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Abstract—In this paper, we implement and analyze a resource
allocation protocol for distributed dynamic spectrum allocation
(DSA) systems. The DSA protocol is a learning-based protocol
that allows secondary users (SU) to exploit the spectrum bands
efficiently in a distributed manner without the need of infor-
mation exchange. The implementation and test of the proposed
protocol is done using ns3 assuming that the SUs selecting the
same band share it in accordance with a carrier sense multiple
access (CSMA) scheme. The evaluation of the proposed protocol
is done under various traffic models. We show the importance of
the objective function’s choice; used as a utility to be maximized
in the learning. We also show the impact of various practical
aspects taken into consideration while implementing the protocol
on the system’s achieved performance.

Index Terms—dynamic spectrum allocation, distributed pro-
tocol, learning, traffic model, reward function, carrier sense
multiple access.

I. INTRODUCTION

The increase of utilization of wireless technology in the
last two decades caused a serious shortage problem in the
wireless spectrum. Moreover, studies done by the Federal
Communications Commission (FCC) [1] show that some parts
of the wireless spectrum are still under-utilized. Hence, DSA
emerges as a potential solution for overcoming spectrum short-
age. Many research attempts have recently tried to develop
techniques and protocols for DSA systems that allow the
exploitation of the wireless spectrum efficiently [2–6]. The
focus has mostly been concentrated on the development of
distributed approaches.

In order to allocate the channels distributively among the
different users, the focus was initially on the game theoretical
inspired solutions. [7–10]. For instance, an efficient DSA
medium access control (MAC) protocol was developed in [7]
based on game theory. In [8], the authors proposed game
theoretical-based DSA techniques with respect to heteroge-
neous Quality-of-Service (QoS) requirements. In [10], the
authors investigated a multi-channel network with random
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access. They compared the system performance between two
scenarios: selfish systems and cooperative systems. They
showed that incomplete information exchange significantly
affects the system performance.

Recently, learning-based techniques have been proposed for
distributed DSA. In [11, 12], it was shown that theses tech-
niques can be easily implemented in a decentralized manner
and achieve high performance without the need for excessive
information exchange. The approach consists in allowing the
users to locate and exploit the spectrum bands efficiently based
on historic information about the channels’ occupancy and
quality using an adequate learning algorithm such as the Q-
learning [13]. Q-learning is a distributed strategy that helps
agents choosing their best actions, the channel to choose
in our case, over time by storing and updating recursively
an objective function corresponding to each possible action.
This will allow to estimate future rewards of the actions to
take based on the previous obtained rewards. The algorithm
converges rapidly towards the best selection of channels by
each user without needing lot of computation neither excessive
information exchange.

The challenge consists of designing efficient objective func-
tions that maximize the users’ reward depending on the traffic
model. In [11, 14], the authors proposed an efficient "differ-
ence" objective function for elastic traffic model that allows
users to find and exploit spectrum bands efficiently. They have
shown that this objective function maximizes spectrum users’
received rewards and achieves near optimal performance with
a high scalability. Also, they have shown its learnability as
it converges very quickly towards the highest performance.
In [12, 15–17], an inelastic traffic model is considered. The
authors developed a "team-contribution" objective function.
This function is based on cooperation between users to find
and exploit the best spectrum band efficiently. Thus, the users
need to work as a team to succeed together in obtaining a
good level of the Quality of Service. The authors showed
that the team-contribution objective function achieves close
optimal performance.

Based on these findings, we design and implement a re-
source allocation protocol for distributed DSA systems [18].
The protocol supports different traffic models. The proposed
protocol divides each time episode into three phases: 1) Select
phase, in which each user will choose the best band based
on Q-learning; 2) Data Communication phase, in which the
transmission of data will be done; and finally 3) Update
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phase, in which each user will update its Q-learning table.
Moreover, we test the protocol with other reward models
like the Hybrid model which combines elastic and inelastic
behaviors. We evaluate the objective functions that will maxi-
mize the global achieved reward. In addition, we evaluate the
system’s performance assuming heterogeneous traffic model,
where some users use the elastic reward and others use
the inelastic reward, by comparing the performance obtained
using different objective functions. The evaluation of the
performance of the proposed protocol is done using ns3 [19].
We study the impact of different practical aspects resulting
from the characteristics of DSA environments on the system’s
obtained performance. The implementation of the proposed
protocol is very challenging since it takes into consideration
various practical aspects such as traffic overhead due to control
message exchanges, data collision, and the unequal share of
the spectrum band due to the random access which will cause
estimation errors of the received reward.

The main contributions of this paper with comparison to
previous works are: (i) we show the validity of theoretic
findings on efficiency of the proposed objective functions
through real simulations using ns3; (ii) in achieving that, we
take into consideration practical implementation limitations
and propose convenient methods to avoid them; and then
(iii) we extend the work to more generic reward models and
propose suitable objective functions for them.

The paper is organized as follows. In Section II, we present
the system model. In section III, the various traffic models
and the various objective functions are described. Then, we
present in Section IV the proposed distributed protocol and
the implementation challenge due to the various practical
aspects taken into consideration. In Section V, we evaluate the
performance of the proposed protocol. Finally, we conclude
the main results in Section VI.

II. SYSTEM MODEL

We assume a cognitive radio network with n agents using m
Data Channels (DCs). The total available spectrum is equally
divided. At any time episode, each agent can use only one
DC. The network is static, so the agents enter and leave the
system at the same time. Also, we consider that the network is
fully connected, so all agents interfere with one another. Each
DC offers an amount of service Vj , which is the throughput
in Mbps in our case.

We consider that the agents are trying distributively to find
the best DC using a Q-learning algorithm. The performance
of the learning algorithm depends specifically on the objective
function’s choice to allow each agent to exploit the best DC
by maximizing the long-term received reward. We assume that
the agents selecting the same DC will share it in accordance
to a carrier sense multiple access (CSMA) [20].

III. LEARNING TECHNIQUES IN DSA SYSTEMS

Each agent implements a Q-learning algorithm to guide it
in the DC selection. The learning algorithm is characterized
by two key parameter functions: the reward function and the
objective function. The reward function represents the level

of satisfaction of the user depending on the adopted traffic
model. It models the received service resulting from the access
to a specific DC and the environment conditions. On the
other hand, the objective function represents the utility that
each agent uses to update its Q-learning table which will be
exploited later to take a decision on which DC to select. In
the following, we detail the description of the various reward
and objective functions that we will be using throughout our
work.

A. Reward Function
1) Elastic Reward: The elastic traffic model, as defined

in [11], is used usually to model traffic hungry applications
where the utility increases as the received service increases
such as data transfer. In this traffic model, the received reward
for each user is proportional to the amount of service offered
by the selected band given that the service is above a minimum
threshold service but when it is below that threshold, the
reward drops exponentially as the level of service becomes
insufficient. Using the CSMA scheme for the interfering users
within the same bands, the total service of the band is split
equally among them. Thus, the received service by each user
is equal to the total band service divided by the number of
users who selected that band. Thus, the elastic reward can
be interpreted as if there is a maximum capacity of the band
in terms of the number of users who could be served by the
band and when the number of users selecting the band exceeds
this threshold the received reward for all users decreases
exponentially (see Fig. 1). Explicitly, the reward as a function
of a user i at instant t, rela can be written as a function of
the number of users selecting the band j, nj(t), and the band
total service, Vj , as

relai(t) =


Vj

nj(t)
if nj ≤ Vj/Rth

Rth exp (−β nj(t)Rth−Vj

Vj
) otherwise,

(1)
where β is an exponential decaying factor chosen to control
the decay speed of the reward and Rth is the minimum service
threshold.
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Fig. 1: Reward function for the elastic traffic model as a
function of the number of interferers in the channel.
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2) Inelastic Reward: The inelastic traffic model [12] is
suitable for network applications that require a fixed amount of
service such as voice calls. The received reward for each user
is constant given that the received service exceeds a certain
threshold but it drops exponentially if that threshold of service
is not satisfied due to a high number of interferers exceeding
the capacity of the band (see Fig. 2). Explicitly, the reward of
a user i can be written in this case as follows

rinelai
(t) =

{
Rth if nj ≤ Vj/Rth

Rth exp (−β nj(t)Rth−Vj

Vj
) otherwise,

(2)
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Fig. 2: Reward function for the inelastic traffic model as a
function of the number of interferers in the channel.

3) Hybrid Reward: Recent applications, such as adaptive
video streaming, can be modeled by a more generic reward
where users’ satisfaction increases proportionally with the
received service (improved quality) starting from a minimum
acceptable threshold until reaching the best rate where satis-
faction is at its maximum.

An example of this reward function is presented in Fig. 3.
We consider three threshold values for the level of service R1,
R2, and R3 such that R1 ≥ R2 ≥ R3.

• When the level of service is less than R3, the re-
ceived reward drops exponentially to express a total non-
satisfaction of the user.

• When the level of service is between R3 and R2, the user
gets a fixed reward equals to R2.

• When the level of service is between R2 and R1, the
reward function is proportional to the level of service.

• When the level of service is higher than R1, the user gets
a fixed reward R1.

Analytically, the reward function can be written as a func-
tion of the thresholds of the level of service as

rhybi(t) =


R1 if nj ≤ Vj/R1

Vj

nj(t)
if Vj/R1 < nj ≤ Vj/R2

R2 if Vj/R2 < nj ≤ Vj/R3

R2 exp (−β nj(t)R3−Vj

Vj
) otherwise,

(3)

Intuitively, this reward could be used to describe systems
with two characteristic levels of service R2 and R1, and a
minimum acceptable level of service R3. The behavior of this
reward is elastic between R2 and R1 while it is inelastic above
R1 and between R3 and R2. This reward can be seen as a
generalization of the elastic and inelastic models in a generic
reward. The pure elastic behavior can be re-obtained by setting
R2 = R3 and R1 to V while the inelastic one is obtained by
setting R1 = R2.
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Fig. 3: Reward function for the hybrid traffic model as a
function of the number of interferers in the channel.

B. Objective Functions

Since the distributed resource allocation for DSA will
be based on a learning algorithm, a well-chosen objective
function needs to be designed. Based on previous works [11,
12, 14–16], we present below the different objectives that we
will be using in our implementation.

1) Intrinsic Objective Function: The agents using the in-
trinsic function ri(t) aim to maximize their own received
reward. It had been shown in [11] that this objective func-
tion leads to an oscillating behavior and slow increase of
the obtained performance due to non-coordination between
users as each of them is trying to maximize its own reward
without caring about the others’ actions. This leads to mutual
interference that creates these oscillations and prevent fast
learning to improve performance of all users.

2) Global Objective Function: In the global objective func-
tion G(t) =

∑n
i=1 ri(t), the agents aim to maximize the total

system performance with a goal to take care of other users’
obtained reward. It had been shown in [11] that while the
oscillating behavior is removed by considering global users’
reward, the learning time using this objective remains very
slow due to conflicts of interests between users.

3) Difference Objective Function: The difference objection
function Di for an agent i is defined to remove the effect of
the other agents with the agent i from the global objective
function. Hence, this function represents the effect of only the
user itself on the global reward by taking out the effect of the
other users. By doing so, the resulting objective function will
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have higher learnability and will achieve near optimal system’s
performance.

Di(t) = G(t)−G−i(t), (4)

where G−i(t) represents the global objective function when
the agent i is assumed absent. With the assumption of
equal share of the received service between the interferers,
[11] shows that Di can be further simplified and written as
follows

Di(t) = nj(t)ri
(
nj(t)

)
−
(
nj(t)− 1

)
ri
(
nj(t)− 1

)
(5)

Hence, the difference objective function can be implemented
in a decentralized manner since each agent needs to know only
the number of users with which the band is shared to compute
the value of Di at time episode t.

4) Team Objective Function: The team objective function
Ti(t) is defined as a contribution reward of the agents selecting
the same band to force them to cooperate to enhance each
other’s reward. Thus, when they reach an acceptable service by
selecting their DCs, they celebrate as a team and the affected
reward is the sum of the team rewards, but when they do not
receive enough service, each of them fails alone and receives
its own reward only. This objective function will allow the
SUs to find quickly the best DC with cooperation and achieves
near optimal system’s performance. The expression of the team
contribution function is defined as

Ti(t) =


nj(t)∑
k=1

Dk(t) if nj ≤ Vj/Rth

Di(t) otherwise.

(6)

In the assumption of an equal share of the received service
between the interferers, Ti can be simplified [12] as follows

Ti(t) =

{
nj(t)Di(t) if nj ≤ Vj/Rth

Di(t) otherwise,
(7)

which shows that in this case also the objective function can
be implemented in a decentralized manner.

C. Learning Efficiency Criteria

On the objective of successful communication, the proposed
protocol should satisfy the following four criteria:

• Distributivity: A centralized protocol requires a central
unit to collect information from all agents and then com-
pute optimal DCs allocation which results in a long delay
and important communication overhead. Distributed pro-
tocols are preferred where each agent will compute its
own objective based on the received service and use it
for the DC choice for the next episode.

• Optimality: Achieving the highest performance in terms
of Quality of Service is the target of any communication
protocol. For our protocol, optimality is quantified as a
function of the average received service of the users in
the system.

• Scalability: Scalability is an important condition in re-
cent wireless systems due to the continuous and dramatic

increase of wireless systems’ size. Thus, designed proto-
cols should perform well in small size systems as well
as in large scale systems.

• Learnability: Since the proposed protocol is based on
learning, the most important criteria is the learnability
which measures the rapidity of the system to converge to
the optimal performance.

IV. PROTOCOL DESIGN AND IMPLEMENTATION

We design a protocol that manages resource allocation for
distributed DSA systems. The protocol is based on the learning
approach described in Section II. We target a protocol that
supports the different traffic models and can handle different
objective functions to compare their behaviors using ns3
simulations.

A. Protocol Description

The proposed protocol divides time into episodes. Each time
episode consists of three window durations: select window
(SelWin), data communication window (DCWin), and update
window (UpWin). Events occurring during each of these
phases are briefly described as follows:

• Select Phase:
Each SU stores a table Q (initialized to zero) containing
m elements which correspond to the available DCs. The
SUs use the epsilon-greedy strategy to pick their action at
each time step. For instance, it selects a random DC with
probability ε and chooses the best DC which corresponds
to the index of the highest value in the table Q with
probability 1− ε. The SU uses the selected DC until the
end of the episode.

• Data Communication Phase:
All SUs turned to the same DC use CSMA as the access
method to share the DC for data communication. Each
SU has a random access time on the shared data channel
DC. It verifies the absence of other traffic (from other
users) before transmitting its packets using a feedback
from the receiver. If a carrier is sensed, the SU waits for
the transmission in progress to finish before initiating its
own transmission.

• Update Phase:
At the end of the DCwin, each SU i updates its Q-table
using the chosen objective function gi(t) as

Q(j) = (1− α)Q(j) + αgi(t), (8)

where j is the selected DC for user i in the time episode t
and α is a weighting factor chosen to control importance
of the effect of past information and present information
in the Q-value. The challenge consists of evaluating the
objective function which, as shown above, depends only
on the number of interfering users. Using the hypothesis
of "equal share", the number of interfering users can be
estimated by dividing the total amount of service offered
by the band over the amount of service received by the
user (the measured received throughput) denoted by ˆri(t).
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The estimated number of interfering users is written as

ˆnj(t) =
Vj
ˆri(t)

. (9)

B. Evaluation of the Objective Function Challenge

In this implementation, the most challenging task is to
evaluate the objective function. If we update the Q-learning
algorithm with the intrinsic function ri, each SU needs to mea-
sure its received throughput, and based on that it will evaluate
the achieved reward. However, if we use the difference or team
objective functions (Di or Ti), each SU needs to estimate the
number of interferers in the selected DC.

In theory, we assume an equal share among users of the
total throughput offered by the DC. So, each SU computes
the number of interferers on the selected DC as the total
throughput offered by the band divided by its own received
throughput. However, in practice a CSMA scheme results in
a random access to the DC. So, SUs sharing the same DC
may not receive equal instantaneous throughput, but only in
average they will receive equal service. Hence, the difference
objective function Di can not be estimated correctly. Even
if users exchange information about their received reward, the
difference objective function Di can not be estimated correctly
due to the second term of the expression which is a virtual
expression that computes the reward in the case of the absence
of the actual user.

C. Throughput Estimation

In this section, we estimate the user’s received throughput
as a function of the number of interferers in the selected DC.
We set a CSMA network where n users exchange data with a
server via one DC. We assume a user datagram protocol (UDP)
echo server protocol where clients receive from the server what
they send to it. We simulate this data communication for many
time episodes, we vary the number of users n and measure
the received throughput as a function of n. We just fix the
total throughout offered by the DC (Uplink and Downlink) to
V = 20 Mbps. Then, at the end of each episode, each user
will estimate its received throughput by accessing the DC.

In Fig. 4, we plot first the instantaneous received throughput
for a specific user for different simulations as a function
of the number of interferers. We can see that each user
receives different throughput on each time episode due to the
random access to the DC. Thus, we verify that the received
service is not exactly V/n. Then, we plot the average received
throughput over time for each user accessing the DC. We
deduce that users sharing the same DC will not receive the
same throughput even in average. So, the assumption of the
equal share of the band is not respected when using the CSMA
scheme in practice. We also plot the average throughput over
users as a function of the number of interferers n. It shows
that users can only exploit about 80% of the total capacity
of the DC due to the back-off algorithm and the overhead
(i.e., control packets: Address Resolution Protocol (ARP) and
Internet Control Message Protocol (ICMP) packets).
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Fig. 4: CSMA throughput measurement.

V. PERFORMANCE EVALUATION

We evaluate the proposed protocol for different reward mod-
els. We consider the global system received reward G(t) =∑n

i=1 ri(t) at each time episode t as the performance metric
to evaluate the performance of the protocol. We measure the
received throughput for each user at each time episode, then
we compute the reward based on the considered traffic model.

A. Simulation Parameters

We consider an UDP echo client server application where
n = 100 clients are sending packets to the server via
m = 5 shared DCs. The server returns the received packets to
the correspondent senders as an acknowledgment of reception.
Each client generates random session, each of size Z bytes se-
lected from a uniform distribution with mean Z and coefficient
of variation δZ . Let L = 1250 Bytes be the length of each
packet. Each DC has a capacity of V = 20 Mbps. For the
traffic reward models, we consider the threshold of acceptable
throughput Rth = 1.5 Mbps and the exponential decay factor
β = 2. Finally, for the learning algorithm, we use a learning
rate α = 0.5 and a randomness probability ε = 0.05.

The parameters used in the simulations are shown in Table I.

TABLE I: Simulation Parameters.

Symbol Description Value
n number of SUs 100
m number of DCs 5
Vj capacity of each DC 20 Mbps
Rth service threshold 1.5 Mbps
β reward decay factor 2
α learning rate 0.5
ε randomness probability 0.05

B. Simulation Results

We evaluate the proposed protocol under the different traffic
models described in Section III. We compare the protocol’s
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performance obtained using different objective functions using
both ns3 simulations and theoretical results.

First, we run simulations considering the elastic traffic
model. In Fig. 5, we plot the global achieved reward when
using the Di and ri objective functions. We confirm that the
difference objective function outperforms the intrinsic function
for both simulations and theoretic results. The simulation
achieved rewards are approximately equal to the theoretic
results with the ri objective function. However, when using the
Di objective in the Q-learning, the achieved reward becomes
higher using simulations. This can be explained by the non-
equal share condition caused by the random access to the
channel via CSMA, some SUs will receive higher throughput
than their interferers in the same DC, so they will receive
higher rewards which will create distinction between users and
push users in the same band to take different decisions in next
time slots as they did not receive the same reward even if they
accessed the same band which improves the learnability and
allows to achieve higher performance.
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Fig. 5: Global achieved reward, assuming the elastic traffic
model, as a function of the time episodes t under the two
objective functions ri and Di: analytic and simulation results.

In Fig. 6, we consider also the elastic traffic model but
we assume that DCs offer different service values to test the
protocol in a more practical scenario of non homogeneous
channels. We define ψ =

Vavg−Vmin

Vavg
as the variability of the

DCs services. We set the capacity of the DCs respectively to
20 Mbps, 25 Mbps, 20 Mbps, 25 Mbps and 16 Mbps, so the
variability of the DCs services is equal to 32.5%. We show
through this figure that the conclusions about the objective
function choice are still maintained. The difference objective
function Di still achieves the best performance.

We stated that the evaluation of the objective function Di

in a distributed manner is challenging due to the estimation
error of the other users’ rewards. Thus, we compare the
system’s obtained performance using our fully distributed
protocol to a semi-distributed protocol. In our fully distributed
protocol, each user should estimate the number of interferers
using its received service. In the semi-distributed protocol, we
assume that there is a control channel where SUs exchange
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Fig. 6: Global achieved reward, assuming elastic traffic, as
function of time episodes t under the Di function: analytic
and simulation results with variable channels service and ψ =
32.5%.

information about their selected bands. Thus, each SU can
compute the Di function with the exact number of interferers
nj . The simulation results given in Fig. 7 show that the
obtained global achieved rewards are very close in the two
scenarios which confirms that the estimation error’s impact is
minimal.
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Fig. 7: Global achieved reward in an elastic traffic model as
a function of time episodes t under the Di objective function:
analytic, simulation with estimated nj , and simulation with
exact nj .

In Fig. 8, we study the impact of the service threshold
Rth on the obtained performance. We plot the global achieved
reward using the Di and ri objective functions with different
values of Rth. Theoretically, decreasing Rth results in an
increase of the bands’ capacity to accommodate more users
within the same band and thus obtaining higher rewards
as shown with the analytic curves. But, with simulations,
although rewards are still increasing when the satisfaction level
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Rth decreases, the performance became closer for different
values of Rth. This can be explained by the effect of the
random share of the band instead of the equal share which
allows some users to obtain a level of service higher than Rth

although theoretically it should be less for all users.
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Fig. 8: Global achieved reward with elastic traffic model using
the Di and ri objective functions for different values of Rth:
analytic and simulation results.

In Fig. 9, we consider the inelastic traffic model. We plot the
global achieved reward under the objective functions ri, Di,
and Ti. The simulation results confirm the analytical results.
Specifically, the team function Ti outperforms the difference
objective function Di with the inelastic traffic model. Similar
to the results obtained with the elastic traffic model, we also
observe that the simulation results obtained under the Ti
function outperform the analytical results in terms of reward
due to the non-equal share of the capacity offered by the
CSMA channel which improves learnability in this case too.
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Fig. 9: Global achieved reward, assuming the inelastic traffic
model, as a function of time episodes t under the objective
functions ri, Di, and Ti: analytic and simulation results.

In Fig. 10, we consider the hybrid reward model. We show

through this Figure that the protocol still works well when
assuming a generic reward function. We obtain high global
received reward with the two objective functions Di and Ti for
both simulation and analytical results but the intrinsic objective
function ri still leads to poor performance. To improve the
system performance, we propose to update the Q-learning
algorithm with a mixed objective function between Di and Ti.
For each SU, if the received throughput is between R1 and R2

or less than R3, the Q-table is updated with Di because the
reward belongs to the elastic domain, else the Ti is used for
the update since the reward belongs to the inelastic domain.
The new defined mixed objective function Mi is expressed as
follows

Mi(t) =

{
Ti(t) if nj(t) ≤ Vj/R1 or Vj/R2 < nj(t) ≤ Vj/R3

Di(t) otherwise,
(10)

When assuming the hybrid reward model, the mixed ob-
jective function inherits the advantages of the Di objective
function when the measured throughput is in the elastic part
while it inherits the advantages of the Ti objective function
when the measured throughput is in the inelastic part. We
confirm in Fig. 10 that this proposed mixed objective function
outperforms both the team contribution function Ti and the
difference objective function Di as it inherits the advantages
of both of them by design.
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Fig. 10: Global achieved reward, assuming the hybrid reward
model, as a function of time episodes t: analytic and simulation
results.

We, now, consider a heterogeneous traffic model that we
believe it is more practical in real life. In such a scenario, some
SUs use the elastic traffic model and others use the inelastic
traffic model. We will study the impact of traffic heterogeneity
on the protocol’s achievable performance.

We believe that it is impossible to evaluate the difference
objective function Di under the heterogeneous traffic model in
a distributed manner since each SU needs to know the exact
number of interferers using the elastic traffic model called
nej(t) and those using the inelastic traffic model called nij(t).
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Thus, for this scenario, we assume that there is a control
channel where this information is shared among users.

Thus, for the SUs using the elastic traffic model, the
difference objective function can be expressed as

Delai
(t) = nej(t) relai

(
nj(t)

)
+ nij(t) rinelai

(
nj(t)

)
−
(
nej(t)− 1

)
relai

(
nj(t)− 1

)
− nij(t) rinelai

(
nj(t)− 1

)
,

(11)

while for the SUs using the inelastic traffic model, the
difference objective function can be expressed as

Dinelai
(t) = nej(t) relai

(
nj(t)

)
+ nij(t) rinelai

(
nj(t)

)
−nej(t) relai

(
nj(t)− 1

)
−
(
nij(t)− 1

)
rinelai

(
nj(t)− 1

)
(12)

where relai
(.) and rinelai

(.) are the elastic and inelastic traffic
rewards defined in (1) and (2), respectively.

Fig. 11 shows the global achieved reward under the dif-
ference objective function Di assuming three heterogeneous
traffic models. The analytical and simulation results show
that when the number of SUs under the elastic traffic model
increases, the total system performance increases. That is
explained by the reward capping in the inelastic traffic model
even when the received service continue increasing.
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Fig. 11: Global achieved reward, assuming heterogeneous
traffic model, as a function of time episodes t under the Di

objective function: analytic and simulation results.

In Fig. 12, we assume that 20% of the SUs are using an
elastic reward and 80% of the SUs are using inelastic reward.
We plot the analytical and simulation results obtained using
different objective functions. First, we observe that the team
contribution function Ti outperforms the difference objective
function Di because the percentage of SUs under the inelastic
traffic model is higher than the percentage of SUs under the
elastic traffic model. Then, we plot in red the global achieved
reward assuming that the SUs under the elastic reward update
their Q-table by the Di function and those under the inelastic
reward update their Q-table with the Ti function. Simulation
and analytical results show that this objective outperforms both

objective functions Di and Ti since it is more adapted to this
heterogeneous traffic.
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Fig. 12: Global achieved reward, assuming heterogeneous
traffic model, as a function of time episodes t: 20% using
elastic reward and 80% using inelastic reward.

VI. CONCLUSION

In this paper, we design a resource allocation protocol for
distributed DSA systems. We evaluate the performance of the
proposed protocol under various traffic models where each
traffic model was represented by a reward function of the
obtained service. The protocol design is evaluated using ns3
taking into consideration practical aspects. It was concluded
that for each traffic model, we can design an efficient objective
function that optimizes the performance under that reward
model although the users’ random access in shared bands
reduces the targeted performance theoretically.
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