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Abstract—We propose Cloud of Things for Sensing-
as-a-Service: a global architecture that scales up cloud
computing by exploiting the global sensing resources of
the Internet of Things (IoT) to enable remote sensing.
Cloud of Things enables in-network distributed processing
of sensors data offered by the globally available IoT
devices and provides a global platform for meaningful
and responsive data analysis and decision making. We
propose a distributed sensing resource discovery and
virtualization algorithms that efficiently deploy virtual
sensor networks on top of a subset of the selected IoT
devices. We show, through analysis and simulations, the
potential of the proposed solutions to realize virtual sensor
networks with minimal physical resources, reduced com-
munication overhead, and low complexity. We also design
an uncoordinated, distributed algorithm that relies on the
selected sensors to estimate a set of parameters without
requiring synchronization among the sensors. Our simula-
tions show that the proposed estimation algorithm, when
compared to conventional ADMM (Alternating Direction
Method of Multipliers), reduces communication overhead
significantly without compromising the estimation error. In
addition, the convergence time, though increases slightly,
is still linear as in the case of conventional ADMM.

I. INTRODUCTION

Remote sensing applications will evolve through on-
demand sensing services provided by the global network
of sensor equipped devices in our homes, factories,
cities, and bodies known as the Internet of Things (IoT).
Today in smatphones ’only’, there are seven sensors on
average per device including: magnetometer, barometer,
light, heart, humidity, and temperature sensors that one
can use as participatory sensors to carry out applications
like short-term weather forecasting [1], [2]. The den-
sity of smartphones’ sensors in London today exceeds
14,000 sensor per square kilometer1. By 2020, the
global number of sensor-equipped and location-aware
devices (e.g. wearable, smart home, and fleet manage-
ment devices) will reach tens of Billions, potentially
creating dense, dynamic, location-aware, and onerous to
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1The population density in London exceeds 4,000 inhabitants per
square kilometer and the UK smartphone penetration reaches 55%.

manage networks of devices that can realize the vision
of providing a versatile remote sensing services, known
as ’Sensing as a Service’ [3], [4], [5].

We conjecture that employing IoT devices’ sensing
resources in a cloud computing like platform to support
remote sensing applications may be an effective ap-
proach to realize the Sensing as a Service vision [3]. The
idea is to dynamically augment and scale up existing
cloud resources (compute, storage, and network) by
exploiting sensing capabilities of devices through cloud
agents near the network edge to form a global system
named the Cloud of Things (see Fig. 1). The Cloud
of Things is a geographically distributed infrastructure
with cloud agent elements that continuously discover
and pool sensing resources of IoT devices to be used
by cloud users on-demand. This infrastructure provides
elastic sensing resources that scale up and down accord-
ing to remote sensing applications’ demands, providing
an optimized and controllable sensing resource utiliza-
tion and pricing based on measurable usage.

Cloud of Things shifts the current, conventional re-
mote sensing use of cloud platforms from a ’collect
sensor data now and analyze it later’ scenario to a usage
scenario that directly provides meaningful information
from in-network processing of sensing data by IoT de-
vices. Without such a conjectured infrastructure, remote
sensing users can still gain access to sensing resources
through conventional cloud back-end systems (see [6],
[4]), with less opportunities to scale out sensing ap-
plications over the globally available sensing resources
and with intolerable performance to applications that
require responsive exploitation and fusion of sensing
data and agile in-network decisions (e.g. localization
[7] and estimation [8]).

A. Cloud of Things Infrastructure
Cloud platforms near the network edge already ex-

ist in different forms such as smartphones, personal
computers, gateways, and servers to offer computation
offloading to nearby devices in real-time (e.g. cloudlets
[9], [10] and edge computing platforms [11], [12]).
We envision a new role of edge platforms as cloud
agents that incorporate IoT devices as sensing resources
(Fig. 1) to scale up the conventional cloud with global
and location specific sensing resources. We propose



Fig. 1: Sensor network virtualization in Sensing as a Service by different cloud agents near the edge. First tier
clouds are conventional cloud computing platforms, and cloud agents are edge computing platform with evolved
rule for Sensing as a Service. Arrows and numbers illustrate messages flow and sequence of the proposed usage
scenario.

algorithmic solutions that provide: (1) fast discovery
of devices’ dynamic sensing resources in specific ge-
ographical areas, (2) optimized device virtualization to
serve as virtual sensor networks by exploiting the dis-
covered sensing resources, and (3) efficient in-network
processing of sensing data from unreliable but dense
sensors in IoT devices.

Cloud agents implement remote sensing applications
as virtual sensor networks to be deployed on virtualiz-
able IoT devices in a geographical area. A virtual sensor
network performs distributed in-network processing of
sensing data such as: aggregation, feature extraction,
belief propagation, and consensus estimation to serve
applications such as: distributed computer vision, data
analytics, or on-demand context awareness. These vir-
tual sensor networks may employ devices’ sensing
resources that are discovered by the various multiple
cloud agents. Conventional cloud platforms provide a
unified interface to cloud users to seamlessly use such
global sensing resources from anywhere and at anytime
while hiding complexities and supporting interaction
between cloud agents. In Cloud of Things, IoT devices
become surrogates of federated sensor networks (i.e ad-
ministrated by a single organization) that can potentially
reduce the total cost of ownership for remote sensing
applications.

However, the IoT devices usually incorporate cheap
and unreliable sensors to serve specific task that is not
intended for remote sensing applications. For example,
augmented reality applications in smartphones make
use of the measurements from magnetic field sensors.

(a) Magnetic field sensor reading
close to a window (low energy
environment).

(b) Same sensor reading close
to a power source (high energy
environment).

Fig. 2: Example of energy profiling from cheap mag-
netic field sensor in smartphones.

The same magnetic field sensors can be used to profile
energy levels in different environment (see Fig. 2 for
an example). The main problem with remote sensing
applications based on IoT devices sensors is that in-
dividual measurements from the sensors of a single
IoT device (e.g. magnetic field) are insufficient for a
reliable sensing task. In Fig. 2, it is hard to distinguish
the real context of a magnetic sensor reading changes;
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whether it is a result of user proximity to the device,
changes in the device’s orientation, or presence in a
high energy environment. Similar unreliability problems
appear in traffic congestion estimation in navigation
applications (e.g. Google maps), weather prediction
from smartphones barometers, or indoor localization.

A virtual sensor network of a group of independent
IoT devices can solve this problem through distributed
consensus estimation. Instead of analyzing measure-
ments from an individual sensor, the virtual network use
independent sensor measurements from several devices
and executes an efficient in-network distributed consen-
sus estimation algorithm to be able to efficiently achieve
its goal (e.g. estimating energy level in an environment
surrounding a user). In this paper, we focus our analysis
and evaluation on distributed consensus estimation as
the sensing task under study.

B. Contribution and Organization
In this paper, we propose a system to perform in-

network analytics, such as distributed parameter esti-
mation, based on commodity IoT devices that act as
surrogates of wireless sensor networks (i.e. virtual sen-
sor networks). We design a virtualization algorithm that
suits the use case of describing analytics as on-demand
virtual sensor networks and the challenges of the con-
jectured architecture in Fig. 1. We also propose a dis-
tributed consensus parameter estimation algorithm to be
executed by the optimized virtual sensor network. The
distributed consensus algorithm provides a reliable, high
quality parameter estimates from the low-quality and
unreliable sensors in commodity IoT devices.

We discuss the technical challenges and our envi-
sioned use case of the proposed architecture in Sec-
tion II. In Section III, we first propose a sensing resource
discovery algorithm that uses a gossip policy for prop-
agating a sensing task requirements to devices (or their
virtual instance at the edge cloud) and selects feasible
devices to execute the task while responding to the
dynamic changes of devices as fast as possible. Then,
we propose RADV, an efficient virtualization algorithm,
that deploys a virtual sensor network corresponding to
the sensing task on top of a subset of the selected
devices with minimal physical resources. In Section IV,
we propose RADE; an efficient estimation algorithm
that relies on the virtual sensor network, formed by our
proposed virtualization algorithm, to estimate a set of
unknown parameters in a distributed way and without
requiring synchronization among the IoT devices. We
discuss several related work in Section VI. Finally,
we numerically evaluate our proposed algorithms in
Section V and conclude this paper in Section VII.

II. ARCHITECTURE USABILITY AND CHALLENGES

The proposed Cloud of Things architecture allows
cloud users to run remote sensing tasks, with certain
specifications, virtually on any sensor-equipped IoT
devices (see Fig. 1). For example, a cloud user can

profile pollution changes in cities from real-time temper-
ature and CO2 concentration measurements collected by
sensors in vehicles with defined precision and accuracy.
The architecture consists of three main elements: IoT
devices, first tier clouds, and cloud agents. IoT devices
are sensor-equipped devices that can serve both specific
and general purpose remote sensing applications. First
tier clouds are conventional cloud platforms that pro-
vide unified interfaces to users to access the system and
hide complexities underlying the realization of sensing
services. Throughout, we refer to a first tier cloud
as simply ’cloud’. Finally, cloud agents are trusted
and resource-rich elements near the network edge that
are well-connected to the Internet and to conventional
cloud platforms. Cloud agents can be as powerful as
supercomputers, or as flexible as smartphones according
to the types of devices they serve and the computing
resources these devices demand. Throughout, we refer
to a cloud agent simply as ’agent’.

This architecture offers new sensing features and
service level guarantees with several benefits. Deploy-
ing agents (cloud agents) close to devices improves
responsiveness to sensing task requests and enables
access to a globally available sensing resources. From
the devices’ viewpoint, cloud resources can be split
into local resources (agents’ resources) and global re-
sources (clouds’ resources) that can improve resiliency
by migrating sensing tasks as the states of the de-
vices - which carry out the sensing task - change. A
cloud (first tier cloud) also acts as liaison to support
coordination between distributed agents, while these
agents can rapidly capture dynamics of the devices
(e.g. utilization, connectivity, and availability). This
approach simplifies analytics and big data with possible
direct device access for agile in-network data processing
and decision making. The proposed architecture finally
allows the design of network-aware and performance-
optimized cloud procedures.

A. Use case and System Model

Fig. 1 summarizes message sequence and flow be-
tween the different architectural elements. These are
detailed as next.

1) First tier clouds: A cloud (first tier cloud) handles
sensing tasks initiated by a user with a unified interface
(step 1 in Fig. 1). A sensing task defines physical
parameters (e.g pollution changes) that the user wishes
to estimate in a defined geographical area during a pre-
defined time with certain sensing capabilities of the IoT
devices carrying out the task. The sensing task objective
can be: information retrieval of raw sensed data, or
execution of distributed algorithms on a virtual sensor
network deployed on multiple interconnected devices.
We represent a sensing task by the triple, 〈g, c, δ〉, where
g denote the number of virtual sensors requested to
perform the sensing task and the two parameters c and
δ define the center and the radius of a geographical area
of interest to the user’s remote sensing application.
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2) Sensing task requests: The cloud translates a sens-
ing task to a corresponding sensing task request that it
sends to its agents. A sensing task request defines the
virtual sensors set, V , to be deployed on g connected
devices, which are all located within distance δ from
the area center c. For each virtual sensor j ∈ V , the
cloud defines a minimum sensing capability, R(j). The
minimum sensing capability represents the minimum
storage capacity, the minimum CPU computing power,
and/or the minimum amount of time that devices (to
carry out the sensing task) must fulfill. The cloud may
also choose a suitable virtual topology that interconnects
the virtual sensors so that they can execute distributed
algorithms for in-network processing of devices’ sensed
measurements.

For example, for aggregation and belief propagation
algorithms, the cloud organizes the virtual sensor net-
work as a spanning tree. A star topology can also be
adopted for distributed algorithms that are implemented
using the map-reduce or graph-processing paradigms.
Although consensus algorithms, which are our main
focus, can run with any arbitrary topology, we show
that a complete topology results in faster convergence.
For our evaluation, we focus on three common virtual
topologies: complete, cyclic, and star. For a given topol-
ogy, let E denote the set of virtual links connecting
the virtual sensors and Υ = (V,E) be the graph data
structure that represents the virtual sensor network of
the virtual sensors (connected according to the given
virtual topology). After translating a sensing task to its
corresponding sensing task request, the cloud sends this
request (i.e. the graph data structure Υ) to its agents
(step 2 in Fig. 1).

3) The IoT devices capabilities: Agents manage a
large number of interconnected IoT devices. A device
i, at time t, maintains its geographical location denoted
by loc(i) and its current sensing capability denoted by
C(i). C(i) defines the currently allowed sensing time,
available processing capacity, and/or available memory
capacity that the i-th device can allocate (at time t)
to fulfill the minimum sensing capability demanded
by a virtual sensor j (i.e. R(j)) to be deployed on
i. The sensing capability of a device can correspond
to local device’s resources (i.e. CPU, memory, storage,
and sensors) or to resources at the edge cloud (agent)
that the device may opportunistically use through com-
putation offloading mechanisms. We also assume that
two devices can directly communicate with each other
if they are within a transmission radius r. We model the
network of all n devices, connected to a single agent,
as the Euclidean geometric random graph, G = (S,L),
where S denote the set of n devices, and L denote the
set of all links connecting the devices. We assume that
each sensor i ∈ S is capable of estimating a vector of
unknown parameters, θ ∈ RN , through noisy sensors
measurements, xi ∈ RM . That is,

xi = Hiθ + ui, i = 1, . . . , n

where Hi ∈ RM×N is sensor i’s sensing model (typ-
ically known to i only) relating xi to θ, and ui is an
additive Gaussian noise with zero mean and variance
σ2
i . We assume that ui and uj are independent from

one another for all i, j ∈ S. Because different sensors
may have different sensing models and/or different
measurement methods, it is very likely that different
sensors have different estimates of θ. Also, we do not
assume/require that the sensors are synchronized; that
is, the consensus algorithms we develop in this paper
to estimate θ are asynchronous.

4) Service Level Agreement (SLA) implications on
agents configurations: Agents handle sensing task re-
quests under agreed SLAs with users through the cloud.
An SLA generally consists of: i) a maximum time
within which the sensing task must be completed, ii) a
feasible selection of IoT devices to carry out the sensing
task under certain tolerances of the results accuracy,
and iii) a maximum task rejection rate defined as the
ratio of the number of failures to handle sensing task
requests to the total number of requests. The cloud
translates an SLA to parameters that agents can use in
their algorithmic solutions to discover sensing resources
and virtualize devices efficiently. Defining all possible
parameters that reflect any SLA is beyond the scope of
this work and we consider only four parameters.

The first parameter is the absolute error of the
estimated parameter θ, denoted by εabs. The second
parameter is the relative error, εrel, of the parameter
θ estimated by the different virtual sensors such that
all sensors estimate θ within εrel. The third parameter,
defined earlier, is the minimum sensing capability R(j)
of the j-th virtual sensor. The fourth parameter is the
maximum allowed path length, h̄, between any pair of
virtual sensors. h̄ limits the number of devices/hops
a message, exchanged between virtual sensors, can go
through.

A virtual link between two virtual sensors may map
to devices that do not necessarily deploy a virtual
sensor and the virtual sensor network just use these
devices for message forwarding. We use h̄ to impose
an upper limit on these intermediate devices for two
reasons. First, restricting the number of intermediate
devices shall bound the sensing task performance by an
SLA. Second, the sensor discovery and virtualization
algorithms shall use the least number of hops and the
least possible physical resources when mapping the
virtual network, so as to maximize the Sensing-as-a-
Service benefits (step 3 in Fig. 1). The implication of
h̄ on the virtualization design will be discussed later in
this section.

5) Sensing task execution (consensus): Consensus
estimation resembles the most commonly used sensing
task relying on a collection of measurements from
unreliable sensors. In consensus estimation, the sensing
task is to estimate a set of parameters, θ, based on
the measurements sensed by the IoT devices so that
the estimated parameters are at most εabs away from
their actual value, and so that all the sensors consent
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to the same estimate value of θ with a tolerance of εrel
according to the SLA.

Without loss of generality, consider indexing the
selected g sensors in the virtual sensor network as 1 . . . g

and let x =
[
xT1 , . . . , x

T
g

]T
, H =

[
HT

1 , . . . ,H
T
g

]T
, and

u =
[
uT1 , . . . , u

T
g

]T
. The combined measurements can

then be written as x = Hθ + u. One simple approach
of estimating θ is to have the cloud agent first collect
from each virtual sensor i its measurement vector, xi,
and its sensing model, Hi, and then solve the following
Least Squares (LS) problem

minimize 1
2‖x−Hθ̂‖

2 (1)

where θ̂ is here the optimization variable. The unbi-
ased maximum-likelihood (ML) estimate of θ is simply
θ̂LS =

(
HTH

)−1
HTx.

B. Technical Challenges and Solutions Objectives
The proposed Cloud of Things architecture and use

case envision designing algorithmic solutions with spe-
cific objectives, given the following set of challenges:

1) Sensing resource discovery: In the sensor network
virtualization (step 3 in Fig. 1), an agent searches for de-
vices with sensing capabilities that meet the sensing task
requirements specified by the virtual sensor network
data structure Υ. For a given Υ, the agent discovers
devices’ sensing capabilities and searches for a subset
of devices, S′ ⊂ S, such that a device i ∈ S′, if it is
geographically located within δ distance from the center
c, and the discovered sensing capability C(i) satisfies
the minimum sensing capability R(j) demanded by at
least one virtual sensor j ∈ V . We define the virtual
domain, D(i), of a device i as

D(i) = {j ∈ V : C(i) ≥ R(j), ‖loc(i)− c‖ ≤ δ} (2)

hence
S′ = {i ∈ S : |D(i)| > 0}. (3)

The design objective of a sensing resource discovery
algorithm is to construct the virtual domains, D(i)
for all i ∈ S, as fast as possible and with minimal
communication overhead between the agent and the
devices and between the devices themselves.

The challenges related to sensing resource discovery
arise from the large number of devices and their onerous
to maintain dynamics. The large number of devices
connected to an agent requires a scalable solution to
discover devices’ sensing capabilities and to decide if a
device’s current state (e.g. connectivity to other devices)
allows it to deploy a particular virtual sensor. Moreover,
the dynamics and rapid changes in the whole network,
G, including device availability, mobility, connectivity,
and resource utilization, make it too difficult to maintain
devices’ states in a centralized manner. To address
these challenges, we propose a distributed algorithm that
propagates the graph data structure Υ to devices in G
using a gossip policy as detailed in Section III-A.

2) Virtualization: After performing the sensing re-
source discovery, an agent deploys the virtual sensor
network, Υ, by means of devices virtualization. The
virtualization task consists of finding: i) a set A ⊂ S′

of exactly g connected devices according to the virtual
topology chosen by the cloud, and ii) a set MA ⊂
{(i, j) ∈ A × V : j ∈ D(i)} of (device,virtual sensor)
mapping pairs such that one virtual sensor maps to
exactly one device and a device maps to one and only
one virtual sensor in g. Also, the length h(i, i′) of any
simple path connecting two distinct devices i, i′ ∈ A
that maps a virtual link (j, j′) ∈ E must be less than
or equal to h̄. We refer to a {A,MA} pair that satisfies
the previous conditions as a feasible virtualization of the
requested virtual sensor network Υ. Note that for any
possible set A, there can exist multiple mappings,MA,
and each can form a feasible virtulization. The design
objective of a virtualization algorithm is then to find the
’optimal’ feasible virtualization, {A,MA}∗, that uses
the least possible physical network resources.

We now define and introduce what an ’optimal’
feasible virtualization means. We consider that the
number of virtual sensors and the number of virtual
links of a given Υ = (V,E) determine the cloud
cost of providing the sensing service, which is given
by Cost(Υ) = α|V | + β|E|. The scalar α denote an
incentive paid to each device that maps a virtual sensor,
and the scalar β denote an incentive divided and paid
to each device on a physical path that maps to a virtual
link. An incentive could be monetary or could be in any
other form (e.g., credit, service, etc.). On the other hand,
the total devices’ benefit from mapping the requested
virtual network, Υ, can be expressed as

Benefit =
∑

(i,j)∈MA

α
C(i)−R(j)

C(i)
+
∑

(i,i′)∈P

β
h̄− h(i, i′)

h̄
,

(4)
where h(i, i′) is again the length (in number of hops)
of the path connecting the device pair, (i, i′), mapping
the virtual link between j and j′, and P = {(i, i′) ∈
A×A : (i, j), (i′, j′) ∈MA , (j, j

′) ∈ E}.
The total devices’ benefit in (4) implies that the lesser

the used physical resources, the greater the benefit to the
devices. The first term of (4) captures the benefit loss
of the i-th device from allocating resources to map a
virtual sensor j. As the minimum demanded sensing
capability R(j) becomes negligible (w.r.t. the sensing
capability C(i)), i gets higher benefit as it invests
lesser fraction of its resources (e.g. energy, CPU, or
memory) to map j for the same incentive α. Similarly,
the second term captures the benefit loss of devices i and
i′, which map the virtual sensors j and j′ respectively.
Such benefit loss results from mapping the virtual link
between j and j′ with more intermediate devices, as the
same incentive β for the virtual link (j, j′) is divided
on a greater number of devices (i.e. number of hops
h(i, i′)) compared to h̄. Theoretically, h̄ can take a
value up to the diameter of G. However, this shall not
work in practice as the diameter of G is assumed to

5



be much greater than a user desired diameter Υ. The
virtualization algorithm that we propose in Section III-B
consists of finding an ’optimal’ feasible virtualization
that maximizes the total benefit given in (4). We refer
to the optimal solution as {A,MA}∗. Clearly, finding
{A,MA}∗ is hard due to the factorial size of the
solution space in n and due to the challenges, discussed
earlier, associated with the sensing resources discovery
task.

3) Distributed consensus estimation: The virtual sen-
sor network determined during the virtualization phase
executes the distributed sensing algorithms. The simple
solution to the LS problem, proposed in (1), requires
that each virtual sensor exchanges its measurement
vector and its sensing model with the cloud agent,
which can create significant communication overhead.
Therefore, we instead propose a decentralized approach
that relies on the virtual sensor network to provide
an estimation of the parameter vector θ. We rely on
the recent results presented in [13] to develop our
distributed estimation algorithm, which reduces commu-
nication overhead significantly when compared to the
conventional Alternating Direction Method of Multipli-
ers (ADMM) approach [14] in addition to not requiring
synchronization among sensors. The proposed algorithm
is presented in Section IV.

III. PROPOSED SOLUTIONS FOR SENSING
RESOURCE DISCOVERY AND VIRTUALIZATION

A. Sensing Resource Discovery
Although devices are directly accessible by cloud

agents, contacting the devices at fine-grained time slots
to discover their current sensing capabilities creates
significant communication and computation inefficiency
for large n. Such a centralized approach requires ex-
changing O(n) messages, in each time slot, while
constructing the virtual domains, given by (2), requires
O(n) time. Moreover, activating devices periodically to
update their current sensing capabilities to their cloud
agents is power inefficient, especially if the devices are
battery operated.

We propose to perform sensing resource discovery
through a gossip based algorithm that requires a time
complexity of O(r−1 log n) and an average Θ(1) mes-
sages per device. In this algorithm, an agent propagates
information about a received sensing task request, Υ,
using the following ’gossip policy’.

The agent sends Υ to a randomly chosen device
starting at t = 0. Then, any device that receives Υ
continues sending Υ to a random device of its direct
neighbors until one neighbor acknowledges that it has
already double received the same version of Υ in a
previous step; by then the device stops sending Υ. The
agent does not need to send Υ to each device as the
utilized gossip policy allows devices to disseminate Υ
autonomously, and the network of devices is guaranteed
to be connected with high probability if each device is
connected to k neighbors and k ≥ 0.5139 log n [15].

while True do
wait ∆t
s←− random neighbor
if Υ is ∅ then

solicit Υ from s
else

send Υ to s
end if
receive Υ′ from s
if Υ′ = Υ then

stop sending Υ
else

Υ′ is newer than
Υ
Υ←− Υ′

evaluate D(i)
end if

end while
i) active thread at de-
vice i

while True do
receive Υ′ or
solicit request from
s
if Υ is not ∅ then

send Υ to s
end if
if Υ′ is new then

Υ←− Υ′

evaluate D(i)
end if

end while
ii) passive thread at i

Fig. 3: proposed sensing resources discovery gossip
based threads at device i.

Since G is a connected network, this simple gossip
policy guarantees that Υ reaches all the devices in
O(r−1 log n) time (see [16] for time complexity analy-
sis of general gossip protocols in Euclidean geometric
random graphs). Hence a device i can construct D(i)
according to (2) once it receives Υ and the agent can
discover sensing resources of devices that are capable
of satisfying the requirements of Υ as fast as possible
with minimal communication overhead.

The agent and all its connected devices implement the
active and passive threads shown in Fig. 3. At the k-th
time slot, let the device i be active and contact a random
neighbor device i′ (i.e., (i, i′) ∈ L) with probability
Ti,i′ > 0. Ti,i denote the probability that i does not
contact any other device. Let the n×n matrix T = [Ti,i′ ]
be a doubly stochastic transition matrix of non-negative
entries [17]. A natural choice of Ti,i′ is

Ti,i′ =


1

di + 1
, if i = i′ or (i, i′) ∈ L,

0, otherwise,
(5)

where di = |{i′ ∈ S : (i, i′) ∈ L}| is the degree of i.
When i contacts i′, they exchange information as

follows (see Fig. 3 ). i pushes Υ to i′ only if i′ does not
have Υ, or pulls Υ from i′ only if i does not have Υ. If
i contacts i′ and both devices have received Υ before,
i stops contacting any other device. If G is connected,
the proposed protocol guarantees that Υ is delivered to
all IoT devices.

The actual running time of the proposed algorithm
depends on the choice of the transition matrix T and
the communication range of the used device-to-device
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communication technology. The running time is related
to the mixing time of any random walk on G [17],
which suggests that there is an optimal value of Ti,i′
to minimize the mixing time and it is related to the
second eigenvalue of the transition matrix. Moreover,
in case of small r, the proposed algorithm is generally
slow. Practically, this algorithm is suitable for device-to-
device communication technologies that support com-
munication ranges of few hundreds of meters, as in WiFi
direct and LTE D2D and when G is sufficiently dense.

B. Virtualization
We present our proposed Randomized and Asyn-

chronous Distributed Virtualization (RADV) algorithm.
RADV consists of three phases: (I) pruning of virtual
domains D(i) for all i ∈ S, (II) construction of benefit
matrices in a distributed manner, and (III) solving
assignment problems at virtual sensors. RADV results in
multiple solutions each evaluated by a different sensor
(device), and the cloud agent selects the solution with
the maximum benefit.

Phase I—Virtual Domain Pruning: During this
phase, we ensure that all virtualized sensors maintain
the topology E by allowing a senor to receive the
virtual domains of other sensors and delete a virtual
sensor j from its domain if there exists a virtual link
(j, j′) such that j′ is not included in any other received
domains. Let Ds ⊂ {D(i) : i ∈ S} denote the
virtual domains set that sensor s has at time k. Initially
Ds = {D(s)} and h(i, s) = 0 for all i ∈ S2. Using
the same transition matrix, T , defined in Eq. (5), s
contacts only one of its neighbors s′ at time k. Then,
for allD(i) ∈ Ds : i 6= s′, s pushes D(i) to s′ only if
s′ did not receive D(i) before and h(i, s) < h̄. Also,
for allD(i) ∈ Ds′ : i 6= s, s pulls D(i) from s′ only
if s did not receive D(i) before and h(i, s′) < h̄. If no
information is exchanged between s and s′ at time k, s
stops contacting any of its neighbors. However, s may
restart contacting its neighbors again if it updated Ds

after time k + 1.
When s constructs its Ds, it starts by pruning D(s).

The pruning is performed by deleting a virtual sensor
j ∈ D(s) (i.e., D(s) ← D(s) \ {j}) if none of the
virtual sensors that are connected to j, {j′ ∈ V :
(j, j′) ∈ E}, is not included in any received D(i), i.e.
j /∈ D(i) : D(i) ∈ Ds. This pruning rule ensures that
the virtualized sensors maintain the required topology
E and the constructed benefit matrices shall result in a
feasible virtualization.

Phase II—Construction of Benefit Matrices: As
mentioned earlier, finding a feasible virtualization,
{A,MA}∗, that maximizes the total benefit given in
Eq. (4) is a hard problem due to the large size of
the solution space. Therefore, this phase proposes an
efficient way of solving this virtualization problem.
Specifically, we propose a method that solves this

2Knowledge about other sensors existence is not needed, and h is
typically evaluated dynamically.

problem in a distributed manner and without requiring
any synchronization among sensors, as described next.

During this phase, each sensor s locally constructs its
own set, A(s), of g sensors that s chooses as virtualized
sensors to assign to virtual sensors in V . Each sensor
s also maintains g row vectors, B(s)

i ∈ R1×g and i ∈
A(s), that we define as the benefit vector of sensor i
seen by s, where the j-th element, B(s)

i,j , denotes the
benefit of assigning participatory sensor i ∈ A(s) to the
virtual senor j ∈ V as seen by s, and is given by

B
(s)
i,j =

α
C(i)−R(j)

C(i)
+ β

h̄− h(j, s)

h̄
if j ∈ D(i),

0 otherwise.

Our objective is then to construct, for each s ∈ S, the
benefit matrix B(s) = [B

(s)

i∈A(s) ] as fast as possible, and
find a feasible virtualization, {A,MA}, that maximizes
the total benefit, ∑

(i,j)∈MA

B
(s)
i,j ,

among all s ∈ S without knowing the G structure.
Moreover, the path length between a sensor s and any
other sensor i that s includes in its benefit matrix must
not exceed h̄. Finally, a sensor s shall include only the
benefit vectors of the g sensors with the largest possible
benefit.

Each sensor s initially sets A(s) = A(s) ∪ {s} if
D(s) /∈ ∅, sets h(i, s) = 0 for all i ∈ S, and sets

B
(s)
s,j =

α
C(s)−R(j)

C(s)
+ β, j ∈ D(s),

0, otherwise.

Also, s maintains a scalar, bmin
s , defined as the minimum

total benefit it has received from any other sensor and
written as

bmin
s = min

i

∑
j∈V

B
(s)
i,j .

s also maintains the corresponding sensor,

imin
s = argmin

i

∑
j∈V

B
(s)
i,j .

Initially, bmin
s = 0 and remains so until |A(s)| = g.

Using the same transition matrix, T , defined in
Eq. (5), s contacts its neighbor s′ only once at each
time k. Then, for all i ∈ A(s) : i 6= s′, s pushes the
benefit vector B(s)

i to s′ only if h(i, s) < h̄ and∑
j∈V

(
B

(s)
i,j −

β

h̄

)
> bmin

s′ .

Also, for all i ∈ A(s′) : i 6= s, s pulls the benefit vector
B

(s′)
i from s′ only if h(i, s′) < h̄ and∑

j∈V

(
B

(s′)
i,j −

β

h̄

)
> bmin

s .
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If no information is exchanged between s and s′ at
time k, s stops contacting its neighbors at time k + 1.
However, s may restart contacting its neighbors again
if B(s) is updated after time k + 1.

When s receives B(s′)
i , s updates B(s)

i,j as

B
(s)
i,j =

B(s)
i,j −

β

h̄
if j ∈ D(i),

0 otherwise.

If i /∈ A(s), then we have two scenarios. In the
first scenario, s still has not received g benefit vectors,
so bmin

s = 0 and |A(s)| < g, then s updates its set
of candidate sensors as A(s) = A(s) ∪ {i}. In the
other scenario in which |A(s)| = g, s replaces the
sensor corresponding to the minimum total benefit,
imin
s , with i so that A(s) = A(s) \ {imin

s } ∪ {i}. On
the other hand, if i ∈ A(s), then s updates B

(s)
i,j if∑

j∈V
B

(s′)
i,j >

∑
j∈V

B
(s)
i,j . Finally, s updates bmin

s , imin
s , and

h(i, s) as h(i, s) = h(i, s′) + 1.
Finding a feasible virtualization that maximizes the

benefit B(s) = [ B
(s)

i∈A(s) ] instead of the benefit given
in Eq. (4) makes the problem easier because every
sensor has a different value for the benefit Bi,j that
depends only on the length of the physical path between
i and s instead of the path lengths of all possible
combinations of sensor pairs (i, i′) that can virtualize
a virtual link. Intuitively, this relaxation still leads to an
optimal or near optimal virtualization, because if G is
very large and connected, the number of sensors that
are directly connected by a single physical link (clique)
grows logarithmically in n and hence this number is
larger than g almost surely as g � n. In such a case, it is
sufficient to ensure that the length of the paths between
i and s and between i′ and s are the shortest possible
ones to ensure that the length of the path between i
and i′ is also the shortest, as in this case, s, i, and
i′ reside in the same clique with high probability. We
evaluate the effectiveness of this relaxation in Section
V and show that our virtualization algorithm performs
well even when the condition g � n does not hold.

Phase III—Solving Local Assignment Problem: Af-
ter reception of the g benefit vectors, s proceeds to this
phase of the algorithm only if it stops communicating
and |A(s)| = g. Each sensor s ∈ S with |A(s)| = g
solves locally the following assignment problem:

maximize
∑

i∈A(s)

∑
j∈D(i)

B
(s)
i,jmij

subject to
∑

j∈D(i)

mij = 1, i ∈ A(s),∑
{i:j∈D(i)}

mij = 1, j ∈ V,

mij ∈ {0, 1},

(6)

where mij are binary optimization variables indicating
whether the participatory sensor i is assigned to the
virtual sensor j. The problem formulated in (6) is
equivalent to the perfect maximum weight matching

problem in a bipartite graph, and hence, we propose
to use the classical Hungarian method to solve it (the
worst case time complexity is O(g3) [18], [19]).

We can also tolerate an error ε > 0 of the resulting
total benefit and relax the restriction of finding a perfect
matching for large g. This relaxation is reasonable when
there are enough sensors involved in solving these local
optimization problems, as in this case we can pick
the best solution and discard those without a perfect
matching. In such a scenario, we can also use a linear
time (1− ε)-approximation algorithm to solve (6) [20].
In this paper, we use the Hungarian method to solve
our formulated optimization problems. Details of the
algorithm are omitted due to space limitation; readers
are referred to [18], [19], [20] for detailed information.

Each sensor solves locally the optimization problem
given in (6) and sends its obtained solution to the cloud
agent. This is done asynchronously. The cloud agent
then selects the solution that leads to the maximum total
benefit, and keeps all other solutions for later use in the
event that the network dynamics invalidate the selected
solution before the virtual sensing task completes.

Complexity and message overhead. We assume that
the topology of G, devices mobility, and sensing capa-
bility are not changed during the execution of the vir-
tualization phase. The time required to spread Υ across
the network is O(r−1 log n) [16]. It takes O(g) worst
case time to evaluate D(i) locally at sensor i. Also,
the time required to spread information in the pruning
and benefit construction phases is O(r−1n log n). The
pruning of the virtual domain D(i) requires node i to
examine g received virtual domains, each having at
most g entries. The worst case local running time of
pruning is then O(g2). Finally, the local running time
of the Hungarian method is O(g3). Hence, the overall
complexity is O(max{r−1n log n, g3}).

The average number of messages communicated per
sensor during the sensor search phase is Θ(1) and each
message is O(g) in size. During pruning of virtual
domains, since every sensor exchanges a maximum of
n domains each of size that is also O(g), the average
number of messages communicated per sensor is O(n).
However, because we restrict that messages to be com-
municated up to h̄ hops for only a group of sensors
that support the requirements of Υ, the average number
of messages per sensor is typically small. Fig. 4 shows
the total time and the average number of messages per
sensor required during both the domain pruning and the
benefit construction phases. The total time growth is
linearithmic in n when Υ is sent to exactly one sensor
and when G is connected. This time can, in practice, be
decreased significantly if Υ is initially sent to multiple
sensors. Additionally, the average number of messages
per sensor is shown to scale linearly with n, and is
typically a very small fraction of n.
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resulting from constructing the benefit matrices, g = 10.

IV. PROPOSED SOLUTIONS FOR DISTRIBUTED
ESTIMATION

After completing the sensor virtualization task, using
RADV, the virtual sensors run an in-network param-
eter estimation algorithm to compute θ̂ distributedly.
In this section, we present our proposed Randomized
and Asynchronous Distributed Estimation (RADE) al-
gorithm. We first follow the standard ADMM approach
to derive primal, dual and Lagrangian variable update
equations, then we describe the proposed RADE algo-
rithm. For clarity of notation, in what follows, we refer
to the set of g selected devices, determined by RADV,
simply as A.

The centralized estimation approach given in (1)
is first decomposed into g local estimates of θ
(one θ̂i for each i ∈ A) while constraining the
local estimates with the coupling constraints θi =
θj for all (i, j) ∈ P . This results in the following op-
timization problem:

minimize 1
2

∑
i∈A
‖xi −Hiθi‖2

subject to θi − θj = 0 for all (i, j) ∈ P,
(7)

where {θi, i ∈ A} are the optimization variables.
By introducing an auxiliary variable, z, we decouple

the constraints in (7), so that θi − z = 0 for all i ∈ A
[21]. However, this requires that z be shared among all
the g virtual sensors. Instead, we introduce g auxiliary
variables, zi, and equivalently write the optimization
problem as

minimize 1
2

∑
i∈A
‖xi −Hiθi‖2

subject to θj − zi = 0 for all (i, j) ∈ P.
(8)

Let λ = {λi,j ∈ RN×1 : (i, j) ∈ P} and ρ =
{ρi,j ∈ R : (i, j) ∈ P} denote respectively the
set of Lagrangian multipliers and the set of penalty

parameters. The augmented Lagrangian is given by

Lρ(θ, z, λ) =
∑
i∈A

[
1
2‖xi −Hiθi‖2

−
∑

j∈A:(i,j)∈P
λTi,j(θi − zj)

+
∑

j∈A:(i,j)∈P

ρi,j
2 ‖θi − zj‖

2

]
.

(9)
By setting the gradient w.r.t θi of Eq. (9) to zero and
solving for θi, we get

θi =

(
HT
i Hi +

∑
j∈A:(i,j)∈P

ρi,jI

)−1

.

(
HT
i xi +

∑
j∈A:(i,j)∈P

(λi,j + ρi,jzj)

)
.

Similarly, we solve for zi by setting the gradient w.r.t to
zi to zero and rearranging the indices of the Lagrangian
multipliers and the penalty parameters. It follows that

zi =
1

g

∑
j∈A:(i,j)∈P

(
θj −

1

ρj,i
λj,i

)
.

The former analysis leads to the conventional
ADMM-based distributed consensus estimation algo-
rithm given by

θ
(k+1)
i =

(
HT
i Hi +

∑
j∈A:(i,j)∈P

ρi,jI

)−1

.

(
HT
i xi +

∑
j∈A:(i,j)∈P

(
λ

(k)
i,j + ρi,jz

(k)
j

))
,

z
(k+1)
i = 1

g

∑
j∈A:(i,j)∈P

(
θ

(k)
j − 1

ρj,i
λ

(k)
j,i

)
,

λ
(k+1)
j,i = λ

(k)
j,i − ρj,i

(
θ

(k+1)
j − z(k+1)

i

)
,

(10)
where the superscript k denotes the value of the vari-
able at the k-th iteration. This conventional ADMM
algorithm, given in (10), requires synchronization and
variable update among the sensors [22], [23]. Moreover,
at each iteration k, each sensor i must send z(k)

i and θ(k)
i

to all other sensors it is connected to, so as to evaluate
their k + 1 primal, dual, and Lagrangian multipliers.
When M is small, this algorithm incurs communication
overhead that can be shown to be worse than the com-
munication overhead incurred by centralized estimation
methods. However, when M is large, the conventional
ADMM algorithm incurs lesser communication over-
head than what centralized estimation methods incur,
but it still remains practically unattractive due to other
weaknesses, detailed later in Section V.

Given the absolute and relative tolerances, εabs and
εrel, specified by the SLAs, we define the primal and
dual tolerances, controlling the convergence of the al-
gorithm at iteration k, as

εprii (k) =
√
gεabs + εrel max(‖θ(k)

i ‖, ‖ − z
(k)
i ‖),

9



and

εduali (k) =
√
gεabs + εrel

∑
j∈A
‖ρj,iλj,i‖.

The tolerances, εprii and εduali , define the stopping
criteria of sensor i; i.e., sensor i stops updating θi and
zi when

‖θ(k+1)
i − z(k+1)

i ‖ < εprii (k), (11)

and
‖z(k+1)
i − z(k)

i ‖ < εduali (k). (12)

The stopping criteria of RADE are different from those
of the conventional ADMM. Unlike the conventional
ADMM where all sensors shall stop computations all
at the same time using a common stopping criteria
and common primal and dual tolerances, the stopping
criteria (Eq. (11) and Eq. (12)) of RADE allow a sensor
i to stop its computations asynchronously and indepen-
dently from other sensors. However, these criteria are
not enough to ensure asynchronous implementation, as
synchronization is still required for dual and primal vari-
able updates at iteration k+1 due to their dependencies
on k.

To ensure full asynchronous implementation, we use
the doubly stochastic transition matrix, T ∈ Rg×g ,
where Ti,j is the probability that a sensor i contacts
another sensor j at any iteration, for deciding the
communications among sensors. We can have

Ti,j =


1

d′i + 1
if i = j or (i, j) ∈ P,

0 otherwise,

where d′i = |{j ∈ A : (i, j) ∈ P}| is the degree of the
virtual sensor, in Υ, that i virtualizes. At iteration k+1,
sensor i may need to contact only one sensor j, unless
both of i’s stopping criteria, Eq. (11) and Eq. (12), are
already satisfied. Whereas sensor j can be contacted
by more than one sensor if j is not contacting any
other sensor, even when both of j’s stopping criteria
are satisfied.

Upon contacting j, sensor i pushes θ(k)
i to j only if

i’s primal stopping condition is not satisfied and pushes
z

(k)
i to j only if i’s dual stopping condition is not

satisfied. Also, i pulls θ(k)
j from j only if j’s primal

stopping condition is not satisfied and pulls z(k)
j only

if j’s dual stopping condition is not satisfied. Finally,
both i and j update their k+1 variables using the most
recent values they received from other sensors.
Mean square error and convergence. The asyn-
chronousness and randomization design of RADE do
not impact the Mean Square Error (MSE) achieved by
RADE when compared to ADMM. This is explained
as follows. In both ADMM and RADE, the number
of necessary dual and primal variables updates that are
needed until convergence remains unchanged, so that
convergence to the same estimate is guaranteed in both
algorithms. Fig. 5 shows the MSE achievable under both
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Fig. 5: MSE of RADE compared to those achieved
under ADMM and LS at different noise power and for
different virtual sensor network topologies, g = 10.

RADE and ADMM when compared to LS under each of
the three studied sensor network topologies: complete,
star, and cycle. These results show the optimality of
RADE that we intuitively discussed. All approaches
have the same accuracy. But of course each of them does
so at a different performance cost, as will be discussed
later.

On the other hand, RADE exhibits a linear conver-
gence rate (O(1/k)), similar to what the conventional
ADMM does. Fig. 6 shows the number of time steps
required for both RADE and ADMM to converge un-
der different relative tolerance parameters, εrel. RADE
convergence tends to be more restricted by the random-
ization nature of the algorithm for smaller values of εrel,
which can be seen by the increasing number of steps as
g increases if εrel = 10−2. ADMM generally requires
a lesser number of steps to converge by relaxing the
consensus constraint (through reducing εrel). However,
as will be seen in the numerical results section later, this
increase in the number of convergence steps is accept-
able when considering the amount of communication
overhead that the algorithm saves.

V. NUMERICAL RESULTS

In this section, we evaluate the performance of the
proposed RADV and RADE algorithms through simu-
lations. In our simulations, G and Υ, are generated using
the parameters summarized in Table I. We evaluate the
performance for a complete, cyclic, or star virtual sensor
network topology, with a randomly chosen central lo-
cation, c. We consider receiving and servicing only one
virtual sensing task request at a time. The G topology
and connectivity can change rapidly. For a single Υ, we
assume that the network change rate is slow enough for
the completion of the sensor search and virtualization
phases. The absolute and relative tolerances, εabs and
εrel, are set to 10−4 unless specified otherwise.

Fig. 7 shows the rejection rate encountered with dif-
ferent Υ topologies and n values. As we only consider
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TABLE I: Simulation Parameters

Parameter g r C(i) R(j) δ h̄

Value 10 0.1 ∼ U(50, 100) ∼ U(25, 50) 0.2 20

one single request at a time, the results shown in this
figure reflect mainly the impact of the virtual sensor
network topology, the number of sensors n, and the
simulations parameters given in Table I on the rejection
rate. The denser the network of IoT devices is, the lower
the rejection rate, implying that the cloud is capable of
granting higher number of requests.

One way of assessing the effectiveness of the vir-
tualization algorithm is by measuring the difference
between the total virtualization benefit given in (4)
and the cost associated with the sensor virtualization
introduced in Section III-B. For a given number of
virtual sensors, the cost is mainly determined by the
choice of the topology (star topology has the lowest
cost and complete topology has the highest one). For
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a given topology, the total benefit is maximized when
each virtual sensor is assigned to the IoT devices with
the maximum capacity and each virtual link is mapped
to exactly one physical link. We refer to this maximized
benefit as the upper bound.

In Fig. 8, we evaluate the virtualization effective-
ness achieved by RADV under different virtual topolo-
gies. As the network gets denser, RADV achieves a
Total Benefit − Cost that is very close to the upper
bound. Since the lowest possible virtualization cost is
with star or cyclic topologies, it is desired by the cloud
to arrange each virtual sensing task in a star or a
cyclic topology. This observation holds true for a more
general topologies. On the other hand, convergence and
communication overhead of the distributed estimation is
also impacted by the cloud agent’s choice of the virtual
topology. This creates a design trade-off, as we will see
in the next two paragraphs.

Fig. 9 shows the impact of the virtual topology
choice on the convergence performance of RADE when
compared to ADMM. If g is small (three to eight), the
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impact of the virtual topology on convergence of RADE
and ADMM is minimal. This is because the degree
of parallelism (number of virtual sensors active at the
same time) is restricted by the small number of virtual
sensors g. In such a scenario, it is convenient for the
cloud agent to always arrange the virtual sensors in a
star topology. However, as g increases, the impact of
choice of the virtual topology becomes significant as the
degree of parallelism is higher in a complete topology,
enabling RADE to converge much faster as g gets larger.
This convergence becomes slower with star and cyclic
topologies. This is because in star and cyclic topologies,
only few sensors are active at a time, making RADE and
ADMM converge in a number of steps comparable to
that of the ADMM’s sequential implementation. In this
later scenario, the cloud agent shall arrange the virtual
sensors as a complete topology unless the SLA permits
slower convergence.

Moreover, RADE converges in a higher number of
steps when compared to the conventional ADMM. This
is because in ADMM, all sensors are active at each time,
and a sensor exchanges its updated variables with all of
its neighbors, whereas in RADE, only disjoint sensor
pairs are active at a time and variables are updated
only between pairs of sensors. Nevertheless, we argue
that this loss in speed of convergence for RADE is
marginal when compared to the significant savings in
communication overhead.

Fig. 10 shows the total number of O(N) sized
messages exchanged during estimation when comparing
RADE, ADMM, and LS for M = 100. The number of
messages exchanged by RADE is at least an order of
magnitude less than the number of messages generated
under ADMM. Also the communication overhead of
RADE is less than the centralized LS especially as M
becomes large. This savings in communication overhead
is attributed to the asynchronous design of RADE in
which messages among sensors are only exchanged if
new values of a primal or dual variables are changed
away from their specified tolerances.

VI. RELATED WORK

A. Network Virtualization

Network virtualization techniques proposed in the
past decade consist mainly of virtual network embed-
ding algorithms, which instantiate virtual networks on
substrate infrastructures [24], [25]. Most of these virtual
network embedding algorithms are centralized (e.g. [5],
[26]) due to the ease of deployment of centralized
approaches in cloud platforms where the cloud provider
desires to have full control on the physical network
resources. Distributed network virtualization techniques
are suited for Cloud of Things, given the size of the
network, and are also proposed for applications in
resource allocation in distributed clouds, wireless sensor
network virtualization, and cloud network as a service
[27], [28].

Beck et al. propose a hierarchical partitioning of any
substrate network [29] and solve the network virtual-
ization (virtual network embedding) problem on the
scale of smaller partitions by delegating the problem
to delegate nodes. In our context, their algorithm can
progress in four steps: (1) partitioning the network
of IoT devices, (2) assigning delegation nodes among
the IoT devices that actually perform the network vir-
tualization, (3) setting distributed lock trees to avoid
inconsistent solutions among different delegation nodes,
and (4) embedding the virtual sensor network within
the scope of the delegation nodes. Several assump-
tions in this work prevent this method applicability in
Cloud of Things. The authors require that a centralized
node manage the IoT network topology to perform the
partitioning. The centralized node partitions the IoT
devices in groups that are highly interconnected. This
requirement is very hard to achieve, if not impossible,
in an Internet-scale network of IoT devices, not only
because of the size of the network but also due to its
highly dynamic nature that prevents tracking the states
of the devices and their connectivity. Moreover, to apply
the same method in cloud of things, the delegation nodes
of Beck’s method needs to learn a significant amount
of information about the IoT devices in their neighbor-
hood, which creates significant practical problems such
as: timely information retrieval, privacy concern, and
computation power.

Esposito and Ibrahim propose to model the network
virtualization as a network utility maximization prob-
lem, where the utility is a general function that is
measured on each hosting node (i.e. IoT device) [30].
They solve the problem distributivity using primal dual
decomposition. To employ their algorithm in our Cloud
of Things context, the non-convex constraints of the
network virtualization problem need be relaxed. Such
a relaxation is known to have a negative impact on the
accuracy of the solution and may lead to false decisions
[5]. Moreover, this method requires the definition of a
single utility for the IoT device that shall not reflect the
actual embedding cost due to network conditions, and
only captures network conditions seen locally by the
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IoT device. Finally, solving the problem using primal-
dual decomposition requires cooperation between all
IoT devices in the network, which prevents this method
from scaling on large-sized networks without adequate
network partitioning as approached by Beck et al. in
[29].

In [31], [32], the authors propose a distributed virtual
node mapping algorithm using consensus-auction. To
apply it in our context, a utility function needs to
be defined for each IoT device that is based on the
devices local capacity and link bandwidth (known only
to the device). The IoT devices then start bidding for
virtual sensors to maximize its utility. Although the node
mapping is very close to optimal, the overall result of
the algorithm is not necessarily optimal since the link
mapping uses only first hop link information of the
substrate nodes. The authors also assume that paths are
computed using 3−shortest paths, which overlook other
path diversity that can be found in a large substrate
network.

The earlier methods are designed for federated data
centers, and cannot be applied to the Cloud of Things
context. In our approach, each device with a non-empty
virtual mapping domain first solves the problem within a
radius of h̄ of the subgraph centered at the IoT device.
Then, the agent selects the best solution by reducing
different solutions found by the devices to a single best
solution. Unlike the work of Beck et al. in [29], par-
titioning and delegation are an implicit process of the
algorithm performed through the gossip policy used dur-
ing the sensing resource discovery phase where only the
IoT devices with a non-empty virtual mapping domain
start to execute the next steps of the algorithm. This
approach does not require updated knowledge about all
the IoT devices and the topology of the network. The
IoT devices perform virtualization by exchanging mini-
mal information to construct their local benefit matrices
and solving an assignment problem. Unlike [30], [31],
[32], a benefit matrix constructed by a device captures
all network information within a radius of h̄ around that
device, thereby improving the obtained solution close-
ness to optimal without overlooking important network
characteristics. And unlike [30], [29], we do not restrict
the link mapping to use k−shortest paths, thereby allow-
ing the use of diverse paths in the network constructed
during the randomized gossip policy used during the
benefit matrices construction.

B. Distributed Estimation

Distributed parameter estimation approaches have
been proposed in [14], [33], [34]. Estimation can for
e.g. be carried out by first computing a local estimate
at each virtual sensor and then perform a distributed
weighted average of the local estimates [33]. This
approach results in an ML estimate, but does not
limit/bound the variation between mean square errors of
local estimates. More recently, Paul et al. [14] propose a

distributed estimation algorithm based on ADMM. Al-
though this approach results in an optimal mean square
error when compared to LS, it exhibits a significant
in-network communication overhead that requires even
more messages to be exchanged among sensors than
that exchanged in the centralized LS. One approach
also proposed in [14] to overcome this problem is to
approximate the computation of primal and dual vari-
ables at each step of the algorithm by using predictions
and earlier versions of these variables instead of sharing
them at each iteration which marginally reduces the
communication overhead. In addition to the increased
communication overhead, conventional ADMM requires
synchronous operation of the sensors. This is very
challenging from a practical viewpoint, and does not
scale well especially when applied in the Internet of
Things (IoT) context. It has been shown recently that an
asynchronous implementation of ADMM has O(1/k)
convergence [13]. Our proposed estimation algorithm is
both asynchronous and distributed, and reduces commu-
nication overhead significantly when compared to the
conventional ADMM approach [14].

VII. CONCLUSION AND DISCUSSION

We have shown the potential of Cloud of Things
to scale cloud computing vertically by exploiting sens-
ing resources of IoT devices to provide Sensing as a
Service. We have proposed a global architecture that
scales Cloud of Things horizontally by employing edge
computing platforms in a new role as cloud agents
that discover and virtualize sensing resources of IoT
devices. We have described cloud agents technical
challenges and design objectives for sensing resources
discovery and virtualization that can dispatch offering
virtual sensor networks deployed on IoT devices to
cloud users with in-network processing capabilities. We
gave a taxonomy of the potential sensing tasks, their
applications, and there challenges. We have proposed
our sensing resource discovery solution based on a
gossip policy to discover sensing resrouces as fast as
possible and RADV: our virtualization solution. We
have shown through analysis and simulations the po-
tential of RADV to achieve reduced communication
overhead, low complexity, and closeness to optimal
such that RADV employs minimal physical resources
in devices virtualization with maximal benefit. We also
proposed RADE for distributed consensus estimation
as we believe it is one major sensing task in Sensing
as a Service. Using simulation, we show that RADE
reduces the communication overhead significantly with-
out compromising the estimation error when compared
to the traditional ADMM algorithm. We also show
that the convergence time of our proposed algorithms
maintain linear convergence behavior, as in the case of
conventional ADMM.
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