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Abstract—We propose efficient control strategies for deciding
the amount of energy that a battery needs to charge/discharge
over time with the objective of minimizing the Peak Charge
and the Energy Charge components of the Data Center (DC)
electricity bill. We consider first the case where the DC’s power
demands throughout the whole billing cycle are known and we
present an optimal peak shaving control strategy for a battery
that has certain leakage and conversion losses. We then relax
this assumption and propose an efficient battery control strategy
when we only know predictions of the DC’s power demands in
a short duration in the future. Several comparative studies are
conducted based on real traces from a Google DC in order to
validate the proposed techniques.

Index Terms—energy efficiency, energy storage, peak shaving,
data centers, convex optimization.

I. BACKGROUND

According to [1], large IT companies such as Google,
Microsoft and Amazon spend millions of dollars per month
to pay the electricity bills associated with their Data Centers
(DCs). These electricity bills account for 30% to 50% of the
total DCs operational expenses [2]. Thus, there is clearly a
great monetary incentive to cut down those expenses.

The electricity bill that the DC receives from the grid
company at the end of the billing cycle (e.g. month) is made up
of two components [3]: i) Energy Charge: which is dependent
on how much energy (measured in kilo Watt hour (kWh)) that
the DC consumed throughout the whole billing cycle, and ii)
Peak Charge: which is a penalty that is proportional to the
maximum amount of power (measured in kilo Watt (kW))
that was drawn by the DC during the whole billing cycle. This
penalty is very expensive and is enforced by the grid company
to encourage the DC to balance its power demand and to
discourage the spiky power usage. The maximum amount of
power drawn by the DC is calculated in a time-slotted fashion
where the grid company calculates the DC’s average power
usage during each slot of a certain length (e.g. 15-minutes),
and the peak charge is calculated based on the slot with the
maximum average power among all the billing cycle’s slots.

The majority of the techniques that were proposed previ-
ously to cut down the electricity bill focused exclusively on
minimizing the Energy Charge while completely ignoring the
Peak Charge. Techniques such as energy-aware scheduling [4,
5], job migration [6] and resource over-booking [7] reduce the
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Energy Charge by consolidating the DC’s workload on fewer
number of ON servers which allows switching a larger number
of servers to sleep to save energy. Our work complements
those techniques and focuses on minimizing the Peak Charge
component of the electricity bill.

Minimizing the Peak Charge is achieved through peak
shaving techniques which are divided into two categories: i)
Workload Modulation: where some of the DC’s computing
tasks are dropped [8] or delayed [9] during peak periods, and
ii) Energy Storage: where extra power is drawn from the grid
during low-demand periods and is stored in batteries so that it
can be used later to reduce the amount of power drawn from
the grid during peak periods.

The focus of our work is on shaving the peak using
Energy Storage as this technique does not cause performance
degradation unlike the Workload Modulation technique [8, 9].
Furthermore, DCs are already supplied with an Uninterrupted
Power Supply (UPS) battery that can be used for peak shaving.
Such UPS battery is typically used to power the DC until the
diesel generator starts generating power when a power outage
occurs. In fact, the UPS battery found in today’s DCs can
store enough energy to power the DC when operating at its
maximum capacity for up to 30 minutes, while the transition
time needed to run the diesel generator is less than 20 seconds
[10]. This battery can thus always store an amount of energy
enough to power the DC during the short transition period (to
be used if a power outage occurs), while the remaining storage
capacity can be utilized for peak shaving.

The main challenge with the Energy Storage peak shaving
technique is to come up with a good control strategy that
decides when to charge (discharge) energy and the amount
of energy that needs to be charged (discharged). Two aspects
make finding an efficient strategy further challenging:

• Battery Energy Losses: Batteries are not ideal devices in
reality as they lose a certain percentage of their stored
energy over time and these losses are called leakage
losses. Also when routing a certain amount of energy
to the battery, a certain percentage of the routed energy
gets lost due to conversion operations and such losses are
called conversion losses.

• Workload Uncertainty: The DC’s workload is quite spo-
radic and the duration of the billing cycle is long (typ-
ically one month). This makes it hard to make optimal
control decisions as it is hard to know the DC’s future



power demands throughout the whole billing cycle.
This paper proposes a battery control strategy that considers

these two aspects. We start first by assuming that the DC’s
power demands throughout the whole billing cycle are known
in advance (full-horizon knowledge), and we present an ap-
proach that finds the optimal control strategy for a battery
with specific leakage and conversion losses. The proposed
full-horizon approach provides an upper bound of how much
monetary savings a certain type of battery can achieve and
helps with selecting what type of battery the DC should be
equipped with based on the DC’s workload demands. Unlike
the dynamic programming approach proposed in [11], our pro-
posed full-horizon approach formulates a convex optimization
problem that allows considering both types of losses (conver-
sion and leakage) when calculating the optimal strategy.

We then consider the case where we only know the DC’s
power demand for a short duration in future (limited-horizon
knowledge), where we propose an algorithm that uses this
knowledge to decide at each time step how much energy the
battery needs to charge or discharge while accounting for the
battery’s energy losses. The proposed limited-horizon control
algorithm is compared against the well-known Threshold
control strategy [12] where we show that knowing the future
demands for a short duration of one hour allows our algorithm
to reduce a significant portion of the electricity bill compared
to the Threshold control strategy.

To sum everything up, our main contributions are the
following. We:

• Propose an optimal energy storage control strategy for a
lossy battery under full-horizon knowledge of the future
DC’s power demands.

• Propose an algorithm for making efficient energy storage
control decisions that considers limited-horizon knowl-
edge of the future DC’s power demands while accounting
for battery losses.

• Evaluate our proposals and conduct comparative studies
using real traces from a Google DC.

The rest is organized as follows. Section II introduces
Google DC traces and provides an experimental study that
illustrates why one should worry about reducing the DC’s
Peak Charge. Section III explains the approach for finding the
optimal full-horizon energy storage control strategy. Section
IV describes the limited-horizon algorithm. Section V provides
comparative evaluation of our proposed approaches. Finally,
Section VI concludes and provides directions for future work.

II. THE CASE FOR GOOGLE DC

In order to illustrate the significance contribution of the Peak
Charge component to the total electricity bill, we conduct an
experiment where we rely on real workload traces [13] from a
Google DC that is made up of around 12K servers to calculate
how much power that DC consumes over time. Google traces
report the tasks that clients submitted to one of Google DCs.
Each task is assigned a linux container and utilizes an amount
of CPU resources over time. In order to calculate Google
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Fig. 1: The power drawn from the Grid by Google DC.
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Fig. 2: Breakdown of Google DC total electricity bill (based
on the power consumption in Fig. 1).

DC’s power consumption, we parse the traces and track at
each time slot how much CPU resources are being utilized
by all the tasks that are currently hosted on the Google DC.
We then calculate for each time slot what is the least number
of servers needed to be kept ON to server those tasks as if
state-of-the-art Energy Charge minimizing techniques [4, 6, 7]
were applied to consolidate the DC’s workload. The power
consumption of each ON server is then calculated based on
the power model in [14] where the server’s consumed power,
Pon increases linearly from Pidle to Ppeak as the server’s CPU
utilization, ν, increases from 0 to 100%. More specifically,
Pon(ν) = Pidle + ν(Ppeak − Pidle), where Ppeak = 400
and Pidle = 200 Watts. The rest of the DC servers that are
not hosting any tasks don’t consume any power as they are
assumed to be switched off completely or put to highly power
efficient sleep states to save energy. Google DC is assumed
to have a Power Usage Efficiency (PUE) of 1.7, which is a
typical value for DCs [15] and means that for every watt spent
on IT power, an additional 0.7 watt is spent by non-computing
infrastructure (e.g. cooling devices).

Fig. 1 plots the calculated power drawn by Google DC
(referred to by No Peak Shaving) over the entire trace period
(29 days). Fig. 1 also plots the power consumption of the
Google DC when the same energy that was consumed by
the DC during the 29-day period was spread evenly over the
entire billing duration. This case is referred to by Optimal
Peak Shaving as it represents the case where the DC had the
same Energy Charge as the No Peak Shaving case but where
the Peak Charge was minimal.



We then calculate the electricity bill for Google DC during
the entire 29-day period1 and using real power prices [16],
where the price to calculate the Energy Charge is α =
0.05 $/kWh, whereas the price to calculate the Peak Charge
is β = 20 $/kW and where the Peak Charge is calculated
based on dividing the billing cycle into slots of length τ = 15
minutes. We plot in Fig 2 the contribution of both the Energy
Charge and the Peak Charge components to the total electricity
bill based on the power consumption of No Peak Shaving
and Optimal Peak Shaving cases that were shown in Fig. 1.
Observe that for the No Peak Shaving case, the Peak Charge
contributes to 56 % of the total electricity bill while the Energy
Charge accounts for the remaining 44 %. Observe also that the
Optimal Peak Shaving case reduces the Peak Charge paid by
the DC during that month by $ 86K when compared with the
No Peak Shaving case, which translates into a 31% reduction
of the total electricity bill. These numbers highlight the high
contribution of the Peak Charge to the total electricity bill and
show the potentials for saving significant amount of money by
applying peak shaving techniques such as the Energy Storage
technique discussed in this paper.

III. FULL-HORIZON OPTIMAL CONTROL

A. Power Notations and Battery Model:

We consider a time-slotted model, where the whole billing
cycle is divided into n slots and each slot has a duration of
τ minutes. The index i is used to refer to one of the billing
cycle’s slots where 1 ≤ i ≤ n holds. For a slot i, the following
notations are used:

• Di: is the DC’s power demands that must be met during
the ith slot.

• gi: is the power taken from the grid to serve the DC’s
power demands during the ith slot.

• c−i : is the power discharged from the battery to serve the
DC’s power demands during the ith slot.

• c+i : is the power taken from the grid to charge the battery
during the ith slot.

• ti: is the total power taken from the grid during the ith

slot.
• ri: is the amount of power stored in the battery at the

beginning of the ith slot.
Where all the above mentioned power notations are measured
in kilo Watt and the flow of these power notations is shown
in Fig. 3.

The specs of the battery are summarized by the tuple Φ =
(ηc, ηl, C

+
max, C

−
max, Rmax), where:

• ηc represents the battery’s conversion efficiency and falls
within the range (0, 1], and means that only ηcc+i percent
out of the c+i power that the battery draws from the grid
ends up being stored in the battery, whereas the remaining
(1− ηc)c+i gets lost due to conversion operations.

1Google revealed workload traces for only 29 days and thus in our analysis
we consider the length of the billing cycle to be 29 days rather than a month
of 30 or 31 days.
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Fig. 3: Illustration of the power flow.

• ηl represents the battery’s leakage efficiency and falls
within the range (0, 1] and means that the battery losses
(1− ηl) percent of its stored energy per one slot of time
due to leakage losses.

• C+
max and C−

max represent the maximum amount of
power that the battery can draw from the grid and that
the battery can discharge to the data center respectively.

• Rmax represents the battery’s maximum storage capacity.
In addition to those specs that are summarized by Φ, the initial
energy that is stored in the battery at the beginning of the first
slot in the billing cycle is referred to by Rinit.

B. Formulated Problem:

Given that we know the DC’s power demands throughout
the whole billing period referred to by ~D = {D1, D2, ..., Dn},
the specs of the battery Φ, and the initial amount of energy that
the battery holds Rinit, we find the optimal control strategy
with the minimal electricity bill by solving the following
optimization problem.

Objective: We seek to minimize the total electricity bill
which is made up of the Energy Charge and the Peak Charge
and thus can be expressed as:

Minimize αξ

n∑
i=1

ti︸ ︷︷ ︸
Energy Charge

+ βmax
i
{ti}︸ ︷︷ ︸

Peak Charge

Where: α is the energy price measured in ($/kWh), ξ is a
constant that converts the total energy that the DC draws from
the grid into kWh and is calculated as: ξ = τ/60, and β is
the peak price measured in ($/kW ).

Constraints: The optimization problem is solved subject to
the following constraints. One,

ti = gi + c+i , 1 ≤ i ≤ n (C.1)

which states that for each time slot i the total power drawn
from the grid is the aggregation of the power used to sever
the DC’s power demand and the power drawn to be stored in
the battery. Two,

gi + c−i = Di , 1 ≤ i ≤ n (C.2)

which states that the DC’s power demand must be met by the
power taken from the grid and the power discharged from the
battery for each time slot i. Three,

ri =

{
Rinit , i = 1

ηcc
+
i−1 + ηl(ri−1 − c−i−1) , 1 < i ≤ n

(C.3)



Which calculates how much power will be stored in the
battery at the beginning of each slot while accounting for the
conversion and leakage losses. Four,

c−i ≤ ri , 1 ≤ i ≤ n (C.4)

which states that the amount of discharged power at time slot
i must not exceed the battery’s stored energy. Five,

c−i ≤ C
−
max , 1 ≤ i ≤ n (C.5)

which states that the discharged power at any time slot must
not exceed the maximum discharging rate that the battery
supports. Six,

c+i ≤ C
+
max , 1 ≤ i ≤ n (C.6)

which states that the charged power at any time slot must not
exceed the maximum supported charging rate. Seven,

ri ≤ Rmax , 1 ≤ i ≤ n (C.7)

which states that the amount of energy that the battery stores is
bounded by the battery’s maximum storage capacity. Finally,

ti, gi, c
+
i , c

−
i , ri ≥ 0 , 1 ≤ i ≤ n (C.8)

which states that the decision variables are all non-negative.
The formulated problem is a convex optimization problem

[17] as the objective is a convex function that we seek to
minimize, all equality constraint functions are affine, and all
non-equality constraints are convex functions. The solution of
convex problems can be found quickly and there are well-
developed tools that can be used to calculate the optimal
solution efficiently such as the CVX package [18], which is
the one used in our implementation.

IV. LIMITED-HORIZON CONTROL

We discussed previously how to find the optimal control
strategy for a battery with leakage and conversion losses when
the DC’s power demands throughout the whole billing cycle
are known. We now consider the case where we only know
predictions of the DC’s power demands in a short duration
in the future (referred to as the prediction window), and we
propose an algorithm that uses these predictions in order to
decide how much energy the battery needs to charge/discharge
at each time slot while accounting for the battery’s energy
losses. A pseudo code of the proposed algorithm is presented
in order to better illustrate our algorithm. This pseudo code
gets launched at the beginning of each slot j in the billing
cycle and takes the following inputs:

• j the index of the current slot for which battery control
decisions need to be made, where 1 ≤ j ≤ n.

• Dj the power demanded by the DC at the jth slot.
• Φ the specs of the battery.
• w the length of the prediction window which represents

the number of slots in the future for which the DC’s
power demands need to be predicted.

• tmax the maximal amount of power drawn from the grid
so far (up to the jth slot in the current billing cycle), which

is calculated as: tmax =

{
0 , j = 1

max1≤k<j{tk} , j > 1
.

As illustrated in the pseudo code, our proposed algorithm
starts by predicting the power demands of the DC in the future
w slots (Line 1), where these predicted power demands are
referred to by D̂j+1, D̂j+2, . . . , D̂j+w. These predicted de-
mands can be obtained using any machine learning technique
that provides accurate predictions. The focus of this paper is
on how to use these predictions to make good battery control
decisions and not on what technique to use to obtain accurate
predictions. The second step that the algorithm performs is
to fetch rj which represents the amount of available stored
energy in the battery at the beginning of the jth slot (after
accounting for both conversion and leakage losses). Now in or-
der to determine the best control actions, our algorithm solves
in Line 3 a convex optimization problem called the Limited-
Horizon Optimization Problem (LHOP) that has similarity
with full-horizon optimization problem that was introduced
in Section III but with the following key differences. First,
LHOP seeks to minimize only the electricity costs associated
with providing the DC’s predicted power demands in the
period from slot j to slot j +w. Recall that the Peak Charge
is calculated based on the slot with the maximum power
drawn from the grid throughout the whole billing cycle. When
calculating the Peak Charge, LHOP considers the maximum
power drawn from the grid from the the first slot in the billing
cycle and up to the j + w slots. The slots beyond j + w are
not considered by LHOP as it is hard to predict the DC’s
power demands for more than w slots. The constraints (C’.1 to
C’.8) in LHOP are the exact equivalent of the constraints (C.1
to C.8) that were explained before for the full optimization
problem with the exceptions that the constraints consider only
the decision variables involved in the period from slot j and
up to j + w and that the control decisions need to meet the
predicted DC power demands. LHOP is a convex optimization
problem [17] as the objective is a convex function that we seek
to minimize, all equality constraint functions are affine, and all
non-equality constraints are convex functions. Solving LHOP
returns the best control decisions that need to be made in the
period from slot j and up to slot j + w. Our algorithm then
commits only to the control decisions in the jth slot (Line 4)
that are returned by solving LHOP, while the control decisions
in each of the following slots will be determined later when
the pseudo code of our algorithm is launched again at the
beginning of each one of those following slots.

V. EVALUATION

We rely on the real power prices and on the estimated
power demands for Google DC that were introduced in Section
II, and we conduct comparative experiments to evaluate how
much money Google DC ends up saving in a one billing cycle
when operating a battery of a certain type using our proposed
peak shaving battery control techniques. Different types of
batteries are considered in our experiments where we evaluate



Algorithm 1 LimitedHorizonControl
(
j, Dj , Φ, w, tmax

)
1: [

Predicted Power Demands︷ ︸︸ ︷
D̂j+1, D̂j+2, . . . , D̂j+w ]← predictFutureDemands( w )

2: rj ← getAmountOfStoredEnergy();
3: Solve Limited-Horizon Optimization Problem:

Minimize αξ

j+w∑
i=j

ti︸ ︷︷ ︸
Energy Charge

+ βmax{ max
j≤i≤j+w

{ti} , tmax}︸ ︷︷ ︸
Peak Charge

subject to
ti = gi + c+i , j ≤ i ≤ j + w (C’.1)

gi + c−i =

{
Di , i = j

D̂i , j < i ≤ j + w
(C’.2)

ri =

{
rj , i = j

ηcc
+
i−1 + ηl(ri−1 − c−i−1) , j < i ≤ j + w

(C’.3)

c−i ≤ ri , j ≤ i ≤ j + w (C’.4)
c−i ≤ C

−
max , j ≤ i ≤ j + w (C’.5)

c+i ≤ C
+
max , j ≤ i ≤ j + w (C’.6)

ri ≤ Rmax , j ≤ i ≤ j + w (C’.7)
ti, gi, c

+
i , c
−
i , ri ≥ 0 , j ≤ i ≤ j + w (C’.8)

4: Make Control Actions Specified by (tj , gj , c+j , c−j )

the case when the DC is supplied by each of the following
battery types:

• Lead-Acid (LA): this battery type uses electrochemistry
to store and to discharge energy.

• Lithium-Ion (LI): relies also on electrochemistry but
uses different chemical components where the cathode is
a lithiated metal oxide and the anode is a graphite carbon.

• Ultra-Capacitors (UC): uses a double layer electro-
chemistry to store energy between the electrodes.

• Fly-Wheels (FW): uses the momentum of a
wheel/cylinder to store energy.

• Optimal (OPT): represents an ideal battery that has
zero conversion and leakage losses and unlimited charg-
ing/discharging rate.

The first four types represent the most popular battery tech-
nologies that are found in DCs [16], whereas the OPT battery
represent an unrealistic ideal battery. The specs of these
batteries are presented in Table I and are based on [16]. We
assume that there is no limit on the capacity of each battery
type (i.e., Rmax = ∞) and that there is no stored energy
initially at the beginning of the billing cycle when evaluating
the different types of batteries (i.e., Rinit = 0).

TABLE I: Specs for the considered battery types [16].

LA LI UC FW OPT

Conversion Efficiency (%) 75 85 95 95 100
Leakage Efficiency (% per day) 70 90 80 1 100
Max Charging Rate (mega Watt) 16 16 8 8 ∞

Max Discharging Rate (mega Watt) 8 8 8 8 ∞

A. Full-Horizon Control Evaluation

Fig. 4 shows the total electricity bill for running the Google
DC for a one billing cycle under different scenarios, where the
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Fig. 4: Full-horizon control monetary savings for the different
types of batteries based on Google traces.

total bill is broken down into the Energy Charge and the Peak
Charge for each scenario. The "No Peak Shaving" scenario
represents the case when the DC’s power demands are drawn
only from the grid without using any battery for peak shaving.
The other scenarios in Fig. 4 show the total electricity bill for
Google DC when different types of batteries were used to
shave the peak where each type of those batteries is operating
based on the decisions of the full-horizon controller that was
proposed in Section III. The results clearly highlight that the
DC’s total electricity bill can be reduced significantly if our
proposed full-horizon control technique was used to control
how much energy needs to be charged/discharged over time for
the different types of batteries. Observe that the total electricity
bill is lower for the LI and LA battery types when compared to
the FW and UC as the former types have lower leakage losses
than the latter types, which allows storing larger amount of
energy to be used to shave the peak that is encountered later,
without leaking much of their stored energy over time. The
Energy Charge of the FW, UC, LI and LA batteries are slightly
higher than those of "No Peak Shaving" due to the leakage and
conversion losses which increase the amount of energy that the
DC consumes over time. However, these extra Energy Charge
leads into significant reduction in the Peak Charge which leads
in turn into significant reduction of the total electricity bill.
It is worth mentioning that the results in Fig. 4 represent the
maximum amount of savings that each battery type can achieve
and thus can be considered as a factor when deciding what type
of battery a DC should be supplied with based on its power
demands. Other factors can also affect such choice including
the capital expenses and the facility space that each battery
type requires.

B. Limited-Horizon Control Evaluation

Fig. 5 shows the total electricity bill associated with running
Google DC for a one billing cycle when different types of
batteries are used for peak shaving. For each battery type, we
show the total electricity bill when operating the battery using
the following control techniques:

• Limited-Horizon (Oracle): is the control algorithm that
we proposed in Section IV when operating under 100%
accurate predictions of the DC’s power demand in each
of the following four slots (i.e., w = 4).
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Fig. 5: Comparative evaluation of the different control tech-
niques for each battery type based on Google traces.

• Limited-Horizon (Noisy): is similar to the previous case
with the exception that a random noise drawn from a
Gaussian distribution with zero mean and a standard
deviation of 200 kilo Watts is added to the predicted
power demand that are provided to our algorithm in each
time step. The added noise represents prediction errors
and can take either a positive or negative value to mimic
over or under estimation of the predicted power demands.

• Threshold: is a well-known technique [12] that compares
the demanded power at each slot against a threshold.
If the demanded power is below the threshold, then the
power difference is charged into the battery. Otherwise,
the battery discharges the difference. Tuning the threshold
for each battery type is done by evaluating different
threshold values on one-day traces and then picking the
value with the least electricity expenses as the selected
threshold.

In addition to those control techniques, we show the total
electricity bill for the No Peak Shaving and the Full-Horizon
control cases. From Fig. 5, observe that for each type of battery
the Limited-Horizon control (both Oracle and Nosy cases) had
a lower total electricity bill than the No Peak Shaving case. As
expected, the Noisy case had higher electricity bill than the
Oracle case due to the added prediction errors that affected
slightly the decisions of our algorithm. Obviously the total
electricity bill for the Limited-Horizon control is higher than
that of the Full-Horizon control as the latter has the advantage
of knowing the DC’s power demand throughout the whole
billing cycle which allows it to make the optimal battery
control decisions. Finally, observe that the Limited-Horizon
control under both Oracle and Noisy case outperformed the
well-known Threshold technique. These results are when the
Limited-Horizon Algorithm relied only on predictions of the
DC’s power demands in the following four slots. Recall that
each slot has a duration of 15 minutes and thus this represents
the case where our algorithm knows the predicted power
demands in a short duration of one hour in the future. Further
experiments (not included here due to space limitation) showed
that considering longer prediction window would reduce fur-
ther the electricity bill of the Limited-Horizon controller and
push it very close to the Optimal Full-Horizon case.

VI. CONCLUSION AND FUTURE WORK

This paper proposes efficient battery control strategies for
shaving the peak charge and for minimizing the total DC
electricity bill. Our proposed control strategies are based on
solving a well-formulated convex optimization problem that
considers both leakage and conversion battery losses and that
operates under full-knowledge or under limited-knowledge of
the DC’s future power demands. The monetary savings that
the proposed techniques achieve were estimated based on
real traces from a Google DC. For future work, we intend
to include other battery aspects (e.g. life efficiency, capital
cost and required space) as constraints in the full-horizon
optimization problem. We also plan to develop a technique
that can predict accurately the DC’s future power demands.
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