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Abstract—The grid company enforces high penalties for the
peak power demands of cloud data centers. These high penalties
result in high electricity bill that can be avoided by relying on
the servers’ Uninterruptible Power Supply (UPS) as a source
of energy during peak load periods. This paper proposes a
management framework that exploits the distributed UPS bat-
teries in order to minimize the total cluster’s electricity bill. Our
framework consists of: i) a scheduler that accounts for both the
amount of storage energy and the available resource slacks when
making workload placement decision, and ii) a power distributor
that decides which UPS battery should store energy and by how
much in order to increase the amount of energy that can be
accessible for shaving the peak during high-demand periods.
Several evaluations based on real Google traces show that our
proposed framework achieves significant monetary savings.

Index Terms—Energy efficiency, cloud computing, resource
management, peak shaving.

I. BACKGROUND

According to [1], Google continuously draws 260 Mega
Watt of power in order to run their data centers. This amount
of power is enough to power 200K homes and translates into
an electricity bill of millions of dollars per month. Thus there
is clearly a great financial incentive for IT companies to cut
down their electricity bill in every possible way in order to
reduce their operational expenses and increase their profits.

A cloud data center is normally divided into multiple
clusters where each cluster is located in a certain geographical
area and is designated a resource manager that orchestrates
operating a fleet of thousands of servers. The resource manager
receives Virtual Machine (VM) requests from clients each
requesting a certain amount of computing resources (e.g.
CPU). The resource manager decides which server in the
cluster should provide the requested resources for each VM
request. Clients normally run some computing jobs on the
requested VMs and release the VMs once their jobs complete.

The bill that a cloud data center receives from the grid at
the end of the billing cycle (e.g. month) is normally made
up of two major components [2]: i) Energy Charge: which
is proportional to the amount of consumed energy, measured
in KWH, within the entire cycle. ii) Peak Charge1: which
is proportional to the maximum power, measured in Kilo
Watt (KW), drawn within the cycle. The maximum power

1Peak Charge is also called Demand Charge.

is usually calculated by first dividing the billing cycle into
slots each of 15-minute length, and then measuring the average
demanded power for each slot separately. The Peak Charge is
then calculated based on the slot with the maximal average
demanded power.

Numerous cluster management techniques were proposed to
minimize the Energy Charge of the electricity bill [3–7]. The
most common approach is to consolidate the VM requests on
as few ON servers as possible which allows switching the
redundant servers to sleep to save energy [4, 5]. The Best-Fit
(BF) heuristic is the most popular VM placement heuristic
that tries to achieve this objective [6, 7]. While the BF makes
significant Energy Charge reduction compared to a random
VM placement strategy, it completely ignores minimizing the
Peak Charge which contributes to more than 40% of the
electricity bill [8].

There have been few approaches, referred to by Peak
Shaving techniques, that are proposed to minimize the Peak
Charge of the electricity bill. One of the main Peak Shaving
approaches that does not cause service degradation is to store
energy in batteries during low demand periods so that this
stored energy can be used later to (partially) power the cloud
data center during high power demand periods. This results in
reducing the power drawn from the grid during high power
demands, thereby resulting in minimizing the Peak Charge.

Two reasons make energy-storage peak shaving techniques
practically applicable in cloud data centers. First, data centers
are already equipped with controllable Uninterruptible Power
Supply (UPS) batteries for fault-tolerance [9]. Second, the
amount of energy that needs to be stored in UPS batteries for
fault tolerance is very small compared to the energy storage
capacity of those batteries [10]. This is true since during power
outages, batteries need to power the data center for only a short
duration (around a minute) until the diesel generator starts
working. Their remaining capacity can thus be used to store
energy for peak shaving purposes while always preserving a
small amount of energy to power the data center during the
short transition period in case a power outage occurs.

UPS batteries in data centers have two main power distribu-
tion topologies: i) Centralized Topology: where a large room
full of batteries is used to provide power for the whole cluster.
Charging those batteries requires converting the grid power



from AC to DC whereas discharging the stored energy to the
cluster requires converting the power back from DC to AC.
The discharged power is then fed to servers where the power
supply unit (PSU) of each server converts the AC power to
DC to be used by the computing components. ii) Distributed
Topology: where each server in the cluster is supplied with an
independent small UPS battery that is placed internally in the
server. The server’s PSU converts the AC grid power into DC
and stores some amount of energy in the internal battery to
be used directly by the server’s components when needed.

The distributed topology was more widely adapted by
Google and Facebook [11] than the centralized one as it does
not suffer from the single-point-of-failure problem, allows the
energy storage capacity to grow automatically when adding
new servers and reduces the conversion losses by eliminating
two redundant conversion stages.

However, the main disadvantage of the distributed topology
is the fact that it limits the amount of energy that can be
used for peak shaving as the energy stored in each battery can
supply power only to its dedicated server. More specifically,
while idle or lightly utilized servers in the cluster might have
a good amount of stored energy in their batteries, this energy
may not be fully accessible for peak shaving as the power
demands of those servers is too low. On the other hand, other
active servers may have large power demands but not enough
energy stored in their batteries to provide the demanded power.
This creates challenges for deciding how to assign VMs to
servers in the cluster and how to decide how to distribute the
stored energy among the distributed UPS batteries.

In this paper, we propose a resource management frame-
work for a cloud cluster with distributive UPS topology. Our
framework places the submitted VM requests in a way that
reduces both the number of ON servers needed to host the
VMs and the amount of stored energy that is inaccessible for
peak shaving, which leads into significant reductions in both
the Energy Charge and the Peak Charge of the electricity bill
when compared to the traditional BF placement heuristic that
completely ignores the Peak Charge. To further reduce the
amount of inaccessible stored energy, our framework adapts a
greedy power distribution strategy that decides based on the
power demands of the servers which distributed UPS battery
needs to charge (discharge) power and by how much. To
summarize, our main contributions are the following. We:

• Propose a placement strategy that reduces both the num-
ber of ON servers and the amount of inaccessible stored
energy for clusters with distributed UPS batteries.

• Propose a power distribution strategy that decides which
UPS batteries should charge to/discharge from while
minimizing the amount of inaccessible locked energy.

• Show that a good portion of the cluster’s total electricity
bill can be reduced by our techniques when compared to
existing approaches.

The remainder is organized as follows. Section II introduces
our notations. Section III explains our proposed framework.
Section IV evaluates our framework based on real Google

traces. Finally Section V concludes and provides directions
for future work.

II. NOTATIONS

We consider a cloud cluster with a distributed UPS topology
where each server is dedicated a UPS battery that can supply
power only to the server it is attached to. Each server’s
battery has a maximal energy storage capacity, Emax, and
a maximal charging and discharging rate, Cmax. In order to
charge/discharge an amount of power, P , some percentage of
this power gets lost due to conversion losses. Also, a certain
percentage of the stored energy in the battery gets lost over
time due to leakage losses.

We consider a time-slotted billing cycle where the billing
cycle is divided into n time slots where each slot has a duration
of τ minutes. Let P be the set of all servers, and Pon and
Poff be the set of all ON and OFF servers in the cluster
(P = Pon ∪ Poff ). To simplify our notations, the index i will
be used to refer to one of the billing cycle’s slots, whereas the
index j will be used to refer to one of the cluster’s servers.
The following notations are used throughout:
• di,j is the power demand for server j during the ith slot.

This basically represents the aggregate power demands
of all the VMs hosted on server j at time slot i.

• Di is the power demand of the whole cluster during the
ith slot which can be calculated as: Di =

∑
j∈P di,j .

• c−i,j is the power that the battery attached to the jth server
discharges during the ith slot in order to meet partially or
fully the server’s power demands.

• C−i is the power that our framework decides to discharge
from all the batteries in the cluster during the ith slot.

• c+i,j is the power drawn from the grid to be stored in the
battery attached to the jth server during the ith slot.

• C+
i is the amount of power that our framework draws

from the grid and stores (charges) in all the batteries in
the cluster during the ith slot.

• ei,j is the amount of energy stored in the battery attached
to server j at the beginning of the ith slot.

• ri,j is the amount of energy that the battery attached to
server j can store at the beginning of the ith slot. It can
be calculated as ri,j = Emax − ei,j , where Emax is the
battery’s capacity.

III. THE PROPOSED FRAMEWORK

As illustrated in Fig. 1, our proposed framework has a two-
level control structure. First, a scheduler, residing at the top
of the framework, that controls where to place new VMs that
arrive to the DC. Second, a UPS controller that controls when
to charge/discharge the batteries, and how much energy should
each UPS battery charge/discharge. We provide next a detailed
description of our framework’s components:

A. Scheduler

The scheduler follows a Slack and Battery Aware placement
strategy which is referred to as (SBA) throughout the paper.
The SBA strategy basically decides which server a new VM
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Fig. 1: Proposed Framework.

request should be assigned to based on: i) the power state
of the servers (ON/OFF) within the cluster, ii) the resource
utilization and capacity of the servers in the cluster, and iii)
the amount of energy stored on the servers’ batteries. These
assignment decisions are made with two objectives in mind:
a) minimizing the number of ON servers and b) maximizing
the amount of accessible stored energy that can be used for
peak shaving. In order to achieve these two objectives, SBA
operates as follows:

- SBA places a VM request on an OFF server only if no
other ON server in the cluster can fit the VM request. The
intuition here is to consolidate the VM requests on fewer ON
servers in order to minimize the consumed energy by turning
OFF as many redundant servers as possible.

- If the VM must be placed on an OFF server, SBA prefers
servers with the largest CPU capacity and with the largest
UPS Stored Energy. The intuition behind this preference is the
following. First, servers with larger CPU capacity are preferred
as they can fit larger VMs in the future without requiring
to turn ON extra OFF servers. Second, servers with larger
stored energy are preferred as the larger the energy stored, the
higher the accessible power that can be used to shave the peak
power demands in future. Now in order to consider both the
capacity of the servers and their amount of stored energy, SBA
calculates a combining score for each OFF server that can fit
the VM request and then picks the OFF server with the largest
score. The score S(j) for the OFF server j is calculated as2:

S(j) = α× Scpu
Cap(j) + (1− α)× SUPS(j)

where Scpu
Cap(j) and SUPS(j) are respectively the CPU capac-

ity score and the UPS stored Energy score and where α is a
tunnable weight that lies within the range [0,1].

2In our formulation we considered only a single resource (CPU). However,
our framework can be easily extended to handle multiple resources (e.g.
Memory and Hard Disk) by basically introducing a weighted utilization score
for each one of those resources.

The CPU Capacity score Scpu
Cap(j) is calculated as follows:

Scpu
Cap(j) = Ccpu

j /Ccpu
max

where Ccpu
j is the CPU capacity of the jth OFF server and

Ccpu
max is the maximum CPU capacity among all OFF servers.

The UPS stored energy score is calculated as:

SUPS(j) = Ej/Emax (1)

where Ej is the energy stored in the battery attached to the jth

OFF server and Emax is the maximum amount of energy that
is currently stored in the battery of any OFF servers within
the cluster.

- If multiple ON servers can provide the resource demands
for the submitted VM request, then SBA prefers the ON server
with the largest CPU utilization and the largest amount of
energy stored in the server’s UPS. The intuition is as follows. It
is better to place the VM on an ON server with high utilization
so that larger slacks are left on the remaining servers that have
low utilization. This saves energy as it allows the cluster to
host VMs with larger CPU demands in the future without the
need of switching extra servers from OFF to ON. On the other
hand, servers with largest stored energy are preferred as they
are the best candidates for future peak shaving. In order to
select the server with both larger capacity and larger amount
of stored energy, SBA calculates a score for each one of the
ON servers that can provide the VM’s requested computing
resources and picks the server with the highest score to host
the submitted VM request. For an ON server j that can meet
the VM’s demand, the score S(j) is calculated as:

S(j) = α× Scpu
Util(j) + (1− α)× SUPS(j)

where Scpu
Util(j) is the CPU utilization score and SUPS(j) is

again the UPS stored energy score. α is a tunnable weight that
lies within the range [0,1].
SUPS(j) is calculated as described in Equation (1), and

Scpu
Util(j) is calculated as Scpu

Util(j) = U cpu
j /U cpu

max, where U cpu
j

is the CPU utilization for server j and U cpu
max is the maximum

CPU utilization among all the servers in the cluster. This score
basically gives higher preference for the ON server with the
higher CPU utilization.

B. UPS Controller

This module manages the UPS batteries that are attached to
the servers in the cluster and consists of two sub-modules:

Algorithm 1 Decision Maker(Di, T )

1: if Di > T then
2: C− ← Di − T
3: SelectDischargeBattery(C−)
4: else
5: C+ ← T −Di

6: SelectChargeBattery(C+)
7: end if

1) Decision Maker: This sub-module decides when to
charge/discharge batteries and by how much and is launched



at the beginning of each time slot i. The Decision Maker
is illustrated as a pseudo code (Algorithm 1) and takes as
input the DC’s power demand, Di, at the ith slot, and a
predefined threshold T . The Decision Maker compares the
DC’s power demand to the threshold T , and if the demanded
power is below the threshold, then the difference is charged
into the DC’s batteries (Line 2 and 3). Otherwise (if the
demanded power is above the threshold), the decision maker
tries to discharge the difference from the DC’s batteries (Line
5 and 6). The intuition of the Decision Maker algorithm is
to charge batteries during low demand periods (i.e., periods
during which the DC’s power demand is below the threshold),
and use this stored energy latter to power partially or fully the
DC during high demand periods (i.e., periods during which the
DC’s power demand is above the threshold), thereby reducing
the peak charge and hence minimizing DC’s electricity bills.

2) Battery Selector: This sub-module decides which bat-
teries should be charged/discharged (Line 3 and Line 6 of
Algorithm 1). We explain next the discharging and charging
policies that this sub-module follows:

Discharging Policy: as illustrated in Algorithm 2, the
Battery Selector orders the ON servers in an increasing order
of their CPU utilization (Line 1) and iterates over the ordered
list trying to discharge energy from each server. There is a
constraint on the amount of energy that the server’s battery can
discharge as it is limited by the server’s power demand, the
current amount of stored energy, the discharge rate and amount
of power that the Decision Maker requested to discharge (Line
3). The intuition behind preferring to discharge energy from
servers with lowest CPU utilization as they are more likely
to become vacant in the future as they hold less workload.
Once a server becomes vacant it is switched off to save energy
and thus the amount of energy stored on this server becomes
inaccessible for peak shaving (this energy is referred to by
locked-in energy). Thus in short, the battery selector follows
a greedy discharging strategy that aims at minimizing the
amount of inaccessible (locked-in) energy.

Charging Policy: as illustrated in Algorithm 3, the Battery
Selector charges batteries attached to ON servers with high
CPU utilization first as they are less likely to be switched
off soon since they have a high workload which reduces
the amount of inaccessible stored energy in future. If all
batteries attached to ON servers get charged and the power
consumption still bellow threshold then the algorithm will
start charging batteries attached to servers that are OFF where
higher preference is given to the OFF servers with high
capacity. The idea behind charging OFF server’s is to prepare
them for further discharge when they turned ON. In line 5.
the battery charge is limited by the amount of energy that
the battery can store (as no battery can store more than its
capacity), the server’s maximal charging rate and the amount
of power requested to be charged by the Decision Maker.

Algorithm 2 SelectDischargeBattery(C−)
1: Sort Pon servers in increasing order of their utilization
2: for each server j in Pon do
3: c−i,j ← min(di,j , ei,j/τ, Cmax, C

−)

4: Discharge c−i,j
5: C− ← C− − c−i,j
6: if C− == 0 then
7: break
8: end if
9: end for

Algorithm 3 SelectChargeBattery(C+)

1: Sort Pon servers in decreasing order of their utilization
2: Sort Poff servers in decreasing order of their capacity
3: P← Pon ∪ Poff

4: for each server j in P do
5: c+i,j ← min(ri,j/τ, Cmax, C

+)

6: Charge c+i,j
7: C+ ← C+ − c+i,j
8: if C+ == 0 then
9: break

10: end if
11: end for

IV. PERFORMANCE EVALUATION

In this section, we evaluate our proposed framework based
on real Google cluster traces [12]. We limited our evaluations
to only a part of the traces spanning a five-day period due to
the immense size of the traces (>39GB). We consider Lead
Acid batteries whose specifications are summarized in Table
I.

TABLE I: LA Battery Specs

Rated Capacity 30Ah
Charge losses 8%

Discharge losses 2%
Leakage per day 0.3%

We compare our proposed framework against the following
cluster management schemes:
• Best Fit (BF) Placement: places each submitted VM

request on the ON server with the least CPU slack that
can fit the submitted VM request. If no ON server can
fit the VM request, then the VM is placed on the server
with the largest capacity.

• Random Placement: places a new VM request on a
random ON server that can fit the VM. If no ON servers
can fit the VM, then a random OFF server is picked to
host the submitted VM.

Both of these schemes use our proposed Decision Maker
(Algorithm 1) to decide when and how much energy need to
be charged/discharged. These schemes, however, use a random
Battery Selector which picks a random server’s battery among
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Fig. 2: The power drawn from the grid for Google DC over
time for the different schemes.

the ON servers to discharge/charge energy. An OFF server is
selected at random to store energy only if all the ON servers’
batteries are full.

A. Energy Consumption

We start first by comparing the Google DC’s energy con-
sumption under the different schemes. We follow the model
in [13] where the consumed power of an individual server
depends on its utilization, U cpu, and is calculated as follows:

Pc (U
cpu) = Pidle + U cpu (Ppeak − Pidle) (2)

where Pidle = 200, and Ppeak = 400 Watts. Also, switching
a server from ON to sleep and from sleep to ON incurs an
energy consumption of 5510, and 4260 respectively [14]. OFF
servers don’t consume any power. Figure 2 illustrates the
energy consumption of the Google DC over time. Observer
that our framework has the lowest power consumption. This
proves the efficiency of our framework and highlights how
important it is to make efficient placement algorithm along
with UPS management control for energy reduction in cloud
centers.

B. Electricity Bill

We evaluate next in Fig. 3 the electricity bill of Google
DC under the different schemes. We use a real power prices
[9], where the Energy Charge and Peak Charge price rates
are respectively 0.05$/kWh and 20$/kW . The results are
normalized with respect to the total electricity bill of the ran-
dom placement scheme. Observe that our framework achieves
the lowest energy cost among other schemes where the total
bill is around 35% and 25% less than the random and the
BF scheme respectively. This reduction is achieved as our
framework consumed less amount of energy and also had a
lower peak during the billing cycle.

C. Utilization Gain

Our next comparison is going to be about utilization gain
that our framework achieves compared to others. CPU uti-
lization of a server is the summation of its CPU resources
that has been reserved for all of its hosted VMs divided by
its total capacity. Figure 4 shows the average CPU utilization
over time for all of the ON servers in the cluster under the
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Fig. 3: Google DC’s electricity bill for the different cluster
management schemes.
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Fig. 4: Google DC’s average CPU utilization over time for the
different cluster management schemes

three schemes. Observe that our framework utilization is not
better than BF but close to it because during VMs placement
our algorithm balances between reducing the number of ON
servers and maximizing the accessible stored energy while BF
focus only on minimizing number of ON servers. That means
even though BF has better utilization, our framework incurs
less energy consumption which leads to significant money
savings.

V. CONCLUSION AND FUTURE WORK

This paper proposes a framework that decides on which
server a new submitted VM request should be placed and
which server’s battery needs to charge/discharge energy and
by how much with the aim of minimizing the Energy and
Peak charges of the electricity bill. Results based on Google
traces show that our proposed framework makes promising
reductions in the total electricity bill. For future work, we plan
to investigate how to perform workload migrations in order to
reduce further the amount of inaccessible locked-in energy so
that peak power demands can be shaved further and hence
higher electricity bill reductions can be achieved.
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