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Abstract—This paper proposes energy and cross-layer aware
resource allocation techniques that allow Dynamic Spectrum Ac-
cess (DSA) users, by means of learning algorithms, to locate and
exploit unused spectrum opportunities effectively. Specifically, we
design private objective functions for DSA users with multiple
channel access and adaptive power allocation capabilities. We also
propose simple two-phase heuristics for allocating spectrum and
power resources among users. The proposed heuristics split the
spectrum and power allocation problem into two sub-problems,
and solve each of them separately. The spectrum allocation
problem is solved, during the first phase using learning. Two
procedures to learn the channel selection are proposed and
compared in terms of optimality, scalability, and robustness.
The power allocation, on the other hand, is formulated as a
real optimization problem and solved, during the second phase,
by traditional optimization solvers. Simulation results show that
energy and cross-layer awareness and multiple channel access
capability improve the performance of the system in terms of the
per-user average rewards received from accessing the dynamic
spectrum access system. In addition, the two proposed methods
for channel selection via learning represent a trade-off between
optimality, scalability, and robustness.

Index Terms—Cross-layer resource allocation, dynamic spec-
trum access, distributed resource sharing, private objective func-
tions, cognitive radio networks.

I. INTRODUCTION

Dynamic Spectrum Access (DSA) [1] has been one of
the hot topics in wireless communications during the last
decade due to its potential for improving spectrum utilization
efficiency, and thus, addressing the spectrum shortage problem.
DSA has been an important catalysis for numerous research
works, ranging from protocol design [2] to performance
optimization [3] and spectrum awareness techniques [4]. In
particular, the resource allocation problem has been thoroughly
addressed under different considerations. Nevertheless, a little
attention was grasped to the context of large-scale DSA
performances as it has more constrained requirements.

One of the important factors in the design of efficient
wireless systems is the power consumption. Power and energy
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awareness have generated a continuous interest in the research
community, as the importance of reducing energy consumption
is becoming crucial not only in designing wireless systems, but
also in any engineering systems due to other factors such as the
environmental concerns (global warming, CO2 emissions, etc.)
and the continuously increasing energy costs. Moreover, DSA
is inherently a shared system for which the power needs to be
efficiently used at each user to prevent mutual interference or
interference to other users as DSA is mostly employed in the
context of cognitive radio systems [5].

Recently, deriving optimal solutions and proposing low-
complexity algorithms for DSA problems grasped a lot of
research attention. In this perspective, the unprecedented
growth of the number of users revealed that the conventional
centralized approaches are no longer suitable to the recent
developments in wireless communication systems. In fact,
although among the merits of the centralized approaches is
their ability to achieve optimal or near-optimal performances,
these algorithms are not capable of ensuring the scalability
since a large amount of overhead is mandatory. Thus, develop-
ing fully decentralized approaches is becoming more needed
than ever due to the complexity of these emerging wireless
systems. Though it can be very challenging to design them,
decentralized approaches scale well, as they typically incur
little to no communication and computational overhead while
still performing relatively well.

In this context, an efficient distributed technique for spec-
trum access and allocation based on learning was proposed
in [6]. The authors proposed a close-optimal, scalable, and
highly learnable objective function that can be used for
enabling efficient DSA. Although the proposed technique is
shown to perform well in terms of the achieved throughput,
it has some limits such as i) it considers ideal system with
perfect channels (does not account for the effects of channel
gains and noise), ii) its power consumption is not controlled
which can result in an energy inefficient system, and iii) it
limits each user to select a single band for their transmission
which is not optimal.

In this work, we propose a joint dynamic multi-channel
spectrum access with adaptive power allocation that extends
the technique proposed in [6] to account for the power con-
sumption and the cross-layer couplings. Specifically, we de-
velop learning-based, distributed energy and cross-layer aware
resource allocation techniques that allow DSA users, by means
of learning algorithms, to locate and exploit unused spectrum
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opportunities effectively. A key challenge of this work lies in
how to propose an efficient algorithm that exploits the channel
diversity to enhance the performance, but without suffering
enormously from the added complexity of such an exploita-
tion. To tackle this challenge, we proposed in [7] a two-phase
heuristic approach that combines learning and optimization
in a way that alleviates the computational complexity while
still achieving good performances. The proposed heuristic
splits the spectrum and the power allocation problem into two
sub-optimal problems, and solves each of them separately.
The spectrum allocation problem is solved using learning
algorithms during the first phase, whereas the power allocation
is formulated as an optimization problem and solved by tradi-
tional optimization solvers during the second phase. While the
work in [7] generalizes the approach proposed in [6] to account
for power consumption and takes into consideration variable
channel gains, its complexity is still non-scalable for systems
with a large number of bands, as it is an exponential function
of the number of bands. In addition, it does not perform well in
the case of dynamic availability of the channels for access due
to primary users’ activities. Thus, in this work we extended
our previous work by proposing a suboptimal learning function
that performs the search for the multichannel access on a
channel by channel basis, thus resulting in 1) reducing the
search cost to a linear function of the number of bands instead
of being exponential, and 2) handling dynamic availability
of channels effectively by allowing individual selection of
channels to reduce interdependency of channels.

Our simulation results show that the proposed energy
and cross-layer aware techniques coupled with the multiple
channel access capability improve the DSA performances
by increasing the per-user average reward that the users
receive from accessing the DSA system. In addition, the
two proposed methods for channel selection achieve a good
DSA performance trade-off. While the (first) per-set channel
selection method achieves better results in systems with a
fixed and small number of bands, the (second) channel-by-
channel selection method is more robust against changes in
the cognitive radio environments.

The rest of this paper is organized as follows. We first
overview in Section II the main research works done in the
area of DSA. Section III introduces and states our proposed
problem. In Section IV, we present our formulation of the
DSA resource allocation problem, discuss the challenges of
using learning in our multichannel DSA problem, and present
the proposed suboptimal approach to be used to overcome
these challenges. Then, in Section V, we present the new
formulation of the problem in a cognitive radio framework
with different interference scenarios and describe how to
adapt the proposed approach to cope with the new context.
In Section VI, we present simulation results and discuss the
performance of the proposed algorithms under various system
parameters. Finally, we conclude the paper in Section VII.

II. LITERATURE OVERVIEW OF MAIN APPROACHES FOR
SUCCESSFUL DSA

Efficiently allocating the available resources is a key design
problem lying at the core of DSA systems. For instance,

as these systems are allowed to opportunistically access the
spectrum, the need for effective techniques that allocate the
resources for each user while meeting the DSA requirements
becomes crucial. To this end, tremendous research efforts
have been done to study the problem of power and spectrum
allocation in DSA systems under different access paradigms.
Broadly speaking, the proposed algorithms could be clas-
sified into two main categories: centralized and distributed
approaches, depending on the decision-making process for
each user, as whether the user allocates its resources based on
its own observation and the information shared in the network
or it relays its observation to a central unit that attributes to it
the required resources [8].

Centralized resource allocation and scheduling techniques
have been widely proposed as a potent means to efficiently
allocate the power and the available spectrum in the network
while preserving the energy and the spectral efficiency. The
proposed algorithms range from joint spectrum and power
allocation [9–12] to solely either power allocation [13] or
spectrum allocation [14]. It is shown in this case that the
centralized approaches can achieve optimal or near-optimal
performances with the expense of a computational complexity.
However, a large amount of overhead is required and may lead
to a very high computational complexity with an intolerable
delay. Hence, centralized approaches suffer from the problem
of scalability.

To cope with this problem, distributed resource allocation
has been seen as a promise to overcome the scalability problem
of the centralized approaches [15, 16]. Different methods have
been applied in this context. Game theoretical approaches
have been seen as a good candidate [17, 18]. Pricing and
bidding based approaches have also been the focus of some
researchers [19]. While the proposed methods are shown to
achieve good performance without the need of a central unit
to perform the optimization and coordinate among users,
significant communication overhead is still present in most
of these methods.

Learning-based techniques have been considered as poten-
tial candidates for decentralizing the allocation of spectrum
resources without the need of information exchange between
users. Users rely mostly on observed behavior during past
time slots to determine their best strategies for future re-
source allocation. Learning has been extensively used for
resource allocation in wireless systems. For instance, [20]
employs reinforcement learning for interference avoidance
in heterogeneous networks through a cross-layer approach
while [6] employs learning for optimal channel selection.
Furthermore, [21] proposes some enhancements to the con-
ventional learning algorithms to consider channel propagation
and users’ behavior while [22] combines learning with game
theoretic approaches for a suitable technique for distributed
DSA with noisy observation. A recent work by Xu et al. [23]
proposes a multi-user learning algorithm to solve a dynamic
spectrum allocation problem considering different moments of
the targeted capacity instead of the expectation only.

In conclusion, learning approaches have shown great capa-
bilities to be employed for DSA in wireless communication
systems. Further work is still to be done to better exploit
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available resources, such as multi-channel capabilities and
adaptive power allocation, which have been shown as perfor-
mance enablers through the additional diversity. While these
capabilities could enhance performance, new challenges arise
with the additional complexity.

III. SYSTEM MODEL

We investigate the distributed resource allocation techniques
for large-scale DSA networks. We consider a large-scale
spectrum allocation problem with n users competing to access
m spectrum bands (n� m), where each user selects and uses
the spectrum bands among the m available bands to carry out
its data communication. The interfering users, those that end
up selecting the same band, are assumed to share the spectrum
band using a Frequency Division Multiple Access (FDMA)
scheme. We assume a fair band sharing so that each band is
shared equally between the users who have selected it. We
denote by h(j)i (t) the instantaneous channel gain between the
user i’s transmitter and its receiver in the jth channel band.

Unlike [6], where each user is only allowed to select and
communicate over one channel band, we assume in this work
that each user is allowed to select and use more than one
channel band to communicate using a multicarrier scheme.
In addition, this work also employs power control to reduce
energy consumption, a factor that has not been taken into
consideration in previous works. Moreover, we use channel
gains to compute the received throughput which allow us to
evaluate and analyze the performance under various channel
conditions.

A. Throughput Expression

One contribution of this work is to study the problem taking
into consideration the channel conditions for a better control
of the energy consumption. For that, we express explicitly
the received throughput in terms of the channel gains and the
allocated power. Let Bj be the bandwidth of each channel
sub-band. Bjs are selected such that the channel gains are
constant over each channel sub-band. The throughput of user
i at instant t is expressed in terms of the allocated power per
band P (j)

i (t) as

Ri(t) =

m∑
j=1

a
(j)
i (t)

nj(t)
Bj log2

1 +
|h(j)i,i (t)|

2
P

(j)
i (t)

N0Bj/nj(t)

, (1)

where a(j)i (t) is the user-band occupation mapping index (i.e.,
a
(j)
i (t) = 1 if user i uses band j and a(j)i (t) = 0 otherwise),
nj is the number of users sharing band j at time slot t (i.e.
nj(t) =

∑n
i=1 a

(j)
i (t)). N0 is the noise power density in

dB/Hz.

B. Reward Functions

Throughout this paper, we aim to study different service
models. Thus, the users’ reward is expressed differently de-
pending on the used service.

1) Elastic Traffic Model: In the elastic traffic model, the
users utility increases as the received throughput increases
given that it exceeds a minimum threshold. This traffic model
is suitable for the cases of file download. Explicitly, the reward
of user i at instant t, ri(t), can be expressed as

relai (t) =

{
Ri(t) if Ri(t) ≥ Rth
Rthe

−β
(
Rth
Ri(t)

−1
)

otherwise.
(2)

2) Inelastic Traffic Model: In the inelastic traffic model,
users need to receive a minimum amount of service. Below
that threshold, the received service is not sufficient. But, any
additional throughput received above the required threshold is
not rewarded. Examples of applications of this type of reward
include voice/video streaming and online gaming. Explicitly,
the reward of user i at instant t, ri(t), can be expressed as

rinelai (t) =

{
Rth if Ri(t) ≥ Rth
Rthe

−β
(
Rth
Ri(t)

−1
)

otherwise.
(3)

3) Energy Efficient Model: Due to the increasing energy
costs, applications nowadays do not focus only on achieving
high throughputs, but also on reducing power consumption.
Thus, this reward model accounts for energy efficiency, and
does so by combining the users’ received throughput with the
amount of energy consumed to achieve such throughput. This
can be written as

reei (t) =
Ri(t)

P0 + Pi(t)
, (4)

where Pi(t) is the power consumed during time episode t
and P0 is a fixed amount of power, capturing the non-radiated
power consumed independently and regardless of the number
of selected bands and of the power allocated for transmission.

C. Objective Function

Three types of objective functions are studied in this work
to show the effectiveness of the proposed technique:

• Intrinsic objective (selfish behavior). The maximized
objective for each user is equal to its own reward

ginti (t) = ri(t). (5)

• Global objective (cooperative behavior). The maxi-
mized objective for each user is equal to the sum of all
users’ rewards.

ggloi (t) = G(t) ,
n∑
k=1

rk(t). (6)

• Difference objective. Inspired from [6], the basic idea
of this objective lies in that removing the effects of
all other users from the global objective gives us an
objective function with higher learnability than the global
objective function but while still ensuring objective align-
ment among users. Essentially, this function, referred
as the difference objective function, measures user i’s
contribution to the total system received reward, making
it more learnable without compromising its alignment
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quality with other existing users in the system. Formally,
the difference function can be written as

gdiffi (t) = Di(t) ,
n∑
k=1

rk(t)−
n∑

k=1,k 6=i

r−ik (t), (7)

where r−ik (t) denotes the reward of user k if user i’s
interference is removed.

It is worth stressing that the difference between the functions
proposed in [6] and those proposed and studied in this work
is three-fold: One, our proposed objective functions are cross-
layer aware in a way that the reward a user receives depends
on the consumed power level and the channel characteristics
(this is provided via Eq. (1)). The second difference is that
our proposed techniques are energy-aware in a way that the
channel selection method (to be described later) accounts for
the power consumption of the users via adaptive power control.
Third, each user is allowed to access and use more than one
spectrum band at the same time; that is, users have multi-
channel access capabilities. Therefore, throughout the rest of
the paper, we will refer to our proposed techniques as energy
and cross-layer aware objective functions to distinguish them
from those proposed in [6].

IV. LEARNING-BASED MULTICHANNEL DSA WITH
ADAPTIVE POWER ALLOCATION

The joint spectrum and power resource allocation problem
can be formulated as

max
{a(j)i ,P

(j)
i }

n∑
i=1

ri(t)

s.t. 0 ≤ P (j)
i ≤ P (j),max

i i ∈ {1...n}, j ∈ {1...m}
m∑
j=1

a
(j)
i P

(j)
i ≤ Pmaxi i ∈ {1...n}

1 ≤
m∑
j=1

a
(j)
i ≤ mmax

i i ∈ {1...n}

(8)
where Pmaxi is user i’s maximum transmit power, P (j),max

i is
user i’s maximum allowed power per sub-band j, and mmax

i

is user i’s maximum number of used sub-bands.
In this problem, the objective is to maximize the total

obtained reward by all the users while respecting some con-
straints. The two first constraints serve to limit the energy
consumption; the first is a budget power per user and the
second is a maximum power per band which can serve to limit
the generated interference, while the last constraint controls the
multi-carrier complexity by limiting the number of sub-bands
per user.

A. Challenge of the Learning Algorithm

Our proposed approach consists of extending the technique
proposed in [6] to account for the power consumption when
allocating the spectrum resources among the users. The ap-
proach consists of employing a learning algorithm, e.g. Q-
learning [24], to evaluate the best possible channel/power
allocation for each user. For that each user stores in a table a

Q-value for each possible allocation called state. The Q-value
gives an idea about the quality of the state using its reward
history and future estimation. The Q-value of a selected state
j by a user i at a time slot t is updated using the chosen
objective function gi(t) as follows

Q
(j)
i (t) = (1− α)Q(j)

i (t− 1) + αgi(t), (9)

where α is a weighting factor chosen to control the importance
of the effect of past information and present information in
the Q-value. In single channel access the state is only a scalar
representing the selected sub-band.

Accounting for the power resources when allocating the
spectrum resources, though increases the spectrum efficiency
as will be seen later, comes at a cost. The additional degree
of freedom with the possibility of allocating different power
levels on multiple channel sub-bands makes the resource
allocation optimization problem a mixed integer program-
ming (MIP) problem. The most intuitive approach consists
in extending the state to accommodate the selected bands and
allocated power per sub-band. For that, we consider Li discrete
possible power levels per sub-band for each user i. Then,
instead of searching the selected band per user (m possibilities
per user), the new unknown variable is a vector of Li × m
scalars (power allocated per sub-band).

The new state can take
mmaxi∑
j=0

(
m
j

)
Lji possibilities, where

Lji is the number of non-zero possible power levels for user

i. This quantity is upper-bounded by
m∑
j=1

(
m
j

)
Lji = (Li+

1)m since mmax
i ≤ m.

The performance of the learning algorithm depends closely
on the size of the searched space of the unknown variables
in terms of computational complexity as well as optimality.
In terms of computational complexity, searching the best
action at each time slot requires to parse all possible actions
to determine the best one. Thus as the search space’s size
increases, the computational complexity increases. In terms
of optimality, learnability is affected by the decrease of the
probability of finding the best action as the search state’s
increased. This results in needing more time slots to reach the
optimal performance. On the other hand, decreasing the search
space size results in lower degrees of freedom in allocating
the available power among the used sub-bands which affects
considerably the performance and makes the adaptive power
approach non useful. Thus, we deduce that using discrete
power levels is not a suitable solution for our problem.

B. Disjoint Channel and Power Allocation

To overcome the raised challenges of applying the learning
algorithm in our problem, we propose, instead, a two-step
algorithm that consists of using learning to determine only
the channel-allocation mapping. Then, determining the power
allocation by solving a pure real optimization problem.

1) Learning-Based Channel Selection: In this phase, learn-
ing will be employed to find only the set of channel bands to be
used. Specifically, the best set of channel bands corresponds to
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the available sub-bands with the maximal Q-table value since
the users are allowed to select more than one band.

In this approach, the Q-table stores a Q-value for each possi-
ble set of bands that will be updated using Equation (9). Taking
into consideration the constraint on the maximal number of the
allowed bands per user, the total number of the possible sets

is
∑mmaxi
j=0

(
m
j

)
. This quantity is upper-bounded by 2m

(since mmax
i ≤ m and

∑m
j=0

(
m
j

)
= 2m). We note here a

considerable decrease in the search space size which will result
in a notable reduction of the computational complexity of the
learning algorithm and an improved learnability on the price
of a sub-optimality due to di-association of channels selection
and power allocation.

2) Power Allocation Optimization: Having selected the
channel sub-bands for each user after the first phase, the
problem of determining the allocated power per sub-band for
each user can be formulated as a constrained optimization
problem. In this sub-problem, the sub-bands allocation indexes
{a(j)i } are known and the objective for each user is to
determine the power to be allocated for each used sub-band
P

(j)
i . The optimization problem for each user i is formulated

as
max

{P (j)
i }a(j)

i
=1

ri(t)

S.t
ml∑
j=1

a
(j)
i P

(j)
i ≤ Pmaxi

(10)

In ordinary resource allocation problems where the reward
ri(t) is exactly equal to the throughput Ri(t), the solution to
this problem can be found explicitly using a water-filling algo-
rithm [25]. But when the reward is more complex, the problem
becomes intractable analytically while being still convex if
the reward function is concave in the power variables. In this
case, a suitable numerical approach such as the interior point
method could be used to determine the best power allocation
over the selected bands. In the case of non-concave reward
functions, more complex numerical solution approaches could
be employed as in [26]. The studied reward functions (2), (3),
and (4) are not necessarily concave which will make the
optimization more challenging.

C. Independent Channels Selection Approach

Although, the proposed di-association between the channels
and power allocation allowed to reduce the learning search
space notably, it is still exponential as function of the number
of bands which makes it unfeasible for systems with high
number of bands. In addition, during the first phase, channel
selection is done on a per group basis (i.e., the combination of
bands with the highest Q-values). Thus, channels are highly
dependent on each other which can cause a problem in case of
unavailability of one of them or deterioration of its gain. Thus,
in the following, we propose to lower the learning complexity
by doing the bands selection for each band independently. In
this approach, the Q-table stores a Q-value for each band. This
method allows to reduce significantly the search space size
of the Q-learner from exponential to linear as function of the

number of bands (mmax
i ×m). In addition, it allows to remove

the inter-band dependency which was forced by the group
selection and which can harm the performance when there
is a change of one or a part of the bands (dynamic scenario).
In this method, a problem occurs as the reward function could
not be computed for each channel independently. In fact, the
reward corresponds to the use of the selected set of channels.
In our work, we propose to compute the reward function per
channel from the reward function of the selected set using two
methods:
• Equal reward: In this method, we simply assume that

all selected channels contributed equally to the obtained
reward and assign to them the same reward as the
obtained globally.

• Proportional reward: In this method, we compute the
proportional contribution of each channel in the obtained
reward. Even though this reward does not correspond to
the real reward of that channel as it is dependent on the
other bands selected with it, it can give an idea about
the channel strength and occupancy and converges to the
absolute reward of the channel with the learning as the
channel will be selected with different combinations of
other channels.

Note that in this approach, we modify only the channel
selection phase while the power allocation procedure remains
the same as in the previous approach.

Algorithm 1 summarizes the channels selection and power
allocation procedure.

Algorithm 1 Learning-based channel and power allocation for
large-scale DSA system.

Initialization: initialize Q-table as zero for all users and all
channels;

for all time slot do

for all DSA user do
1) Channel Selection: select the channels to be used

either randomly with probability ε or by taking the
ones with the highest value in the Q-table with
probability 1− ε;

2) Power Allocation: determine the optimal power
allocation over the selected channels by solving the
optimization problem (10);

3) Reward Computation: Measure the obtained
throughput and compute the corresponding reward
based on the considered traffic model using (2), (3),
or (4);

4) Q-table Update update the Q-value of the used
channels using (9);

end for
end for

V. SPECTRUM AND POWER ALLOCATION IN COGNITIVE
RADIO SYSTEMS

In cognitive radios, unlicensed users (called cognitive users)
are allowed to share the spectrum with the owners of the
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spectrum or licensed users (called primary users) under certain
constraints of interference that should be respected by the
cognitive users. In the presence of primary users, the DSA
problem is more challenging as additional constraints should
be considered to limit the interference to the primary users.
Next, we will consider different cognitive radio schemes with
variable interference constraints and present the approach to
adapt our proposed solution to solve the problem accordingly.

A. Opportunistic Cognitive Access
In this scheme, also called interweave scheme, cognitive

users are urged to vacate the channels occupied by the primary
users. Thus, the spectrum sensing is necessary to locate the
occupied bands by the primary users to avoid colliding with
them. Spectrum sensing methods are not within the scope of
this paper and we assume that sensing is done perfectly by
each user independently. As a result, in this scheme the set of
the available bands for access to the cognitive users is variable
over time. Each user will do a short spectrum sensing phase
before starting its spectrum and power allocation. In order to
account for this opportunistic access, we modify our algorithm
by updating the list of the available channels for access at
each time slot according to their occupation by the primary
users. Thus, the bands selection phase will be limited over
the unoccupied channels while the second phase of the power
allocation remains similar to the initial algorithm.

B. Underlay Cognitive Access
In this scheme, the cognitive users are allowed to transmit

in all the channels but urged to tune their transmission power
in order to limit the interference caused to the primary users
to a certain maximum threshold. Considering a peak power
constraint of this form

n∑
i=1

a
(j)
i (t)|h(j)i,p(t)|

2
P

(j)
i (t) ≤ I(j)p (t), ∀j ∈ {1...m}, (11)

where |h(j)i,p(t)|
2

is the gain of the interference channel from
the secondary user j to the primary user and I

(j)
p (t) is the

peak interference threshold of the primary user at band j in
time episode t. Adding this interference constraint to the DSA
problem and using the band selection approach, we have

a
(j)
i (t)P

(j)
i (t) ≤ I

(j)
p (t)

|h(j)i,p(t)|
2 , ∀j ∈ {1...m},∀i ∈ {1...n}.

(12)
Thus, with comparison to the original problem, the new
constraint will represent the maximum power per band for
each user to limit the interference to the primary user owning
the channel. This additional constraint will not affect the first
phase of the spectrum selection using learning but affects the
second phase which consists of allocating the power optimally
among the selected bands which should be tuned to take into
consideration this new constraint.

C. Joint Opportunistic-Underlay Cognitive Access
We propose a new hybrid access mode for cognitive users

which is a combination between the opportunistic and the

underlay modes to allow more access opportunities to the
cognitive users while still protecting the primary users. In
this hybrid mode, the cognitive users perform initially the
spectrum sensing. Then, they are allowed to transmit without
any limit of interference in the unoccupied bands (like in the
opportunistic scheme), while in the occupied bands, they can
still transmit while respecting the interference thresholds fixed
by the primary users. Explicitly, the new constraint is written
as
n∑
i=1

b(j)p (t)a
(j)
i (t)|h(j)i,p(t)|

2
P

(j)
i (t) ≤ I(j)p (t), ∀j ∈ {1...m},

(13)
where b(j)p (t) is an index representing the primary user band
occupancy (i.e., b(j)p (t) = 1 if band j is occupied by the
primary user at time t and b(j)p (t) = 0 otherwise). We conclude
that the problem in this mode can be formulated similarly
to the underlay mode with the difference that the maximum
power per band will only be forced on the occupied bands.
The bands’ selection phase remains similar to the original
algorithms as all channels are accessible to the cognitive users
for transmission.

VI. PERFORMANCE ANALYSIS

A. Complexity Analysis

As explained earlier, the computational complexity of the
learning algorithm is proportional to the size of the search
space which stores all possible states that can be allocated.
In Table I, we summarize the complexity of each proposed
algorithm by firstly presenting the learning table search space
and then deducing the total complexity for each user. We
denote by CPA(m) the complexity of the power allocation
optimization over m channels to solve the problem (10).
This complexity is not explicitly shown as it depends on the
considered reward function.

B. Numerical Simulations

We consider an uplink cellular network where the cognitive
users are generated randomly inside a circular cell of radius
d = 1 Km. The base station (receiver for all users) is located in
the center of the cell. The channel gains are generated accord-
ing to a Rayleigh distribution [27] of mean power equal to the
distance-based pathloss ( 1

dη ) with a pathloss exponent η = 3.
The budget power per user is taken as Pmaxi = 0.1 Watt.
For the elastic and inelastic reward functions, the threshold
of throughput is set to Rth = 50 kbps and the exponential
decaying factor is set to β = 2 while for the energy efficiency
reward, the minimum fixed consumed power is taken equal
to Pmaxi . A normalized channel width Bj = 10 KHz is used
while the noise floor is set to N0 = −110 dB/Hz. For the
underlay cognitive radio scheme, the interference threshold
is set to be equal to the noise floor. We denote by per set
selection the method presented in subsection IV-B and by per
channel selection the method presented in subsection IV-C.
Unless explicitly noted, we consider the elastic reward func-
tion presented in Equation (2).
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TABLE I
LEARNING SEARCH SIZE AND ALGORITHMS COMPLEXITY

Algorithm Learning table size Total Complexity

Joint Learning of Channels and Power Allocation
mmaxi∑
j=0

(
m
j

)
Lji O

(
(Li + 1)m

)
Disjoint Per-set Channels Learning and Power optimization

mmaxi∑
j=0

(
m
j

)
O
(
2m + CPA(m)

)
Disjoint Per Channel Learning and Power optimization mmax

i ×m O
(
m2 + CPA(m)

)
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Fig. 1. Impact of multi-band spectrum access with adaptive power allocation
capabilities on the achievable performance under the difference objective
function with per set selection method (500 users and 50 bands).

In Fig. 1, we show the performance (in terms of the per-
user/agent average received rewards) of our proposed energy
and cross-layer aware objective functions with multiple chan-
nel access and adaptive power allocation capabilities with dif-
ferent number of bands allowed per each user. We observe that
the multiple channel allocation/access capability enhances the
performance when compared with the single channel access
by increasing the obtained average reward. This increased
reward is a direct result of the benefit from the exploitation
of channel diversity using this multiple channel access. In
the proposed model, users are free to allocate more than one
channel to maximize their reward. In addition, the proposed
model allows the control of the energy consumption through
the power constraint.

Fig. 2 shows the performance obtained under different
methods for the channel selections in the learning phase
when enabled with multiple access bands and adaptive power
allocation capabilities. This figure shows the trade-off between
complexity and optimality of the selection method. As shown
earlier, the per set selection has an exponential complexity for
the learning search but it achieves the best performance while
the per channel selection allows to linearize the search price
on the price of a performance degradation.

Fig. 3 shows the performance obtained under each of the
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Fig. 2. Comparison between different methods for bands’ selection with
difference objective function (500 users, 50 bands, maximum 30 bands per
user).

three studied functions when enabled with multiple access
bands and adaptive power allocation capabilities. First, This
figure confirms the conclusions drawn in [6] on the efficiency
of the difference objective function in achieving better perfor-
mance than the intrinsic and global objective functions when
enabled with our proposed cross-layer and energy aware fea-
tures. Second, compared to the single channel scenario studied
in [6], we note a relative deterioration of the performance
obtained using the global and difference objective functions
relatively to the intrinsic objective. This is explained by the
fact that in this work, different actions affect the user’s reward
other than the users’ selected channels which are the channel
gains that vary across time slots and the power allocated over
the selected sub-channels.

In Fig. 4, we plot the performance of the proposed energy
and cross-layer aware techniques with multiple channel access
and adaptive power allocation capabilities for two different
network topologies by varying the cell radius. First, we
observe that the difference objective functions outperform the
other two regardless of the network topology. Also, note that
this performance amelioration increases as the cell radius
decreases. This is simply because the reward is asymptotically
inversely proportional to the distance.

In Fig. 5, we show the performance (in terms of the per-
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Fig. 3. Impact of multi-band spectrum access and adaptive power allocation
capabilities on the achievable performance under the three studied objective
functions: gi, G, and Di (100 users, 20 bands).
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Fig. 4. Impact of network topology on the performance obtained under the
three studied objective functions when enabled with multi-band spectrum
access and adaptive power allocation capabilities (100 users, 20 bands).

user/agent average received rewards) of our proposed en-
ergy and cross-layer aware objective functions with multiple
channel access and adaptive power allocation capabilities in
a cognitive radio set-up where channel bands are occupied
in average 50% of the time by the primary users. We plot
the performance for different interference scenarios as shown
in the figure’s legend while using two methods for chan-
nel selections in the learning phase. This plot confirms the
motivation for the proposed per channel selection method
as the learning is not affected by the presence of primary
users in the opportunistic and joint opportunistic-underlay
scenarios oppositely to the case using the per set selection
approach where the performance degrades with the primary
users’ presence, as the channels are forced to be selected in
groups.

In Fig. 6, we present the performance result under the
energy efficiency reward model presented in Equation (4) with
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Fig. 5. Performance comparison in cognitive radio scenario (100 users, 10
bands).

0 100 200 300 400 500
3

3.5

4

4.5

5

5.5

6

Time episodes

P
er

−
ag

en
t a

ve
ra

ge
 r

ew
ar

d
 (

in
 b

ps
/W

/H
z)

 

 

Joint opportunistic−underlay
Underlay

Per set selection

Per channel selection

Fig. 6. Performance comparison for Energy efficiency reward model (100
users, 10 bands, maximum 5 bands per user).

50% primary users’ activity for two scenarios of the cognitive
interference scheme. These results confirm the advantages
of the new proposed method as it allows to achieve better
performance with this reward as it is more sensitive to power
consumption per band which reflects the real gain of the
channel.

In Fig. 7, we present a comparison between the proposed
Learning based technique to a conventional algorithm, namely
the iterative water-filling algorithm known to achieve close-
optimal solution in a linear complexity [28]. In this case,
we consider the reward function as exactly the achieved rate
and consider only the per set of channels method. This figure
proves the efficiency of the learning approach as it allows to
gradually outperform the water-filling algorithm and converge
to a better solution thanks to the learning from previous
experiences. In this figure, we also provide the error bar limits
of the presented results based on the standard deviation to
show the accuracy of the results. For instance, we observe a
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Fig. 7. Comparison of the proposed Learning based approach with an iterative
water-filling based solution for a reward equal to the throughput (100 users,
10 bands).

stable error across our simulations which conserves the out-
performance of our solution.

VII. CONCLUSION

This paper proposes learning-based, cross-layer and energy
aware resource allocation techniques with multi-channel spec-
trum access and adaptive power allocation capabilities. It also
proposes two heuristics for allocating spectrum and power
resources among users. The proposed heuristics overcome
the complexity issues by splitting this resource allocation
problem into two sub-optimal problems, spectrum allocation
problem and power allocation problem, and solves each of
them separately. The spectrum allocation problem is solved
using learning methods whereas, the power allocation one is
formulated as an optimization problem. Our simulation results
show that the proposed techniques perform well in terms of
the per-user average achieved rewards because of their energy
and cross-layer awareness and their multiple channel access
capability.
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