers in the near future, along with the
amount of CPU and memory resources associated with each of these
requests, ii) provides accurate estimations of the number of physical
machines (PMs) that cloud data centers need in order to serve their
clients, and iii) reduces energy consumption of cloud data centers
by putting to sleep unneeded PMs. Our framework is evaluated
using real Google traces collected over a 29-day period from a
Google cluster containing over 12,500 PMs. These evaluations show
that our proposed energy-aware resource provisioning framework
makes substantial energy savings.

Index Terms—Energy Efficiency, Cloud Computing, Data Clus-
tering, Workload Prediction, Wiener Filtering.

I. INTRODUCTION

Energy efficiency has become a major concern in large data
centers. According to [1], U.S. data centers consumed about
1.5% of the total generated electricity in U.S. in 2006, an
amount that is equivalent to the annual energy consumption
of 5.8 million households. This consumption is also expected
to increase as data centers are anticipated to grow both in
size and in numbers. A recent study by Cisco predicts that
cloud traffic will grow 12-fold by 2015 [2]. There are also
increasing environmental concerns to reduce energy consumption
in industry after reporting that Information and Communication
Technology (ICT) is responsible for about 2% of the global
carbon emissions, equivalent to aviation [3]. All of these factors
have alerted researchers to the importance of finding efficient
solutions to save energy in data centers.

Cloud centers are examples of such large data centers. They
often consist of a large number of servers also called physical
machines (PMs). These PMs are grouped into multiple manage-
ment units called clusters. Each cluster manages and controls
a large number of PMs, typically in the order of thousands. A
cluster can be homogeneous in that all of its managed PMs are
identical, or it could be heterogeneous in that it manages PMs
with different resource capacities.

Cloud providers offer these computing resources as a service
for their clients and usually charge them based on their usage
in a pay-as-you-go fashion. Cloud clients submit requests to the
cloud provider, specifying the amount of resources they need
to perform certain tasks. Upon receiving a client request, the

This work was supported in part by Cisco (CG-573228) and National Science
Foundation (CAREER award CNS-0846044).

cluster scheduler allocates the demanded resources to the client
and assigns them to a PM. The virtualization technology allows
the scheduler to assign multiple requests possibly coming from
different clients to the same PM. Client requests are thus referred
to as virtual machine (VM) requests. Cloud centers need then
to support on-demand, dynamic resource provisioning, where
clients can, at any time, submit VM requests specifying any
amount of resources. It is this dynamic provisioning nature of
computing resources that makes the cloud computing concept a
great one [4]. Such a flexibility in resource provisioning gives
rise, however, to several new challenges in resource management,
task scheduling, and energy consumption, just to name a few [5,
6].

Energy consumption is of a special concern to cloud providers.
According to a Google study [7], idle servers consume around
50% of their peak power. To save power, it is therefore important
to switch servers to the sleep mode when they are not in use. This
requires the development of novel techniques that can monitor
PMs and effectively decide whether and when they need to be
put in sleep mode.

Towards the goal of creating an energy-aware cloud, we
propose an integrated resource provisioning framework that i)
predicts the number of future VM requests along with the amount
of CPU and memory resources associated with each of these
requests, ii) provides accurate estimations of the number of
PMs that the cloud center needs in the future, and iii) makes
intelligent power management decisions that reduce energy
consumption. Our framework is evaluated using real Google
traces [8] collected over a 29-day period from a Google cluster
containing over 12,500 PMs.

Our proposed energy-aware resource provisioning framework
is simple, adaptive, and effective in that it does not require heavy
calculations, yet provides very accurate workload predictions and
makes substantial energy savings in cloud centers. In addition, it
requires minimum storage capacity for storing traces needed to
train the developed models. To sum up, our main contributions
in this work are as follows. We:
• develop a prediction approach that combines machine learn-

ing clustering and stochastic theory to predict both the
number of VM requests and the amount of cloud resources
associated with each request.

• propose adaptive enhancements to our predictor that make
the prediction parameters tunable in realtime based on the
actual request load. This increases the prediction accuracy
over time and avoids the need for frequent model training
that other machine learning approaches, such as Neural
Network, suffer from.



• propose an integrated resource provisioning framework that
relies on the proposed prediction approaches to make suit-
able energy-aware resource management decisions.

• use real Google data traces to evaluate the effectiveness of
our framework. These traces are collected from a heteroge-
neous Google cluster that contains more than 12K PMs.

The remainder of the paper is organized as follows. Section II
reviews the related work. Section III briefly describes the differ-
ent components of our proposed framework. Section IV presents
the Google data used in this work, as well as the workload
clustering approach. Section V presents the proposed prediction
approach. Section VI presents enhancements to the proposed
prediction approach. Section VII presents our power manage-
ment heuristic. Section VIII evaluates the performance of our
integrated resource provisioning framework. Finally Section IX
concludes the paper and presents our future work.

II. RELATED WORK

Previous work on energy savings in cloud centers targeted two
levels: i) server level, where the focus is on minimizing energy
consumption of each server separately; and ii) data center level,
where the focus is on efficiently orchestrating the pool of servers.

A. Server Level Techniques

Many energy efficient techniques initially designed to extend
battery lifetime of laptops have also been applied to save energy
in general-purpose servers. These techniques target reducing
energy at all computer layers: hardware, OS, compiler, and
application. Due to space limitation, we only cover here OS-layer
related approaches, as they involve some workload prediction
relevant to our work. Readers interested in the work done on the
other layers may refer to [9].

The basic idea behind OS-layer-based power management
approaches is to save energy by switching idle devices, such
as hard disk, to lower energy states whenever possible. The
problem here is that because energy overhead due to switching
the device to a lower or upper state is relatively high [10], it is
worth switching a device to a lower state only when the device
remains idle during a time period long enough to compensate
for switching overhead. Researchers suggest first using a time-
out approach [11], where a device is switched to an idle state
only when it remains idle beyond a certain time-out threshold. A
main disadvantage of such a simple approach is that it does not
switch the device to a lower state until the time-out period has
passed, resulting in not saving any energy during that period. To
address this issue, researchers suggest then to use more advanced
techniques based on machine learning [12, 13] to predict the idle
time period length and rely on those predictions to make power
management decisions.

Although many prediction approaches are proposed at the OS
layer, they cannot be applied directly to predict VM requests.
What these approaches predict is the length of the idle time
whereas in cloud centers, multiple related parameters need to
be predicted such as the number of arriving VM requests, the
requested CPU and memory resources, etc. Furthermore, the
proposed OS-layer related techniques study workload variations
of a single device (e.g., hard disk) with the objective of saving
energy in a single PM component. Unlike these techniques, we

study workload variations of a cloud cluster with the goal of
turning an entire PM to a lower state. It is worth mentioning
that OS power management techniques are complementary to
our work, as they can be applied on top of our framework to
manage the different components of the active PMs.

B. Data Center Level Techniques

Energy awareness in data centers have focused on two aspects:
VM consolidation and cluster-level power management.

1) VM Consolidation: Researchers investigated first where to
place the received VM requests within the cloud cluster using the
least number of ON PMs. This problem is similar to the standard
Bin Packing (BP) optimization problem, which views VMs as
objects and PMs as bins and where the objective is to pack
these objects in as few bins as possible. The problem is known
to be NP-hard [14], and thus approximation heuristics, such as
First Fit Decreasing (FFD) and Best Fit Decreasing (BFD) have
been proposed [15, 16] instead. Although these heuristics provide
very close approximations to the optimal placement solution,
they assume that all coming VM requests are known ahead
of time, which is not the case for the on-demand computing
paradigm. When requests are not known ahead of time, online
BP heuristics, such as First Fit, Next Fit, and Best Fit have been
proposed [17–19] to be used instead. The main problem with
those online heuristics is that they don’t anticipate the future
workload and make VM hosting and PM switching decisions
based only on the currently received VM requests. Unlike those
heuristics, our framework takes a further step by predicting the
VM requests to be received in future and relies on that to make
intelligent power management decisions.

Given that VM requests can be terminated any time the
cloud client wants, it is then highly likely that PMs become
under-utilized over time, resulting in inefficient use of data cen-
ter resources. Migration and dynamic consolidation techniques
have been proposed as key solution approaches for improving
datacenter resource efficiency [20–25]. For example, dynamic
consolidation approaches proposed in [20–23] allow VMs to
migrate from the under-utilized PMs so that the workload can be
consolidated on a smaller subset of PMs, allowing further PMs
to be turned to sleep. The authors in [20, 21] considered the
performance degradation associated with the migration process
and proposed a dynamic consolidation framework that guarantees
certain SLA level. The work in [24] took the migration energy
overhead into account when making such decisions. All the
mentioned dynamic consolidation techniques are complimentary
to our work as they can be applied on top of our framework
to pack the already scheduled VMs more tightly over time.
Our work is different as we are predicting the number and the
amount of VM requests to be received in the future. In fact, these
predictions can improve the migration decisions made by those
dynamic consolidation techniques by considering not only the
current hosted requests, but also the future requests predicted by
our framework when making their migration decisions.

2) Cluster-Level Power Management: The work in [26, 27]
exploited the fact that servers in cloud centers are distributed in
different geographical locations with varying electricity prices
and proposed different strategies for placing the received requests
on these distributed servers such that the energy costs are mini-



k-Means

Traces 

Decomposer

k=2

Observation Window 

Traces

xn

Traces Decomposer Output

Data Clustering

Wiener 

Predictor

Wiener 

Predictor

Power 

Management

W2

Resource Table

Energy 

Decisions

W1
...

xn-1xn-L xn

...

xn-1xn-L

24...

31...

xnxn-1xn-L1

xn-L2 xnxn-1

c1, c2

CPU

M
e
m

o
ry

CPU

M
e
m

o
ry

Traces

x

x c2

c1

Workload Prediction

Fig. 1. Flow chart of the proposed framework

mized. Although these techniques reduce the cluster’s electricity
bills, they do not actually reduce the consumed energy.

Power management approaches that save energy by adjusting
CPU’s operating frequency and voltage of PMs based on their
workload within the cluster have also been proposed [28, 29]
(these are known as Dynamic Voltage and Frequency Scaling
(DVFS)). Unlike these techniques, in our framework redundant
PMs are completely turned to sleep mode instead of reducing
their operating frequency and voltage, thereby achieving higher
energy savings.

Several predictive frameworks were proposed in [30–35] to
reduce the number of ON PMs by tuning the allocated resources
of the already scheduled VMs. The work in [30–32] considers
the case where a client requests multiple VMs to run a certain
application. Rather than reserving a fixed number of VMs for
each application all the time, the authors dynamically adjust this
number based on predicting the application’s demands. PRESS
[33] on the other hand performs VM resizing where the allocated
resources (e.g. CPU or memory) for each scheduled VM are
tuned based on predicting the client’s demands. The authors
in [34, 35] add dynamic consolidation on top of VM resizing
and thus use VM migration to compact the resized VMs on
fewer ON PMs. Our framework is different from those predictive
frameworks as we are predicting the number of VM requests to
be received from all the cloud clients in addition to the resource
demands associated with each request. These predictions are used
later to estimate the number of ON PMs needed to support the
future workload. This is different from predicting the number of
needed VMs for a specific application that was already scheduled
on the cluster [30–32], or the future resource demands of an
already scheduled VM [33–35].

There have been many approaches proposed to predict the
coming load in distributed systems, such as data centers and
grid systems. Hidden Markov models [36] and polynomial fitting
[37] are examples of workload prediction methods that have
been used in Grid systems. The fact that cloud workloads are
made up of requests with multiple resource demands makes such
predictions schemes not applicable to the cloud paradigm.

III. THE PROPOSED FRAMEWORK

Our framework has three major components: data clustering,
workload prediction, and power management. In this section,

we briefly describe these components so as the reader will have
a global picture of the entire framework before delving into
the details. Detailed descriptions are provided in later sections.
Throughout this section, we refer to Fig. 1 for illustration.

A. Data Clustering

Our developed prediction approach relies on observing and
monitoring past workload variations during a time period referred
to as the observation window in order to predict the workload
coming in a certain future period referred to as the prediction
window. A VM request requested by a cloud client typically con-
sists of multiple cloud resources (e.g., CPU, memory, bandwidth,
etc.). This multi-resource nature of the requests poses unique
challenges when it comes to developing prediction techniques.
Also, different cloud clients may request different amounts of the
same resource. Therefore, it is both impractical and too difficult
to predict the demand of each type of resource separately, as
ideally this is what is needed to be able to make optimal
power management decisions. To address this issue, we instead
divide VM requests into several categories, and then develop
prediction techniques for each of these categories. This is known
as clustering.

1) k-Means clustering: Our first step is then to create a set
of clusters to group all types of VM requests; i.e., each VM
request is mapped into one and only one cluster, and all requests
belonging to the same cluster possess similar characteristics in
terms of their requested resources.

In the general case, each VM request is associated with d types
of resources such as CPU, memory, bandwidth, etc. In order
to divide these requests into multiple categories, we represent
first each request as a point in the Rd space. As for the Google
cluster [8], only two types of resources, CPU and memory, are
associated with each request. Thus these requests are represented
in the R2 space, where each point is a request and the two
dimensional coordinates of the point are the amount of CPU and
memory resources associated with the request. Clustering these
data points into a number of clusters is done using k-Means
algorithm [38].

As shown in Fig. 1, the k-Means algorithm takes as an input
the Google traces and the number of clusters, k, and outputs k
clusters, each specified by its center point. For the case of the
Google data, where requests have two types of resources (CPU



and memory), the cluster centers are points in the R2 space. In
the general case, when requests have d types of resources, the
cluster centers would be points in the Rd space. For illustration
purposes only, Fig. 1 shows an example with k = 2, where
two clusters produced by the algorithm are represented in Red
and Blue, as shown in the Cluster Groups graph. Note that the
parameter k needs to be chosen a priori and given as an input
to the clustering algorithm. In Section IV-B, we show how such
a parameter is selected.

It is worth mentioning that the clustering stage is done only
once on large traces collected from the cloud center. The clus-
tering stage can be launched again if the request characteristics
change significantly in the cloud center over time. Our exper-
iments on the Google traces show that running the clustering
phase only once on a large training data is enough to extract the
characteristics of the submitted VM requests.

2) Traces Decomposer: Once the k clusters and their center
points are determined, they are given as an input to the Traces
Decomposer module (shown in Fig. 1), which is responsible for
mapping each request received during the observation window
into one cluster. The observation window is split into L+1 time
slots, n, n−1, . . . , n−L, as follows. Suppose a prediction needs
to be made at time n. In this case, slot n corresponds to time
interval [n− 10, n] (in seconds); slot n− 1 corresponds to time
interval [n− 20, n− 10], slot n− i corresponds to time interval
[n−10(i+1), n−10i], and so on. The Traces Decomposer tracks
the number xn−i of received requests in time slot [n − 10(i +
1), n − 10i] of the observation window for all i = 0, 1, . . . , L,
and maps each request within the slots into one cluster.

B. Workload Prediction
We use stochastic Wiener filter prediction to estimate the

workload of each category/cluster. The Stochastic Predictor, as
shown in Fig. 1, is made of k Wiener filters. Each filter takes as
an input the number of received requests for a certain category
during the observation window, and uses it to predict the number
of requests of that same category to arrive in the prediction
window. This makes the problem easier to solve as there are
infinite number of possibilities for the amount of CPU and
memory resources that a client may request.

The reasons for choosing Wiener filter as a predictor are: First,
it outperforms the other schemes in terms of prediction accuracy
as will be seen in Section VI-B. Second, it is simple, as the
prediction for each category is a weighted summation of the
recently observed number of requests of that category. Third, it
has a sound theoretical basis. Finally, it is easy to improve the
original Wiener filter to support online learning, making it more
adaptive to changes in workload characteristics. This is done by
updating the filter’s weights as new observations are made over
time without requiring heavy calculations or large storage space
as will be seen in Section VI-A.

The parameters that need to be determined for each filter
branch are: the length of the observation window, the length
of the prediction window, and the weights. These parameters are
determined in Section V.

C. Power Management
The predictions of all categories along with their center points

are all next passed to the Power Management module, which

uses this information to decide which PMs need to go to sleep
and which ones need to be kept ON. This unit keeps track of
all PMs in the cloud cluster and stores their current utilizations
and states (ON or sleep). It uses a modified Best Fit Decreasing
(BFD) heuristic to fit the predicted VM requests in PMs in order
to determine how many ON PMs will be needed in the coming
prediction window.

The original BFD algorithm [16] tries to pack VM requests
in the fullest PM with enough space. In order to do that, it sorts
PMs from the fullest to the least full and iterates over the ordered
list of PMs trying to pack the VM request within the first PM that
has enough space. The original algorithm could not be applied
directly in our framework as it considers only one dimension
and thus a modification is needed to make the algorithm work
for the case where PMs and VMs have multiple dimensions (i.e.
multiple types of resources). This limitation has been addressed
by mapping these multiple dimensions into a single metric that
combines them all. Examples of such a metric include taking
the sum or the product of those multiple dimensions. In our
heuristic, we considered the product metric, as our experiments
show that it outperforms the summation metric1. Furthermore,
our proposed heuristic takes the energy efficiency problem into
account when sorting the PMs as it sorts PMs by the following
criteria (in ascending order):

(i) PMs that are ON
(ii) PMs that have higher utilizations. The utilization metric

is defined as the product of the CPU and the memory
capacities of the PM.

(iii) PMs that have higher capacities. Similarly, the capacity
metric is defined as the product of the memory and CPU
capacities of the PM.

The intuition behind our sorting criteria is as follows: we want
to make use of the available ON PMs, which already have some
scheduled VMs; so ON PMs are ranked first. We then use the
utilization metric as the next sorting criterion, since increasing
the utilization of the PMs makes the cluster as a whole more
energy-efficient, as it results in switching to sleep more PMs.
Finally, PMs are sorted based on their capacities, as one can
fit more VMs within a PM when PMs are of large capacities.
Detailed description of the proposed energy saving heuristic is
provided in Section VII.

IV. DATA CLUSTERING

In this section, we first begin by presenting the Google data
traces that we used in this work to train and test our developed
energy-aware resource provisioning models, and then present our
workload clustering and classification findings.

A. Google Traces

We conduct our experiments on real Google data [8] that
was released in November 2011 and consists of a 29-day traces
collected from a cluster that contains more than 12,500 PMs. A
summary of this data is provided in Table I.

The cluster is heterogeneous as it supports different PM
configurations, as described in Table II. The first column shows
the number of PMs in the cluster whose configurations are

1Other combining metrics will be investigated in the future.



specified in the subsequent columns. The second column shows
the architecture type of these PMs. Note that there are three
different types of architecture, referred to as A, B and C, as
their actual type has been obfuscated for privacy reasons. PMs
from the same architecture may have different CPU and memory
capacities as shown in column three and four, respectively. These
capacities are normalized to the maximum capacity also for
privacy reasons, and thus the reported capacities are all less than
or equal to one.

The traces provided by Google are collected at the cluster
level, where VM requests are submitted and scheduled, and at
the PM level too, where the amount of utilized resources are
tracked over time for each VM. Previous work on this data has
focused on studying general statistical characteristics of the cloud
cluster [39, 40] or on classifying VMs into a number of groups
based on the amount of resources they utilize over time [41].

TABLE I
CHARACTERISTICS OF GOOGLE TRACES

Trace Characteristic Value
Duration of Traces 29 days
Number of PMs 12,583
Number of VM requests > 50M
Compressed size of data 39GB

TABLE II
CONFIGURATIONS OF THE PMS WITHIN THE GOOGLE CLUSTER

Number of PMs PM Configurations
Architecture CPU Memory

6732 A 0.50 0.50
3863 A 0.50 0.25
1001 A 0.50 0.75
795 C 1.00 1.00
126 B 0.25 0.25
52 A 0.50 0.12
5 A 0.50 0.03
5 A 0.50 0.97
3 C 1.00 0.50
1 A 0.50 0.06

The clustering step implemented in our framework is different
from the work in [41], as VM requests are clustered into multiple
categories based on the amount of requested CPU and memory,
rather than classifying these requests based on the amount of
resources they utilize over time. To the best of our knowledge,
this is the first work that considers developing a workload
prediction approach based on this data.

Our experiments utilize the data provided in the task event
table, where each VM request is called a task and each VM
submission/termination request is referred to as an event. It is
worth mentioning that Google chooses to allocate containers
rather than full virtual machines for these tasks. Each one of
these two choices has their advantages and disadvantages. Full
machine virtualization offers greater isolation at the cost of
greater overhead, as each virtual machine runs its own full kernel
and operating system instance. Containers, on the other hand,
generally offer less isolation but lower overhead through sharing
certain portions of the host kernel and operating system instance.
As far as our framework is concerned, we are predicting the
future workload by predicting the number of task requests and
amount of resources associated with these requests. These tasks
could be handled by either full virtualization or by containers

but this does not affect the applicability of our framework in
predicting the future workload and in estimating the amount of
needed PMs for the future workload. Throughout the paper, we
refer to these tasks as VMs. A detailed description of the data
is provided in [42], and the following are the features used by
our framework:
• VM ID: a unique identifier for each VM. Kept anonymous

and replaced by its hash value.
• Client ID: a unique identifier for each cloud client. Kept

anonymous and replaced by its hash value.
• Event type: specifies whether the event is a submission or

a release request. It is worth noting that clients may submit
or release a VM request whenever they desire.

• Timestamp: time at which the event happened.
• Requested CPU: amount of requested CPU.
• Requested memory: amount of requested memory.
Note that the requested amount of CPU (memory) resources

is always between 0 and 1 as it is normalized to the PM with
the largest CPU (memory) capacity in the Google cluster. Also
note that clients do not necessarily use all requested resources at
all the time, as their usage varies depending on their needs. Yet
these resources are reserved and allocated for them for so long
as their requests are not released, regardless of whether they are
using them or not.

Since the size of the Google data is huge, we use two chunks
of the traces to tune the different parameters that are involved in
our framework. We refer to these chunks as the training set and
the validation set. The training set includes the Google traces
collected during a 24-hour period and the validation data set
contains the traces collected during a 16-hour period. A separate
chunk of the Google data called the testing set with a duration of
29 hours is used later to estimate the accuracy, the energy savings
and the utilization that our framework achieves. The testing
chunk is only used to evaluate our framework’s performance on
unseen data and no parameters are selected based on this chunk.

B. Workload Clustering

We use k-Means [38], a well-known unsupervised learning
algorithm, to cluster VM requests into k categories. The k-Means
algorithm assigns N data points to k different clusters, where
k is a priori specified parameter. The algorithm starts by an
initialization step where the centers of the k clusters are chosen
randomly, and then assigns each data point to the cluster with the
nearest (according to some distance measure) center. Next, these
cluster centers are recalculated based on the current assignment.
The algorithm repeats i) assigning points to the closest, newly
calculated clusters and then ii) recalculating the new centers
until the algorithm converges (no further changes occur).

As mentioned previously, each VM request is mapped into
R2 where the two dimensions are the requested amount of CPU
and memory. The Euclidean distance is used as the measure of
distance between the points and the centers. k-Means is run for
20 different initial centers and the resulting clusters with the
lowest error are reported.

One of the important parameters that needs to be tuned when
using k-Means is k, the number of clusters. A heuristic approach
is implemented to tune this parameter, in which the Sum of
Squared Distances (SSD) is plotted as a function of the number



0 2 4 6 8 10
0

20

40

60

80

100

Number of clusters: k

S
S

D

Fig. 2. The elbow criteria for selecting k.

Fig. 3. The resulting four clusters/categories for Google traces.

of clusters k. SSD represents the clustering error when each
point in the data set is represented by its corresponding cluster
center, and is mathematically equal to

∑k
i=1

∑
r∈Ci d(r, ci)

2

where Ci denotes cluster i; i.e., set of all points belonging to
the ith cluster, ci denotes cluster i’s center point, and d(r, ci) is
the Euclidean distance between r and ci.

Fig. 2 shows SSD as a function of the number of clusters
k plotted based on the training set of the Google traces. Note
that as k increases, SSD decreases monotonically, and hence so
does the clustering error. Recall that while increasing the value
of k reduces the clustering error, it also increases the overhead
incurred by the prediction technique (to be presented in next
sections), since a predictor branch needs to be built for each
cluster/category. For this, the heuristic approach searches then
for the "elbow" or "knee" point of the plot, which is basically
the point that balances between these two conflicting objectives:
reducing clustering errors and maintaining low overhead. As
can be seen from Fig. 2 which is based on the training traces,
the value 4 for k strikes a good balance between accuracy and
overhead. Hence, in what follows we use k = 4.

Fig. 3 shows the resulting clusters for k = 4 based on
the training set, where each category is marked by a different
color/shape and the centers of these clusters c1, c2, c3 and c4
are marked by ’x’. Category 1 represents VM requests with
small amount of CPU and small amount of memory; Category
2 represents VM requests with medium amount of CPU and
small amount of memory; Category 3 represents VM requests
with large amount of memory (and any amount of requested
CPU). Category 4 represents VM requests with large amount of
CPU (and any amount of requested memory). Observe from the
obtained clusters that requests with smaller amount of CPU and
memory are denser than those with large amounts.

V. WORKLOAD PREDICTION

In this section, we determine and estimate the parameters of
the proposed prediction approach.

A. Length of the Prediction Window

An important parameter that needs to be estimated for the
stochastic predictor is the length of the prediction window, Tp.
This represents the length of the time period in the future for
which the workload needs to be predicted in order to decide
whether or not PMs need to be switched to sleep mode. Letting
Pidle denote the power the PM consumes while in ON and idle,
the amount of energy that the PM consumes if it is left ON and
idle during Tp is Eidle = Pidle × Tp. If we decide to switch
the PM to the sleep mode, then the consumed energy Esleep =
Eo + Psleep × (Tp − To), where Psleep is the consumed power
when in the sleep mode; Eo is the transition energy, equaling
the energy needed to switch the machine to the sleep mode plus
the energy needed to wake up the machine later; and To is the
transitional switching time.

Let Tbe be the amount of time during which keeping the PM
ON and idle consumes an amount of energy that is equal to
the energy consumed due to mode transition plus that consumed
while the PM is in the sleep mode during that same period. Here,
Tbe represents the break-even time, and must satisfy:

Pidle × Tbe = Eo + Psleep × (Tbe − To)

Note that switching a PM to sleep mode saves energy only
when the PM stays idle for a time period longer than Tbe; that is,
Tp ≥ Tbe must hold in order for the power switching decisions
to be energy efficient.

In this work, we rely on the energy measurement study of
physical machines conducted in [43] to estimate the break-even
time, Tbe. Table III shows those measurements (reported in [43])
that are used to calculate Tbe. These measurements are also used
later to estimate the energy savings our proposed techniques
achieve. Based on these measurements, our calculation yields
Tbe = 47 seconds; that is, Tp should be larger than 47 seconds. It
is worth noting that these energy measurements were based on a
certain type of commercial PMs, and hence, these numbers might
slightly change depending on the type of PMs in the cluster. As
mentioned before, Google does not provide information about
the types of these PMs. Although we took in our experiments
a conservative approach and chose Tp = 60 seconds in order to
account for the cases where these numbers might be different
for other types of PMs, our proposed approach works for any
other Tp choice.

It is worth mentioning that since Tp = 60, the predictors in
our framework are run every minute to predict the number of
requests in the coming minute. The power management module
relies on these predictions to estimate the number of needed PMs
in the next minute. Since Switching PMs from sleep to ON takes
time, then the predictors are run before the minute ends by an
amount of time that is equal to the switching time so as to have
the PMs ready to cover the workload in the coming minute.



TABLE III
ENERGY MEASUREMENTS NEEDED TO CALCULATE Tbe

Parameter Value Unit
Psleep 107 Watt
Pidle 300.81 Watt
Ppeak 600 Watt

Eon→sleep 5510 Joule
Esleep→on 4260 Joule

To 6 Seconds

w0

Z
-1

+

w1

Z
-1

+

w2

Z
-1

+

wL

...

...

xn

^
dn

Fig. 4. The general structure of Wiener filter.

B. Weights of the Stochastic Predictor
Let n be the time at which the prediction needs to be made.

The general structure of the Wiener predictor for each of the
four categories can be represented as shown in Fig. 4, where:
• xn−i: is the number of requests of the considered category

received in the period between n− 10(i + 1) and n− 10i
seconds.

• dn: the desired output of the category predictor. This
represents the actual number of requests for the considered
category in the coming prediction window.

• d̂n: is the predicted number of requests for the considered
category in the coming prediction window.

• L: is the number of taps that the predictor relies on in
making predictions.

• wi: is the ith tap’s weight.
Wiener filter predicts the future requests assuming xn is a wide-
sense stationary process. The predicted number of requests, d̂n,
is a weighted average of the previous observed requests and
thus can be written as d̂n =

∑L
i=0 wixn−i. The prediction error,

en, can be calculated as the difference between the actual and
predicted number of requests; i.e.,

en = dn − d̂n = dn −
L∑

i=0

wi xn−i

The objective is to find the weights that minimize the Mean
Squared Error (MSE) of the training data, which is:

MSE = E[ e2n ] (1)

MSE represents the second moment of error, and the reason
we chose it as an objective function is due to the fact that
it minimizes both the average error and the variance of error
putting more weight on the average error (E[e2n] = (E[ en ] )

2
+

var( en )).
Differentiating Eq. (1) with respect to wk and setting this

derivative to zero yields, after some algebraic simplifications,

E
[
dn xn−k

]
−

L∑
i=0

wiE
[
xn−k xn−i

]
= 0

By letting

Rdx(k) = E
[
dn xn−k

]
(2)

Rxx(i− k) = E
[
xn−k xn−i

]
(3)

0 50 100 150 200 250
2000

2500

3000

3500

4000

4500

5000

5500

V
al

id
at

io
n 

D
at

a 
R

M
S

E

Number of Taps: L
0 50 100 150 200 250

800

820

840

860

880

900

920

940

T
ra

in
in

g 
D

at
a 

R
M

S
E

 

 

Training
Validation

Fig. 5. RMSE for 3rd category predictor

it follows that Rdx(k) =
∑L

i=0 wiRxx(i− k).
Similar equations expressing the other weights can also be

obtained in the same way. These equations can be presented in
a matrix format as Rdx = RxxW , where

Rxx =


Rxx(0) Rxx(1) . . . Rxx(L)
Rxx(1) Rxx(0) . . . Rxx(L− 1)

...
...

. . .
...

Rxx(L) Rxx(L− 1) . . . Rxx(0)


W =

[
w0 w1 . . . wL

]T
Rdx =

[
Rdx(0) Rdx(1) . . . Rdx(L)

]T
Given Rxx and Rdx, the weights can then be calculated as:

W = R−1xxRdx (4)

We rely on the training data set to calculate Rxx and Rdx

for each category. To estimate these parameters for a certain
category, we divide the training data into N slots where the
duration of each slot is 10 seconds. We first calculate the number
of requests of the considered category that are received in each
slot. Then, we calculate the elements of Rxx using the unbiased
correlation estimation as:

Rxx(m) =
1

N −m

N−m−1∑
j=0

xj+m xj (5)

The elements of Rdx can also be estimated using the corre-
lation coefficients. Since dn represents the number of requests
in the coming prediction window which has a duration of 60
seconds, we can write dn =

∑6
i=1 xn+i. Plugging the expression

of dn in Eq. (2) yields the correlations that can be estimated from
the training data. An estimation of the weight vector follows then
for each category predictor provided Rdx and Rxx are known.
These weights lead, in turn, to the lowest MSE for the training
data.

C. Length of the Observation Window

The last parameter that needs to be tuned for each category
predictor is the length of the observation window. As mentioned
before, the observation window is divided into L slots or (also
called) taps, each tap/slot is of length 10 seconds. This Wiener
filter is referred to as an L-tapped filter. To determine L for
a category predictor, we first need to find the optimal weight
vectors of the Wiener predictor under different values of L on



the training data, and then test the performance of these weight
vectors on the unseen validation data.

Fig. 5 shows the Root Mean Square Error (RMSE) of the
3rd category predictor for both the training and validation data
sets for different values of L. Observe that the training data
RMSE decreases monotonically as L increases. To understand
this, consider two Wiener filters: one with L taps and the other
with L + R taps. Recall that we need to find optimal weights
that when multiplied by these taps leads to the minimum MSE
of the training data. As a result, the model with L + R taps
can achieve the same accuracy on the training data set as the
model with L taps by setting the weights of all the additional
R taps to zero. Thus, the model with a given number of taps
will, in the worst-case scenario, achieve the same accuracy as
any model with lower numbers of taps. In general, models with
larger numbers of taps can still find some correlations specific
to the training data that lead to a better accuracy. Consequently,
the training error will continue to decrease as we increase the
number of taps.

However, by observing the behavior of the validation data,
note that RMSE decreases first until it reaches a point beyond
which the error can no longer be reduced even if L is increased
further. Also, observe that if we continue to increase L, the
validation RMSE starts to increase. This behavior is expected
and is known as the overfitting phenomena. After increasing
the number of taps beyond a certain limit, the model tries to
find correlations between the different requests over time. These
correlations are specific to the training data so we say that
increasing the number of taps beyond a certain limit increases
the complexity of the model and starts finding correlations that
do not exist in the general traces but are specific to the training
data. Based on our experiments, we chose L = 80, as it achieves
the best accuracy on the unseen validation data, meaning that
the observation window of the 3rd category predictor relies on
the traces in the previous 80 taps collected in the previous
80× 10 = 800 seconds.

Using a similar approach, the optimal numbers of taps for
the other three categories are determined to be 20 (category 1),
80 (category 2), and 34 (category 4). Graphs for these three
categories are omitted due to space limitation.

VI. PREDICTION ENHANCEMENTS

We now describe two enhancements that can be done on
the proposed stochastic predictor. These enhancements aim at
improving prediction accuracy and making more efficient cloud
resource allocation and management.

A. Adaptive Predictor

In our framework, we rely on the traces from the training
data to calculate the weights. One of the problems that might
be encountered in a practical implementation of the framework
is that we will need to retrain the model to adjust these weights
since the workload characteristics may vary over time. We refer
to such a model that needs training from time to time as the
static Wiener model. We provide in this subsection an adaptive
Wiener model that increases the accuracy over time and avoids
the need to store large traces to retrain the model on new training
data in order to update weights.

Initially, the adaptive model predicts the number of requests
in the coming minute based on the learned weights from the
training stage. Next, the model observes the number of requests
that were received in that minute for each category. It uses
these observations to update the weights. The adaptive model
continues doing this every minute. As a result, our adaptive
approach uses all the traces that were observed until the time of
the prediction to find the optimal weights. This is different from
the static approach that relies only on a chunk of the traces from
the training data to adjust these weights. The adaptive predictor
has an overhead since after observing the actual workload in
each minute it needs to do some calculations to update these
weights. However, these updates increase the accuracy over time
and makes the model dynamic to the latest variations of the
workload.

As showed previously in Section V-B, we only need to calcu-
late the correlations for different lags of time in order to calculate
the weights. In order to reduce the calculation overhead in our
adaptive model, we introduce two variables for each correlation
coefficient that aggregate all the previous calculations. We only
need to store these variables instead of storing all the previous
traces and thus the amount of storage needed to update these
weights is reduced. Furthermore, these variables can be updated
easily once we observe the new workload which reduces the
calculation overhead further.

The unbiased estimation of the coefficients given in Eq. (5)
can be written as Rxx(m) = Sum(m)/Counter(m), where
Sum(m) =

∑N−m−1
j=0 xj+m xj and Counter(m) = N − m

are two aggregate variables.
Recall that x is a random variable that represents the number

of requests received within ten seconds. In each minute, six new
observations of x take place. We refer to these new observations
by the group O. The two aggregate variables, Sum(m) and
Counter(m), are then updated as:

Counter(m)← Counter(m) + 6

Sum(m)← Sum(m) +
∑
k∈O

xk−m xk

The new correlations can be estimated easily by dividing Sum
by Counter for the different lags. Next, we calculate the updated
weights using Eq. (4).

Fig. 6 shows the actual number of requests received for the
third category over time. We also plot the predicted number of
requests based on both the static and adaptive Wiener predictors.
Note that initially both adaptive and static models give the
same predictions as the adaptive model still has not made many
updates. Observe how the adaptive model improves over time as
its predictions become closer to the actual number of requests.
We evaluate the accuracy of both of these models in Section
VI-B, and present the second enhancement in Section VI-C.

B. Prediction Accuracy

We now compare the accuracy of the two proposed adaptive
and static Wiener predictors against one another and against six
other prediction techniques, which are described next:
• Last minute predictor: returns the same number of re-

quests observed during the previous minute.



0 100 200 300 400 500
0

1

2

3x 10
4

Time (Minute)

N
um

be
r o

f R
eq

ue
st

s

 

 

Actual Number of Requests
Adaptive Wiener Predictions
Static Wiener Predictions

Fig. 6. Static versus adaptive Wiener filter prediction for category 3.

• Min predictor: observes the number of requests received
in each minute during the last five minutes, and returns the
minimum of these five observations.

• Max predictor: similar to Min predictor but returns the
maximum instead of the minimum.

• Average predictor: similar to Min predictor but returns the
average instead of the minimum.

• Exponential Weighted Moving Average (EWMA) pre-
dictor: assigns exponentially decreasing weights for the
previous observations rather than equal weights as in the
Average Predictor. The smoothing factor for the EWMA
predictor is tuned by evaluating the predictor on the training
data using different smoothing factors. The value of the
smoothing factor that achieves the highest accuracy on the
training data is selected for future predictions.

• Linear Regression (LR) predictor: observes the number
of requests received in each minute during the last five
minutes, and returns a weighted average of the previous
observations where the considered weights are tuned based
on the training data.

Fig. 7 shows the Root Mean Square Error (RMSE) for
the different predictive approaches. Since in each minute we
need to predict the number of requests for four categories, the
reported RMSE in Fig. 7 is the summation of the RMSE for the
predictions of the four categories. These evaluations are reported
on a testing data of Google Traces that includes 2.5 milion VM
requests received during a 29-hour period. The testing data set is
different from the training and validation data sets that are used
for tuning the parameters. This provides a fair comparison as it
shows the performance of our predictor over new data that it did
not see before.

Note also from Fig. 7 that both the static and adaptive Wiener
predictors have lower RMSE than all the other predictive ap-
proaches. The adaptive Wiener predictor achieves lower RMSE
than the static predictor as it updates the weights regularly based
on the observations that are seen in each minute. This increases
the accuracy of the predictor and makes it more adaptive to new
workload changes, something that the other studied prediction
techniques lack. The static Wiener predictor would have achieved
an accuracy that is close to that achieved by the adaptive
predictor if it was trained regularly every certain duration of time
such as every two hours. It is also worth mentioning that the basic
predictive techniques have also been tested for different time
duration (not only 5 minutes but 10 minutes, 15 minutes,...etc.).
For all of these cases, the basic approaches report a performance
worse than the static and adaptive Wiener approaches. We report

Adapt.Wiener StaticWiener Min Average EWMA LR Last Max
0

250
500
750

1000
1250
1500
1750
2000
2250
2500
2750
3000
3250
3500
3750
4000
4250
4500
4750
5000
5250

R
M

S
E

 

 

Fig. 7. RMSE comparison of different predictive approaches.

only the basic predictive approaches that rely on the number
of requests received during the last 5 minute duration in their
prediction due to space limitation.

C. Safety Margin

Our stochastic predictors may still make errors as the pre-
dictions may be larger or smaller than the actual number of
requests. A main problem when we underestimate the number
of future requests is that we will need some time to wake one
of the sleeping machines when an unpredicted request arrives.
As a result, clients may observe an undesired short delay before
their resources are allocated. In order to reduce the occurrences
of such cases, we add a safety margin to accommodate for such
variations. The cost of this safety margin is that we will keep
some redundant PMs in the working state which will reduce
slightly the total energy savings.

In order to avoid the problem of selecting an appropriate
static value for the safety margin, we make it dynamic and
related to the accuracy of our predictors. Our proposed safety
margin increases if our predictions deviate much from the actual
number of requests and it decreases when accurate predictions
are made. Since these deviations may vary over time, we
calculate an exponentially weighted moving average (EWMA)
of the deviations while giving higher weights to the most recent
ones. Initially, Dev is set to zero; i.e., Dev0 = 0, and for later
time n, Devn is updated as

Devn = (1− α)Devn−1 + α
∣∣∣dn−1 − d̂n−1∣∣∣

where 0 < α < 1 is the EWMA smoothing factor used to
tune between the weight given to most recent deviations over
that given to the previous ones. Dev is updated before the
next prediction is made by observing the deviation between
the predicted and actual number of requests in the previous
minute. One advantage of EWMA is that the moving average
is calculated without needing to store all observed deviations.

We add the weighted average Dev to our predictions in the
next minute after we multiply it by a certain parameter β. The
predicted number of requests with safety margin d̄n can then be
calculated as d̄n = d̂n + βDevn.

Figs. 8 and 9 show the actual number of requests in addition
to the predictions with and without safety margin for the second
and third categories on a part of the testing set. Note that the
predictions for the remaining two categories were not included
due to space limitation. As for the safety margin parameters,



0 100 200 300 400 500
0

2000

4000

6000

8000

10000

Time (Minute)

N
um

be
r o

f R
eq

ue
st

s

 

 

Actual Number of Requests
Adaptive Wiener Predictions
Adaptive Wiener Predictions with Safety Margin

Fig. 8. Adaptive prediction with and without safety margin for category 2.

0 100 200 300 400 500
0

1

2

3

4x 10
4

Time (Minute)

N
um

be
r o

f R
eq

ue
st

s

 

 

Actual Number of Requests
Adaptive Wiener Predictions
Adaptive Wiener Predictions with Safety Margin

Fig. 9. Adaptive prediction with and without safety margin for category 3.

α and β are set to 0.25 and 4, respectively; these values are
selected experimentally by picking the values that provide the
best predictions on the training set. Note from these figures
that the prediction with safety margin forms an envelope above
the actual number of requests. The envelope becomes tighter
when our predictions are accurate and becomes wider when our
predictions deviate much from the actual number of requests
for each category. When bursts in the actual number of requests
occur, the envelope becomes wider directly after that burst to
avoid any future possible bursts. If no other bursts are observed
in the following minutes, then the envelope becomes tighter over
time as the recent deviations which have higher weight are small.

We also show in Fig. 10 the total number of unpredicted PMs
that were waken from sleep to accommodate the workload when
our framework is evaluated on the entire testing data with and
without safety margin. These numbers reflect how often clients
had to wait for sleeping PMs to be switched ON before their
requests got allocated. Since the Min Predictor had the least
error among the approaches we compared against in Fig.7, we
also report in Fig. 10 the total number of unpredicted PMs
when the Min Predictor is used in our framework to make
predictions. Observe that the adaptive Wiener filter without
safety margin had a lower number of unpredicted PMs compared
to the Min Predictor. The results also show that by adding a
safety margin to the predictions of the Wiener filter, the number
of unpredicted PMs that were switched ON was reduced further
by 87% compared to the case without safety margin.

VII. POWER MANAGEMENT

As mentioned previously in Section III, the Power Manage-
ment module keeps track of all the PMs in the cloud cluster and
stores their capacities, their current utilization and their state
(ON or sleep) in a table, referred to as the ResourceTable.
Let d̄(i) be the predicted number of requests of the ith category
in the coming prediction window (taken from the output of the

0

2000

4000

6000

8000

10000

N
um

. o
f U

np
re

di
ct

ed
 W

ak
en

 P
M

s

 

 

Adapt. Wiener with Safety Margin
Adapt. Wiener without Safety Margin
Min Predictor

Fig. 10. Total number of unpredicted waken PMs during the entire testing
period.

workload predictor); and ci be the center of the ith category
(taken from the data clustering stage). The Power Management
module relies on ResourceTable along with the centers and
the predicted number of requests for each category to decide on
the number of needed PMs in the coming prediction window.
Algorithm 1 shows the heuristic approach used by the Power
Management module to determine the number of needed PMs.
The steps of the algorithm are as follows:

In line 1, a copy of ResourceTable called PMTable is
made to be used as a draft table to determine the number of
needed PMs. This draft table is made so that the state and
the utilization fields of the original ResourceTable are not
changed while trying to fit the predicted VM requests in the
PMs in order to estimate the number of needed PMs. In line
2, PMTable is sorted based on the three criteria introduced in
Section III-C. In line 3, VMList is a list constructed to contain
all the predicted requests in the coming prediction window. In
fact, VMList contains d̄(1) VM request with the CPU and
memory resources specified by c1, d̄(2) VM request with the
resources specified by c2 and so on for all the categories. In
line 4, the requests in VMList are sorted from the largest to the
smallest request. Since each request has two resources (CPU and
memory), the product of the requested CPU and memory is used
as a metric when sorting the requests. The intuition behind this
sorting criteria is to consider VMs with larger CPU and memory
demands for placement first as they are harder to fit since they
require larger free space. It is worth mentioning that the product
of the requested CPU and memory resources is just used as a
sorting metric and the amount of requested CPU and memory
resources are actually allocated to each VM request when it is
placed on a PM.

The algorithm iterates on the sorted VMs and starts by picking
the first VM request in the ordered VMList. Next, it iterates over
the sorted PMs trying to fit the picked VM within the first PM
in the ordered PMList. The algorithm keeps iterating over the
PMs in PMList until the VM request fits one. The PM that fits
the picked VM can be either asleep or ON. If it is asleep, then
the PM is added to the ONList (line 9) and the PM’s state is
changed to ON (line 10). ONList is basically a list that stores
the PMs that need to be turned ON to cover the future workload.
If the picked PM is not asleep, these two steps are skipped and
the algorithm goes directly to line 12. Since the PM will host
the picked VM request, the utilization of the PM is updated by
calculating the new utilization of the PM after placing the picked
VM request (line 12). In line 13, PMList is sorted based on the
three criteria since at least the utilization (or both the utilization
and state) of one of the PMs is changed. The algorithm picks



next the following VM request in VMList and tries to fit it
similarly in a PM, and repeats the same procedure until all VMs
are placed in a PM.

After assigning all of the predicted VMs to a PM, the
algorithm checks whether there are PMs that are ON but have
zero utilization. If that is the case, then these PMs are added to
SleepList as they are redundant and need to be switched to
the sleep mode (line 20). This case might happen if the cloud
clients terminated many VM requests within the last minute
and the corresponding PMs that host these VMs became idle.
If the predicted workload in the future prediction window can
be hosted by a subset of these idle PMs, then the extra PMs are
switched to the sleep state to save energy.

The algorithm ends up with two lists: ONList and
SleepList where one of the two lists is empty. It is easy to
see that one of the two lists will be empty, as in our PM sorting
criteria, machines that are ON come first and thus will be used to
host the predicted VMs. More PMs will be turned ON only when
all already ON PMs are used; in this case, SleepList will be
empty as there will be no ON PMs with zero utilization. Finally,
the Power Management module turns all the PMs in ONList
ON or switches all the PMs in SleepList to the sleep state
and updates the new states in the original ResourceTable
respectively. As a result, we end up keeping ON only the needed
machines to cover the predicted workload, and putting to sleep
the rest of machines.

Algorithm 1 Modified BFD – estimating the number of needed
PMs during the next prediction window
Input:
ResourceTable: a table whose entries each corresponds to a PM and
contains its power state, its CPU and memory capacity and its CPU
and memory utilization.
c1, c2, ..., ck: centers of the k categories. Each center is a point in R2

where the two dimensions are the CPU and memory resources.
d̄(1), d̄(2), ..., d̄(k): predicted numbers of requests for the k categories
in the coming prediction window.
Output:
SleepList: List of PMs to be switched to sleep mode.
OnList: List of PMs to be turned on to cover the predicted workload.

1: PMTable ← ResourceTable
2: PMTable.sortPMs()
3: VMList ← ConstructList

(
d̄(1), d̄(2), ..., d̄(k), c1, c2, ..., ck

)
4: VMList.sortVMs()
5: for each VM in VMList do
6: for each PM in PMTable do
7: if VM fits in PM then
8: if PM was asleep then
9: OnList.add(PM)

10: PMTable.SetState(PM,"ON")
11: end if
12: PMTable.UpdateUtilization(PM,VM)
13: PMTable.sortPMs()
14: break the for loop and try to pack the next VM
15: end if
16: end for
17: end for
18: for each PM in PMList do
19: if PM.state="ON" AND PM.utilization=0 then
20: SleepList.add(PM)
21: end if
22: end for

VIII. FRAMEWORK EVALUATION

In this section, we evaluate the performance of our integrated
energy-aware cloud resource provisioning framework (with adap-
tive prediction and safety margin) and compare it against the
following schemes2:
• No Power Management: represents the case where all PMs

of the cluster are left ON all the time.
• PM Prediction Power Management: this scheme follows

the prediction approach that was proposed in [44, 45] which
observes the number of PMs that were needed in each
minute during the last Tobs minutes, predicts the average
of those observations to be the number of PMs needed in
the coming minute, and scales the number of ON PMs up
or down based on this prediction. A fixed number Nbuffer

of extra PMs is left ON as a buffer on top of those
predictions to reduce the cases where clients have to wait
for a sleeping PM to be switched ON before their requests
get allocated. Tuning the parameters of this scheme (Tobs
and Nbuffer) is done by selecting the values that achieved
the best prediction accuracy on the training data.

• Optimal Power Management: represents the case where
the predictor knows the exact number of future VM re-
quests, as well as the exact amount of CPU and memory
resources associated with these requests. This represents the
best-case scenario for resource management and serves here
as an upper bound.

A. Resource Utilization

We start first by analyzing how efficient the ON PMs are
utilized when the different schemes are used to manage the
Google cluster. Figs. 11 and 12 show snapshots that plot the
average CPU and memory utilization of the ON PMs over time
when evaluating the different schemes on the testing period.
For completeness, we also show in Table IV the ON PMs
average CPU and memory utilizations averaged over the entire
duration of the testing data. Observe that both CPU and memory
utilizations are very low when no power management is applied,
since many PMs are kept ON without being utilized. The PM
Prediction Power Management scheme improves the utilization
of the CPU and memory resources compared to the previous
scheme, as it observes how many PMs were recently used and
predicts broadly how many ON PMs will be needed in future.
However, this scheme still wastes resources and is far from the
optimal utilization levels. Our framework, on the other hand, im-
proves further the average utilization of both CPU and memory,
as it estimates accurately how many ON PMs will be needed by
predicting the future requests along with their requested resource
demands. In fact, the utilization achieved under our framework
is very close to that of the Optimal Power Management scheme.
The utilization gap between our framework and the optimal case
is mainly due to prediction errors and to the redundant PMs that
are left ON as a safety margin. It is worth mentioning that the
optimal power management does not achieve 100% utilization
due to the bin packing nature, where some PMs may still have
some space left (not fully utilized).

2The number of ON PMs used by the Google cluster is kept private and thus
we could not compare with Google’s power management scheme.



0 20 40 60 80 100 120 140 160 180 200
20

40

60

80

100

Time (Minute)

A
vg

. C
P

U
 U

til
iz

at
io

n 
(%

)

 

 

Optimal Power Mngmt
Our Framework

 

 

PM Pred. Mngmt
No Power Mngmt

Fig. 11. A comparison of the average CPU utilization.

0 20 40 60 80 100 120 140 160 180 200
20

40

60

80

Time (Minute)

A
vg

. M
em

or
y 

U
til

iz
at

io
n 

(%
)

 

 

Optimal Power Mngmt
Our Framework

 

 

PM Pred. Mngmt
No Power Mngmt

Fig. 12. A comparison of the average memory utilization.

B. Energy Savings

We now assess the total energy consumed by the Google
cluster when the traces reported during the testing period are
handled by the different resource management schemes. The
cluster’s total costs include the energy consumed by both ON
and sleeping PMs, as well as the transition energy associated
with switching a PM from ON to sleep and vice versa. We rely
on the power numbers reported in [43] and summarized in Table
III to calculate those total costs where the power consumed by a
sleeping PM is Psleep, whereas the power consumed by an ON
PM increases linearly from Pidle to Ppeak as its CPU utilization

0 20 40 60 80 100 120 140 160 180 200
150

200

250

300

350

Time (Minute)

C
lu

st
er

 E
ne

rg
y 

(M
eg

a 
Jo

ul
e)

 

 

No Power Mngmt
PM Pred. Mngmt

 

 

Our Framework
Optimal Power Mngmt

Fig. 13. A comparison of the consumed energy.

0

20

40

60

80

100

N
or

m
al

iz
ed

 T
ot

al
 C

lu
st

er
 E

ne
rg

y 
(%

)

 

 

No Power Mngmt
PM Pred. Mngmt
Our Framework
Optimal Power Mngmt

Fig. 14. Total consumed energy during the entire testing period.

TABLE IV
AVG. CPU AND MEMORY UTILIZATION OVER ALL TESTING DATA.

No Power
Mngmt

PM Pred.
Mngmt

Our
Framework

Opt. Power
Mngmt

AvgCPU Util 38.15 % 59.06 % 83.94 % 90.42 %
AvgMem Util 32.69 % 50.37 % 65.34 % 69.92 %

increases from 0 to 100%.
Fig. 13 shows a snapshot of the energy consumed by the

cluster when it is handling the requests reported in the testing
traces using the different resource management schemes. Ob-
serve that by leaving all the PMs ON, the No Power management
scheme consumes significant amount of energy over time. By
predicting on average how many PMs will be needed using the
PM Prediction scheme, the cluster reduces its costs. Whereas by
using our proposed framework, the consumed energy is lower
than the former two cases as we are decomposing the workload
into multiple categories, and predicting the workload for each
category which helps in keeping the right amount of needed
servers ON. Furthermore, unlike the PM Prediction scheme
which leaves a fixed number of ON PMs as a buffer all the time,
our framework uses an adaptive safety margin that is proportional
to the workload predictions, which avoids keeping too many ON
PMs when they will not actually be needed. We also show in Fig.
13 the energy costs of the Optimal Power Management scheme.
Results show that the energy costs of our framework are slightly
larger than the optimal case. This difference is mainly due to the
prediction errors and to the safety margin overhead.

For completeness, Fig. 14 shows the total energy consumed
by the Google cluster during the entire testing period for the
different schemes normalized with respect to the total energy
cost of the No Power Management scheme. The results show
how close the energy consumed by our framework is from the
optimal case and highlights that a significant portion of the
cluster’s consumed energy can be saved by estimating accurately
the future workload. It is worth mentioning that the energy costs
associated with the optimal scheme are inevitable and represent
the energy consumed by the hosted workload.

We discussed so far the amount of energy that our framework
saves. Now in order to have a sense/estimate of the actual savings
in terms of money, observe from Fig. 13 that about 50 Mega
Joules are saved by our framework every minute when compared
to the PM Prediction scheme. This translates into a total savings
of 2160 Giga Joules per month, or equivalently a total of 600
Megawatt-hour per month. Per year, this translates into a saving
of 7200 Megawatt-hour. For example, in California in 2013, the
commercial cost of one kilowatt-hour is about 17 Cents [46].
Therefore, we can say that our techniques can save the studied
Google cluster roughly about $1.2 million per year.

C. Workload Underestimation Evaluation

We assess now how often clients had to wait for a sleeping PM
to be switched ON before their requests got allocated. In order to
do that, we show in Table V the total number of underestimated
PMs that were switched from sleep to the ON state to accom-
modate the received workload when each of our framework and
the PM Prediction Power Management scheme were evaluated
on the entire testing data. Clearly, the number of clients that



had to wait before their resources were allocated is proportional
to the number of underestimated PMs that had to be awaken
from sleep to accommodate the received requests. Observe that
our framework had around 65% less underestimation incidents
compared to the PM Power Management scheme. This proves
the efficiency of our prediction and safety margin techniques
compared to the PM Prediction scheme which calculates broadly
how many ON PMs will be needed and keeps a fixed number
of ON PMs as a buffer to avoid those underestimation cases.

TABLE V
TOTAL NUMBER OF UNDERESTIMATED PMS DURING THE ENTIRE TESTING

PERIOD.

PM Pred. Mngmt Our Framework
Number of PMs 1270 456

D. Execution Time Overhead Evaluation

Our last experiment analyzes the execution time overhead of
the offline as well as the online stages of our framework. All the
measurements reported in this section are based on running our
framework on a platform that has an Intel Core 2 Quad Q9400
2.66 GHz processor, and an 8 GB RAM.

As for the offline stages, they are executed only once on
large training traces in order to capture the general workload
characteristics. Recall that our framework has two offline stages:
the Clustering stage (used to decide how many categories the
requests will be divided to), and the the Predictors Training
stage (used to tune initially the parameters for each category’s
predictor). Table VI shows the total time spent to execute each
one of those offline stages on the Google training data.

Online stages on the other hand are performed periodically
every minute. We measure how much time each online stage
takes each time it is called when running our framework on the
Google testing data. Since the time spent by each online stage
may slightly vary depending on the workload, we report in Table
VI the mean and standard deviation for how much time each
online stage takes when it is called by our framework.

The reported measurements in Table VI clearly show that
our framework not only achieves great savings but also has a
light offline and online execution overhead, which is something
important for efficient resource management.

TABLE VI
EXECUTION TIME ANALYSIS OF OUR FRAMEWORK’S STAGES.

Offline Stage Execution Time
Clustering 60 Min
Predictors Training 13 Min

Online Stage Execution Time
Mean Standard Deviation

Trace Decomposition 0.017 Sec 0.02 Sec
Workload Prediction 0.002 Sec 0.001 Sec
Power Management 2.9 Sec 1 Sec

IX. CONCLUSION AND FUTURE WORK

We propose an integrated energy-aware resource provisioning
framework that predicts the number of VM requests and the
amount of resources associated with these requests that the cloud
center will receive in the future. These predictions are used to

keep the right amount of needed PMs ON. The methods to
estimate the parameters involved in our framework are presented
including setting the number of clustered categories, the length
of the prediction window, the optimal weights of the stochastic
predictor, and the length of the observation window. The effec-
tiveness of our framework is evaluated using real traces from
Google cloud cluster. We show that our framework outperforms
existing prediction techniques and achieves significant energy
savings and high utilization that are very close to the optimal
case. For future work, we plan to investigate whether VM
requests follow certain regular daily trends and rely on that to
further improve the workload prediction module. Finally, the lack
of publicly available fine-grained traces, similar to Google traces,
has prevented us from testing our framework on other cloud
traces. We hope to have the chance to do that in future.

REFERENCES

[1] R. Brown et al., “Report to congress on server and data center energy
efficiency: Public law 109-431,” 2008.

[2] “Cisco global cloud index: Frocast and methodology, 2011-2016,” Cicso
Inc., White Paper, 2012.

[3] C. Pettey, “Gartner estimates ICT industry accounts for 2 percent of global
co2 emissions,” 2007.

[4] T. Taleb, “Toward carrier cloud: Potential, challenges, and solutions,” IEEE
Wireless Communications, vol. 21, no. 3, 2014.

[5] B. Jennings and R. Stadler, “Resource management in clouds: Survey and
research challenges,” Journal of Network and Systems Management, 2014.

[6] A. Ksentini, T. Taleb, and F. Messaoudi, “A LISP-based implementation
of follow me cloud,” IEEE Access, vol. 2, 2014.

[7] L. Barroso and U. Holzle, “The case for energy-proportional computing,”
Computer Journal, vol. 40, no. 12, pp. 33–37, 2007.

[8] http://code.google.com/p/googleclusterdata/ .
[9] H. Hajj, W. El-Hajj, M. Dabbagh, and T.R. Arabi, “An algorithm-centric

energy-aware design methodology,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, 2013.

[10] Y. Lu and G. De Micheli, “Comparing system level power management
policies,” Design Test of Computers, vol. 18, no. 2, pp. 10–19, 2001.

[11] B. Kveton, P. Gandhi, G. Theocharous, S. Mannor, B. Rosario, and N. Shah,
“Adaptive timeout policies for fast fine-grained power management,” in
Proceedings of the National Conference on Artificial Intelligence, 2007.

[12] A. Weissel and F. Bellosa, “Self-learning hard disk power management for
mobile devices,” in Proceedings of the International Workshop on Software
Support for Portable Storage (IWSSPS), 2006.

[13] S. Albers, “Energy-efficient algorithms,” Communications of the ACM,
vol. 53, no. 5, pp. 86–96, 2010.

[14] M. Dabbagh, B. Hamdaoui, M. Guizani, and A. Rayes, “Release-time
aware VM placement,” in Proceedings of IEEE GLOBECOM Workshop
on Cloud Computing Systems, Networks, and Applications (CCSNA), 2014.

[15] Y. Ajiro and A. Tanaka, “Improving packing algorithms for server
consolidation,” in Computer Measurement Group (CMG) conference, 2007.

[16] E. Man Jr, M. Garey, and D. Johnson, “Approximation algorithms for bin
packing: A survey,” Jouranl of Approximation Algorithms for NP-Hard
Problems, pp. 46–93, 1996.

[17] X. Meng, V. Pappas, and L. Zhang, “Improving the scalability of data center
networks with traffic-aware virtual machine placement,” in Proceedings of
IEEE INFOCOM, 2010.

[18] A. Beloglazov, Energy-Efficient Management of Virtual Machines in Data
Centers for Cloud Computing, Ph.D. thesis, 2013.

[19] M. Melo, S. Sargento, U. Killat, A. Timm-Giel, and J. Carapinha, “Optimal
virtual network embedding: Node-link formulation,” IEEE Transcations on
Network and Service Management, vol. 10, no. 4, pp. 356–368, 2013.

[20] A. Beloglazov, J. Abawajy, and R. Buyya, “Energy-aware resource
allocation heuristics for efficient management of data centers for cloud
computing,” Future Generation Computer Systems, 2012.

[21] A. Beloglazov and R. Buyya, “Managing overloaded hosts for dynamic
consolidation of virtual machines in cloud data centers under quality
of service constraints,” IEEE Transactions on Parallel and Distributed
Systems, vol. 24, no. 7, pp. 1366–1379, 2013.

[22] G. Keller, M. Tighe, H. Lutfiyya, and M. Bauer, “A hierarchical, topology-
aware approach to dynamic data centre management,” in IEEE Network
Operations and Management Symposium (NOMS), 2014, pp. 1–7.



[23] C. Mastroianni, M. Meo, and G. Papuzzo, “Probabilistic consolidation of
virtual machines in self-organizing cloud data centers,” IEEE Transactions
on Cloud Computing, vol. 1, no. 2, pp. 215–228, 2013.

[24] M. Dabbagh, B. Hamdaoui, M. Guizani, and A. Rayes, “Efficient datacenter
resource utilization through cloud resource overcommitment,” in IEEE
INFOCOM Workshop on Mobile Cloud and Virtualization, 2015.

[25] T. Taleb and A. Ksentini, “Follow me cloud: interworking federated clouds
and distributed mobile networks,” IEEE Network, vol. 27, no. 5, 2013.

[26] J. Doyle, R. Shorten, and D. O’Mahony, “Stratus: Load balancing the cloud
for carbon emissions control,” IEEE Transactions on Cloud Computing,
vol. 1, no. 1, pp. 1–1, Jan 2013.

[27] Q. Zhang and R. Boutaba, “Dynamic workload management in heteroge-
neous cloud computing environments,” in IEEE Network Operations and
Management Symposium (NOMS), 2014, pp. 1–7.

[28] S. Garg, C. Yeo, A. Anandasivam, and R. Buyya, “Environment-conscious
scheduling of hpc applications on distributed cloud-oriented data centers,”
Journal of Parallel and Distributed Computing, vol. 71, no. 6, 2011.

[29] M. Shojafar, N. Cordeschi, D. Amendola, and E. Baccarelli, “Energy-
saving adaptive computing and traffic engineering for real-time-service data
centers,” in Proceedings of IEEE ICC Workshop on Cloud Computing
Systems, Networks, and Applications, 2015.

[30] H. Nguyen, Z. Shen, X. Gu, S. Subbiah, and J. Wilkes, “Agile: elastic
distributed resource scaling for infrastructure-as-a-service,” in Proceedings
of the USENIX International Conference on Automated Computing, 2013.

[31] T. Heath, B. Diniz, E. Carrera, W. Meira Jr, and R. Bianchini, “Energy
conservation in heterogeneous server clusters,” in Proceedings of ACM
SIGPLAN symposium on parallel programming, 2005.

[32] J. Prevost, K. Nagothu, B. Kelley, and M. Jamshidi, “Prediction of
cloud data center networks loads using stochastic and neural models,” in
Proceedings of the International Conference on System of Syst. Eng., 2011.

[33] Z. Gong, X. Gu, and J. Wilkes, “Press: Predictive elastic resource scaling
for cloud systems,” in Proceedings of the International Conference on
Network and Service Management (CNSM), 2010.

[34] A. Verma, P. Ahuja, and A. Neogi, “pmapper: power and migration cost
aware application placement in virtualized systems,” in Middleware, pp.
243–264. Springer, 2008.

[35] M. Tighe and M. Bauer, “Integrating cloud application autoscaling with
dynamic vm allocation,” in IEEE Network Operations and Management
Symposium (NOMS), 2014, pp. 1–9.

[36] C. Dabrowski and F. Hunt, “Using markov chain analysis to study dynamic
behaviour in large-scale grid systems,” in Proceedings of the Australasian
Symposium on Grid Computing and e-Research-Volume 99, 2009.

[37] Y. Zhang, W. Sun, and Y. Inoguchi, “CPU load predictions on the
computational grid,” in Proceedings of IEEE International Symposium on
Cluster Computing and the Grid (CCGRID), 2006.

[38] J. Han, M. Kamber, and J. Pei, Data Mining: Concepts and Techniques,
Morgan Kaufmann, 2011.

[39] C. Reiss, A. Tumanov, G. Ganger, R. Katz, and M. Kozuch, “Towards
understanding heterogeneous clouds at scale: Google trace analysis,” Intel
Science and Tech. Center for Cloud Computing Technical Report, 2012.

[40] Y. Chen, A. Ganapathi, R. Griffith, and R. Katz, “Analysis and lessons from
a publicly available google cluster trace,” Technical Report from University
of California, Berkeley, 2010.

[41] A. Mishra, J. Hellerstein, W. Cirne, and C. Das, “Towards characterizing
cloud backend workloads: insights from google compute clusters,” ACM
SIGMETRICS Performance Evaluation Review, vol. 37, no. 4, 2010.

[42] C. Reiss, J. Wilkes, and J. Hellerstein, “Google cluster-usage traces:
format+ schema,” Google Inc., White Paper, 2011.

[43] I. Sarji, C. Ghali, A. Chehab, and A. Kayssi, “Cloudese: Energy efficiency
model for cloud computing environments,” in Proceedings of IEEE
International Conference Energy Aware Computing (ICEAC), 2011.

[44] A. Krioukov, P. Mohan, S. Alspaugh, L. Keys, D. Culler, and R. Katz,
“NapSAC: Design and implementation of a power-proportional web clus-
ter,” ACM SIGCOMM computer communication review, 2011.

[45] A. Gandhi, M. Harchol-Balter, and M. Kozuch, “Are sleep states effective
in data centers?,” in International Green Computing Conference, 2012.

[46] U.S. Energy Information Administration, http://www.eia.gov.

Mehiar Dabbagh received his B.S. degree in Telecom-
munication Engineering from the University of Aleppo,
Syria, in 2010 and the M.S. degree in ECE from the
American University of Beirut (AUB), Lebanon, in
2012. During his Master’s studies, he worked as a
research assistant in Intel-KACST Middle East Energy
Efficiency Research Center (MER) at AUB, where he
developed techniques for software energy-awareness.
Currently, he is a Ph.D. student in ECE at Oregon State
University (OSU). His research interests include: Cloud
Computing, Network Security and Data Mining.

Bechir Hamdaoui (S’02-M’05-SM’12) is presently an
Associate Professor in the School of EECS at Oregon
State University. He received the Diploma of Graduate
Engineer (1997) from the National School of Engineers
at Tunis, Tunisia. He also received M.S. degrees in both
ECE (2002) and CS (2004), and the Ph.D. degree in
Computer Engineering (2005) all from the University of
Wisconsin-Madison. His research interests span various
topics in the areas of wireless communications and
computer networking systems. He has won the NSF
CAREER Award (2009), and is presently an AE for

IEEE Transactions on Wireless Communications (2013-present), and Wireless
Communications and Computing Journal (2009-present). He also served as
an AE for IEEE Transactions on Vehicular Technology (2009-2014) and for
Journal of Computer Systems, Networks, and Communications (2007-2009). He
served as the program chair for SRC in ACM MobiCom 2011 and many IEEE
symposia/workshops, including ICC, IWCMC, and PERCOM. He also served on
the TPCs of many conferences, including INFOCOM, ICC, and GLOBECOM.
He is a Senior Member of IEEE, IEEE Computer Society, IEEE Communications
Society, and IEEE Vehicular Technology Society.

Mohsen Guizani (S’85-M’89-SM’99-F’09) is cur-
rently a Professor at the Computer Science & En-
gineering Department in Qatar University. Qatar. He
also served in academic positions at the University of
Missouri-Kansas City, University of Colorado-Boulder,
Syracuse University and Kuwait University. He re-
ceived his B.S. (with distinction) and M.S. degrees in
EE; M.S. and Ph.D. degrees in CS in 1984, 1986, 1987,
and 1990, respectively, all from Syracuse University,
Syracuse, New York. His research interests include
Wireless Communications, Computer Networks, Cloud

Computing, Cyber Security and Smart Grid. He currently serves on the editorial
boards of several international technical journals and the Founder and EiC of
"Wireless Communications and Mobile Computing" Journal published by John
Wiley. He is the author of nine books and more than 400 publications in refereed
journals and conferences (with an h-index=30 according to Google Scholar). He
received two best research awards. Dr. Guizani is a Fellow of IEEE, member of
IEEE Communication Society, and Senior Member of ACM.

Ammar Rayes Ph.D., is a Distinguished Engineer at
Cisco Systems and the Founding President of The In-
ternational Society of Service Innovation Professionals,
www.issip.org. He is currently chairing Cisco Services
Research Program. His research areas include: Smart
Services, Internet of Everything (IoE), Machine-to-
Machine, Smart Analytics and IP strategy. He has au-
thored / co-authored over a hundred papers and patents
on advances in communications-related technologies,
including a book on Network Modeling and Simulation
and another one on ATM switching and network design.

He is an Editor-in-Chief for "Advances of Internet of Things" Journal and served
as an Associate Editor of ACM "Transactions on Internet Technology" and on the
Journal of Wireless Communications and Mobile Computing. He received his BS
and MS Degrees in EE from the University of Illinois at Urbana and his Doctor of
Science degree in EE from Washington University in St. Louis, Missouri, where
he received the Outstanding Graduate Student Award in Telecommunications.


