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Abstract—In this paper, we introduce a new green resource
allocation problem using hybrid powering of communication sys-
tems from renewable and non-renewable sources. The objective
is to efficiently allocate the power delivered from the different
micro-grids to satisfy the network requirements. Minimizing a
defined power cost function instead of the net power consumption
aims to encourage the use of the available renewable power
through collaboration between the base stations within and out-
side the different micro-grids. The different degrees of freedom
in the system, ranging from assignment of users to base stations,
possibility of switching the unnecessary base stations to the sleep
mode, dynamic power allocation, and dynamic allocation of the
available bandwidth, allow us to achieve important power cost
savings. Since the formulated optimization problem is a mixed
integer-real problem with a non-linear objective function, we
propose to solve the problem using the Branch and Bound (B&B)
approach which allows to obtain the optimal or a suboptimal so-
lution with a known distance to the optimal. The relaxed problem
is shown to be a convex optimization which allows to obtain the
lower bound. For practical applications with large number of
users, we propose a heuristic solution based on decomposing
the problem into two sub-problems. The users-to-base stations
assignment is solved using an algorithm inspired from the bin-
packing approach while the bandwidth allocation is performed
through the bulb-search approach. Simulation results confirm the
important savings in the non-renewable power consumption when
using the proposed approach and the efficiency of the proposed
disjointed algorithms.

Index Terms—green communications, smart grids, efficient
bandwidth allocation, power efficiency, renewable energy, branch
and bound.

I. INTRODUCTION

The dramatic increase of power generation costs and the
increasing awareness about effects of carbon emissions re-
sulted in a serious focus on reducing power consumption
when designing modern industrial systems [1–4]. As a result,
the development of techniques that can still achieve high
system performances while minimizing energy consumption
has been the design focus of various networking systems,
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including sensor networks [5–8], cognitive radio networks [9–
12], femtocell networks [13–16], cloud networks [17–19], and
others.

Relying on renewable energy sources has been one of the
promising solutions to reduce carbon emissions [20, 21], but
their limited availability makes them unreliable for long term
use. With the technological advances achieved in improving
their energy efficiency, renewable sources contributed about
19% of the global world energy consumption in 2012 [22].

With the continuous growth in telecommunications market,
communication systems become one of the biggest power
consumers and CO2 producers with an amount representing
2% of the global CO2 emissions in the world [23]. In 2014,
radio access networks contributed about 84 TWh in the total
world energy consumption and about 170 Mto CO2e in the
total carbon emissions [24]. Those numbers are expected to
exponentially increase in the coming years with the continu-
ous growth of the telecommunications market driven by the
multiplication and variation of the telecommunication services
and the exponential increase of the required Quality of Service
(QoS). According to [25, 26], base stations (BSs) are the
highest components in terms of power consumption in the
mobile networks. It is responsible for about 60% of the total
power consumption. For that, many research attempts [27, 28]
have focused on reducing BSs’ energy consumption through
efficient resource allocation, increasing collaboration between
BSs to serve users, optimizing the geographical positions
taking into consideration the distribution of the served users,
and improving the use of renewable sources.

In this work, we consider a communication system where
BSs connected to different micro-grids cooperate to minimize
the global power cost while ensuring a reliable service to the
requesting users. Each micro-grid is equipped with renewable
sources but has the ability to procure non-renewable power
from the main grid when needed. The main task is to optimize
resource allocation through collaboration between BSs to
satisfy the required QoS of the different users while mini-
mizing the non-renewable energy consumption by profiting
from the available renewable power. The challenge consists
in determining the users’ assignment to BSs depending on
their relative channel gains as well as the renewable power
availability at each micro-grid.

Our joint users assignment and resource allocation problem
is formulated as a mixed-integer real problem with non-
linear objective function and constraints. Solving this type of
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problems is often challenging, especially with large number
of variables. In our initial work [29], we proposed a heuristic
approach based on dividing the problem into two tasks, users
assignment task and resource allocation task, and proposed an
adequate algorithm for each task. In this paper, we complement
it with a study of an optimal solution using convex relaxation
of the problem and the branch and bound method. This method
allows to obtain a solution with a known distance to the
optimal but its high computational cost makes it impractical
for real implementation. Thus, we show that the heuristic
solution represents a good alternative that achieves a trade-
off between optimality and complexity.

A. Literature Review

Developing green communications is one of the major chal-
lenges of the communication networks for 5G systems [30]. A
recent survey [31] studied different works on using renewable
sources to power BSs and showed their efficiency for a
reliable communication system. Authors in [32] proposed to
power BSs using solar energy while in [33], they focused
on dimensioning the battery and the photovoltaic panel used
to supply BSs. Using hybrid renewable is shown to increase
the energy efficiency by taking advantage of the different
renewable power sources. In this topic, different scenarios of
hybrid wind-solar powering of the BSs were studied in the
literature [34–36]. One of the limits of renewable sources is the
discontinuity of the power generation which affects reliability
of the service. Thus, hybrid renewable and non-renewable
powering is required. The emergence of smart grids represents
an opportunity to enhance power usage in telecommunication
systems by exploiting the dynamic power pricing information.
In a recent survey, Erol-Kantarci and Mouftah [37], showed
the great savings that could be achieved through the use of
smart grid capabilities in optimizing powering communication
networks. In addition, it was remarked that only few research
groups have focused on optimizing the use of smart grids in
communication systems. Of these works, Bu et al. [38] pre-
sented a study of the best scheme to power base stations
using smart grid with consideration of real-time power prices
provided by the smart grid and pollution level resulting from
the power generation while Ghazzai et al. [39] presented a
complete framework for a smart-grid powered LTE system
and introduced a power allocation strategy based on evolu-
tionary algorithms. Turning BSs to sleep mode is one of the
strategies that attracted a lot of attention. For this purpose,
Holtkamp et al. [40] proposed an optimized radio resource
allocation algorithm where the achieved gain ranges between
20 to 40% depending on the load, the proposed algorithm
includes a sleep mode duration estimation, resources sharing
and antenna configuration. Micallef et al. [41] proposed to
switch BSs to sleep mode when the traffic load decreases, the
focus of this work is how to select the set of BSs to be switched
to sleep mode. Serving the same main purpose of the previous
reference, Saker et al. [42] proposed two switching to sleep
mechanisms for base stations, the first is dynamic and depends
on the real time load and the second is called semi-static where
resource allocation is planned for longer time periods.

B. Contributions

In this paper, we propose to solve a joint users-to-BS
assignment and resource allocation problem for a group of
BSs clustered into a number of micro-grids, where each micro-
grid is powered through hybrid renewable and non-renewable
power sources. The objective is to minimize the total cost of
procurement in the network while guaranteeing the required
QoS for the users in the system.

The contributions of this paper are summarized as follows:
1) A green resource allocation architecture using hybrid

powering of the communication system from renewable
and non-renewable sources.

2) Exploiting the optimal performance using the relaxation
approach based on the branch and bound method to
present an ε-to-optimal solution.

3) Proposing a suboptimal solution based on di-associating
the problem into two sub-problems; one for the users-to-
BSs assignment and the other for the resource allocation
and proposing efficient heuristic algorithms to solve each
of them.

4) Taking into consideration the possibility of switching
BSs to the sleep mode by studying a powering model
that contains this capability and studying its effect on
power cost savings.

5) Studying the effect of the distribution of the renewable
power availability on the achieved cost gains.

The remaining of this paper is organized as follows. Sec-
tion II introduces the system model and micro-grid power-
ing architecture. Section III gives the mathematical problem
formulation of the system and models that govern the power
cost in the system. Then, in Section IV we present how to
exploit the B&B method to find the optimal solution while
in Section V, we detail and analyze the proposed heuristic
algorithms for resource allocation. Following that, we present
a performance analysis of the presented algorithms through
extensive simulations in Section VI. Finally, the conclusion is
drawn in Section VII.

II. SYSTEM MODEL

We consider a set of L base stations aiming to serve K
users through N sub-channels (N >> K). We assume that
the base stations are connected through M power-grids where
each micro-grid m powers a group of Lm base stations. Each
micro-grid uses renewable power to generate electricity needed
to feed the connected base stations. In addition to that, it is
responsible for purchasing the back-up power from the main
grid when needed as shown in Fig. 1.

It is to be noted that BSs’ clustering method into the micro-
grids is out of the scope of this paper. But, results of this
work could be exploited to optimize the clustering of the BSs.
We consider to focus on the instantaneous management of the
available power. Thus, we assume that BSs do not have the
ability to stock power. The available instantaneous renewable
power at a micro-grid m is denoted by P renewm assumed to
incur free cost of usage while the non-renewable power has a
unitary cost denoted αm per power unit. Thus, the cost of the
power consumed by each micro-grid is equal to the cost of
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Fig. 1. System powering architecture

the power consumed by all BSs belonging to the micro-grid
exceeding the available renewable power. Mathematically, the
cost of the power at the micro-grid m is written as

Cm = αm

[ L∑
l=1

bm,lPl − P renewm

]+
, (1)

with
[
x
]+

= max(x, 0) and where Pl represents the power
consumption of the base station l, bm,l is an index of the
base stations connected to the micro-grid m (i.e., bm,l = 1
if base station l is connected to micro-grid m and bm,l = 0,
otherwise), and P renewm represents the generated renewable
power at this micro-grid.

We consider a simplified model for the base station power
Pl. According to Arnold et al. [43], the power consumption of
a base station consists of basically two components. The first
term is a function of the transmitted power which depends
on the served users while the second is independent of the
load and serves to ensure powering of the base station and
ensuring some functionalities such as cooling. Thus, assuming
a linear model function of the transmitted power, the base
station power can be written as follows

Pl = ξl

K∑
k=1

a
(k)
l P

(k)
l + P idlel , (2)

where a(k)l is the assignment index for users to base stations
(i.e., a(k)l = 1 if the k-th user is served by the base station
l and a(k)l = 0, otherwise), P (k)

l is the power transmitted by
base station l to the k-th user, and ξl is the amplification factor
for the transmitted power by the base station l and P idlel is
the power consumed by the l-th base station when idle.

III. PROBLEM FORMULATION

The aim of our work is to improve the usage of the
available renewable power in different micro-grids through
collaboration between the base stations in the same micro-
grid and in different micro-grids. Consider Eq. (1), the total
cost of the procured non-renewable power by all micro-grids
can be written as follows:

C =

M∑
m=1

αm

[ L∑
l=1

bm,lPl − P renewm

]+
. (3)

The Quality of Service (QoS) is ensured by a minimum
throughput rreqk that needs to be guaranteed for each user k for
its successful communication. The QoS may differ from one
user to another depending on the user’s running applications.
The minimum rate constraint for each user is expressed as

R(k) ≥ rreqk , (4)

where R(k) is the achieved throughput by user k, given by

R(k) =

L∑
l=1

a
(k)
l bc n

(k)
l log2

(
1 +

P
(k)
l g

(k)
l

N0 bc n
(k)
l

)
, (5)

where n
(k)
l is the number of sub-channels allocated to user

k, bc is the sub-channel bandwidth, g(k)l is the channel gain
between the base station l and the user k assumed to be the
same for all sub-channels (fast fading variations are not con-
sidered as we target relatively large time-slot transmissions),
and N0 is the noise power density. To avoid interference, we
assume channel re-use not allowed and all sub-channels shared
orthogonally between all base-stations. Thus, an additional
constraint is considered for sub-channels’ sharing

L∑
l=1

K∑
k=1

a
(k)
l n

(k)
l ≤ N. (6)

Then, the problem consists of minimizing the cost function
under minimum rate per user constraint, total bandwidth con-
straint, and the assumption that each user must be served only
from one base station which can be written mathematically as
follows

min{
a
(k)
l ,n

(k)
l

}
1≤l≤L
1≤k≤K

M∑
m=1

αm

[ L∑
l=1

bm,lPl − P renewm

]+
(7a)

s.t.
L∑
l=1

a
(k)
l bcn

(k)
l log2

(
1 +

P
(k)
l g

(k)
l

N0bcn
(k)
l

)
≥ rreqk , ∀k (7b)

L∑
l=1

K∑
k=1

a
(k)
l n

(k)
l ≤ N (7c)

L∑
l=1

a
(k)
l = 1, ∀k. (7d)

The last constraint is added to indicate that each user is
served by only one base station. In this case, the allocated
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power is deduced from the rate constraint (13d) as follows

P
(k)
l = a

(k)
l

(
2

r
req
k

n
(k)
l

bc − 1

)
N0bcn

(k)
l

g
(k)
l

. (8)

The optimization problem (7) is a non-linear mixed integer-
real minimization problem to determine the assignment of
each user to the best BS in addition to the number of sub-
channels per user and the allocated power. The objective is to
ensure the required data rates for all users while minimizing
the consumption power cost by profiting from the available
renewable power in the different micro-grids and variability
of the channels’ gains between the different users. In con-
ventional power allocation problems, users-to-BSs assignment
depends mainly on the channel gains between the users and
the BSs (i.e., each user will be assigned to the BS with the
best channel gain). In our problem, the dependency of the cost
function on the available renewable power makes the problem
more challenging. In addition, further power cost reductions
are possible by using adaptive bandwidth allocation on the
cost of an additional complexity in the problem solving.

IV. OPTIMAL SOLUTION USING BRANCH AND BOUND
METHOD

As dynamic spectrum, power allocation and user to base
station assignment problem is a mixed integer non-linear
optimization problem with a large number of variables, then
finding the optimal solution is a challenging task. For this type
of problems, branch and bound method is shown to provide an
ε-to-optimal solution with a worst case exponential time but a
less complex average time and a minimum time of polynomial
complexity [44]. The method is proposed by A. H. Land and
A. G. Doig in 1960 [45] as a non-heuristic global optimization
method for non-convex problems. Its basic idea consists of
partitioning the set of feasible solutions into smallest subsets.
Then, recursively, compute an upper bound and a lower bound
for each subset and a global upper and lower bounds. The
dimension of the problem is reduced rapidly by pruning the
subset of feasible sub-problems by eliminating the branches
where a global upper-bound is better than the branch lower
bound. The algorithm of this method is described as follows

1) Compute an upper bound (U ) and a lower bound (L)
for the problem: The upper bound can be computed
using one of the heuristic proposed algorithms or as a
randomly selected solution, and the lower bound can be
computed using a relaxation method.

2) If the found lower bound is a feasible solution then it is
the searched solution, otherwise create two branches by
fixing one of the binary variables one time to zero (B1)
and one time to one (B2).

3) Compute lower bounds (L1, L2) and upper bounds
(U1, U2) for B1 and B2, respectively.

4) Set U to min(U1, U2) and then if L1 is greater than U
then prune B1 and if L2 is greater than U then prune
B2.

5) Repeat the previous steps recursively until finding a so-
lution within ε distance to the optimal (i.e., the difference

between lower bound and upper bound is less than ε),
or parsing all the branches.

Eliminating the unfeasible branches reduces the complexity
of the algorithm. For instance, if one variable a

(k)
l is fixed

to 1, using the constraint that
∑L
l=1 a

(k)
l = 1, all variables

a
(k)
l′ ,∀k′ 6= k are set to 0. In addition, the choice of the binary

variable to fix is also important. Usually, the variables with
equal probabilities to the binary values are fixed firstly and
their two possible branches are parsed (i.e, the variable for
which the real solution is the closest to 0.5). The fixing for
1 is done first since it requires less computation as L − 1
variables are eliminated.

The challenging task in this approach is obtaining the lower-
bound. We use a convex relaxation of the problem by convert-
ing the users-to-BS assignment binary variables a(k)l into real
variables (relaxed variable) and adding constraints that require
the relaxed variables to be between zero and one. We show
in the Appendix that the relaxed problem is convex. Solving
the relaxed problem is still challenging as the relaxation of the
binary variables produces a problem with high dimensionality
(3×K×L variables to be solved). Observing the dependence
of the bandwidth and the users-to-BS assignment variables, we
proceed with a variable change (9) that reduces the number of
variables by one-third. Thus, we propose a new variable x(k)l ,
representing the percentage of sub-channels used by user k
through the l-th BS:

x
(k)
l = a

(k)
l n

(k)
l (9)

Using the property that
L∑
l=1

a
(k)
l = 1, ∀k, the original

variables are re-obtained from the new joint variable as follows

n
(k)
l =

L∑
l=1

x
(k)
l (10)

a
(k)
l =

x
(k)
l∑L

l=1 x
(k)
l

(11)

In addition, in order to derive easily the Lagrangian of the
problem we introduce a new variable Cm defined as follows

Cm = max

{ L∑
l=1

bm,lPl − P renewm , 0

}
(12)

The relaxed problem is then written as follows

min{
P

(k)
l ,x

(k)
l

}
1≤l≤L
1≤k≤K

M∑
m=1

αmCm (13a)

s.t. Cm ≥
[ L∑
l=1

K∑
k=1

bm,lP
(k)
l − P renewm

]
∀m (13b)

Cm ≥ 0 (13c)
L∑
l=1

x
(k)
l log2

(
1 +

P
(k)
l g

(k)
l

N0x
(k)
l

)
≥ rreqk , ∀k (13d)

L∑
l=1

K∑
k=1

x
(k)
l ≤ N (13e)
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As proven in the Appendix, the relaxed problem is convex.
Thus, the primal and dual problem solutions are identical
given the slackness condition which is guaranteed in our case
(existence of at least one feasible solution). Then, by intro-
ducing non negative dual variables β, {λ1...λm}, {γ1...γm},
and {µ1...µK}, the Lagrangian function is given by

L =

M∑
m=1

αmCm

+

M∑
m=1

λm

( L∑
l=1

K∑
k=1

bm,lP
(k)
l − (P renewm + Cm)

)

+ β

( L∑
l=1

K∑
k=1

x
(k)
l −N

)
−

M∑
m=1

γmCm

+

K∑
k=1

µk

(
rreqk −

L∑
l=1

x
(k)
l log2

(
1 +

P
(k)
l θ

(k)
l

x
(k)
l

))
.

(14)

Then primal feasibility K.K.T conditions are inferred from
the Lagrangian derivatives as follows

γm = αm − λm (15a)

β − µk
[
log
(
1 +

P
(k)
l θ

(k)
l

x
(k)
l

)
−

P
(k)
l θ

(k)
l

x
(k)
l + P

(k)
l θ

(k)
l

]
= 0 (15b)

λmbm,l −
µkθ

(k)
l(

1 +
P

(k)
l θ

(k)
l

x
(k)
l

) = 0, (15c)

where θ
(k)
l =

g
(k)
l

N0
, while the complementary slackness

conditions are given by

λm

( L∑
i=1

K∑
k=1

bm,lP
(k)
l − (Pm + Cm)

)
= 0, ∀m (16a)

µk

( L∑
i=1

x
(k)
l log2

(
1 +

P
(k)
l θ

(k)
l

x
(k)
l

)
− rreqk

)
= 0, ∀k

(16b)
γmCm = 0, ∀m (16c)
L∑
i=1

K∑
k=1

x
(k)
l −N = 0. (16d)

Then we define

Am =

L∑
i=1

K∑
k=1

bm,lP
(k)
l − P renewm , (17)

such that Cm = max(Am, 0)
A sub-gradient algorithm is then implemented, where the

dual variables are iteratively solved in the outer loop to satisfy
the slackness conditions while in the inner loop the K.K.T
conditions are solved to determine the primal variables P (k)

l ,
x
(k)
l , and Cm.
In particular, in the case where Cm is greater than zero,

we can deduct from (16c) that γm = 0 and from (15a) that

λm = αm. Then, we solve (15b) and (15c) to obtain x(k)l and
P

(k)
l function of the Lagrangian parameters while in the other

case where Cm = 0 (i.e., Am < 0); we can deduct from (16a)
that λm = 0, x(k)l and P (k)

l can be then be freely chosen such
that we keep Cm = 0, then we increase the power P (k)

l and
decrease the used bandwidth x(k)l for the BSs l belonging to
the micro-grid m (i.e., bl,m = 1).

V. DISJOINT USERS AND CHANNELS ASSIGNMENT

As the problem is complex and even, the optimal so-
lution presented earlier is impractical for large number of
users/channels, we then propose a suboptimal efficient ap-
proach. We divide the problem into two sub-problems. First,
we assume constant bandwidth allocation among all users and
focus on assigning the users to BSs. Then, we optimize the
allocated bandwidth to further optimize the cost of the power
consumed by profiting from dynamic spectrum assignment.
The two algorithms are incorporated successively in a two-
step iterative algorithm.

A. Users-to-BS assignment

In this part, we consider a fixed bandwidth sharing between
the users and we focus on determining the assignment of users
to the BSs. The optimal solution to determine the best users-
to-BS assignment is to perform an exhaustive search of all
the possible assignments and take the combination that incur
the least total cost. Obviously, this is not a practical solution
as its complexity is exponential. Alternatively, we propose a
polynomial approach based on the bin-packing to determine
the users that will be assigned to each base station. In our
case, the BSs represent the bins while the users are the objects
to be packed. The difference, is that objects occupy different
volumes depending on the pack as the power consumed differs
from a BS to another. Our metric criterion for the decision is
the resultant global power cost in the whole network. Thus,
each user will be assigned to the base station incurring the
lowest power cost according to Eq. (3). As in usual bin-
packing algorithms, the order of packing objects influences the
obtained performance. For that, we propose two approaches:
• Random users assignment: In this approach, we sim-

ply assign the users in a random order. Although, this
method is limited in performance, it is suitable for online
assignment as we need to assign users in their order of
request of service without waiting for all users to search
for the best order of assignment.

• Best users assignment: In this approach, as described
in Algorithm 1, we search for the user that will incur
the lowest power cost by checking with all users. Then,
assign it and repeat the procedure until assigning all
users. Although the complexity is multiplied by a factor
capped by the number of users (we need to parse, at each
step, all users and compute the resultant power cost), this
process notably enhances the performance as the order of
assignment of the users is very important to efficiently use
the renewable power in the micro-grids.
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Algorithm 1 Users-to-base stations assignment.

INPUT: Number of sub-channels per user: {n(k)l } 1≤l≤L

1≤k≤K
.

OUTPUT: Users-to-BSs assignment: {a(k)l } 1≤l≤L

1≤k≤K
.

repeat
for all users k = 1 : K do

Determine base station lk to be assigned to user k
incurring lowest power cost: lk = argminl c

(k)
l

end for
Assign user k∗ such that k∗ = argmink c

(k)
lk

until All users assigned

B. Bandwidth Allocation

Dynamic spectrum allocation has shown its importance for
power savings. Thus, we propose to assign the bandwidth
adaptively between the users in order to further reduce the
global power cost. As discussed earlier, solving the global
problem optimally is computationally complex, therefore we
propose to use an iterative two-step algorithm. In the first
step, we optimize the users-to-BSs assignment similarly to
the previous section. While in the second step, we propose
to optimize the bandwidth allocation. For the bandwidth allo-
cation, inspired by the bubble sort, we propose an algorithm
that consists of searching recursively the best possible sub-
channels changes until convergence. At each step, we parse
all users and search, for every user, the best channel swap
with another user that results in the largest reduction in power
cost. We apply that change and restart the search again until
no further power savings could be achieved.

Algorithm 2 Bandwidth allocation.

INPUT: Users-to-BSs assignment: {a(k)l } 1≤l≤L

1≤k≤K
.

OUTPUT: Number of sub-channels per user: {n(k)l } 1≤l≤L

1≤k≤K
.

repeat
for all users k1 = 1 : K do

search for the best sub-channel swap with another user
k2 such that:

k2 = argmin
k2

C(n
(k1)
l ⇐ n

(k1)
l + 1, n

(k2)
l ⇐ n

(k2)
l − 1)

end for
until no possible cost decrease (k2 = k1, ∀k1).

VI. PERFORMANCE ANALYSIS

A. Complexity Analysis

1) Branch and Bound Algorithm: The branch and bound
proceeds with a tree binary search over the branches which are
the binary variables until finding the optimal solution. Thus, its
worst case complexity is proportional to 2L×K . This should be
multiplied by the cost of computing the lower bound denoted
by Cr. For the best case, the solution can be found through a
single evaluation of the lower bound if a feasible solution is
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Fig. 2. B&B number of recursive calls as a function of the distance to optimal
solution for K = 10 users.

found from this step. It is shown that this approach performs
much better in practice by pruning the branches rapidly using
the feasibility constraints. For our problem, the condition of
having only one BS to serve a user helps to eliminate rapidly
the branches. For instance, if a BS l1 is shown to serve a user
k, all other branches of BSs l2 6= l1 serving the user k.

In order to show the practical complexity of this approach,
we consider a small scenario with K = 10 users, M = 2
micro-grids, and L = 3 BSs and compute the number of
iterations to find an ε-to-optimal solution for different values
of ε. Fig. 2 shows that the minimum, average, and maximum
number of iterations function of ε. We observe that the average
is much closer to the minimum than the maximum which
proves the efficiency of the pruning method.

2) Two-Step Algorithm: For the users-to-BS assignment
Algorithm 1, the number of iterations needed to perform the
assignment of all users is linear as a function of the number of
users and the number of BSs in the network. The easiest way
to implement Algorithm 1 is to perform two loops, one on
the users and one on BSs. Additionally, the operations inside
the loops does not exceed the computing of a simple function
and a comparison. Thus, the complexity of Algorithm 1 is
O(K ×L) when not considering the outer loop (random user
selection algorithm) and it will be multiplied by the number
of users when considering the outer loop (best user selection).

For the bandwidth allocation, we need first to go through all
users, and to search for the best sub-channel swap with another
user. The search operation is performed by going through all
possible swaps and this is by going through all users and all
sub-channels. Since sub-channels are all identical in terms of
gains, and without considering the repeat loop, we will have
K2 comparisons and K2 possible swaps. In the best case we
need to perform the previously described operations only one
time before deducing that there is no cost decrease. In the
worst case, we need to perform the previous operations as
much as the number of the sub-channels. Then the worst case
complexity is N ×K2.

Thus, the complexity of the whole algorithm will be the
sum of the complexities of these two steps multiplied by the
number of iterations needed to converge denoted by Niter.
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Via simulations, we verify the convergence of this two-step
algorithm within few iterations not exceeding 10.

To resume, we present in Table I, the complexity of the
different algorithms.

B. Simulation Results

We consider a circular area of diameter 6 Km where K
users and L base stations are placed randomly. The chan-
nel gains are derived based on the pathloss model g(k)l =

c0

(
d0
dl,k

)η
, where c0 is the channel gain for the reference

distance d0, dl,k is the distance between the base-station l
and the user k, and η is the pathloss set to 3. We consider
a total bandwidth B = 20 MHz divided into sub-channels
of per sub-channel width bc = 15 KHz. The noise power
is taken −120 dBm/Hz. The minimum required throughput
rate per user is set to rreqk = 50 Mbps. We consider that the
base stations are grouped into M = 4 micro-grids so each
micro-grid supplies two base stations. We assume that the
non-renewable power cost, αm, is equal for all micro-grids
to focus on the effect of the renewable power availability. The
renewable power P renewm is set such that it is sufficient to serve
an average number of users for the average spatial distribution
in the network. To illustrate the results, we consider the sce-
nario where renewable power is not considered in optimization
and compute the incurred power cost and consider that as
a reference. We represent the obtained performance as the
relative cost gain with comparison to this reference cost.

Fig. 3 illustrates the normalized power cost gain as a
function of the number of users in the network for the B&B
method with ε = 0.8%. The method shows good performance
as known distance (at most ε) to optimal solution in the way
that it keeps closer to the optimal (black curve) than to ε-to-
optimal limit (red curve).
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Fig. 3. Power cost gain as function of the number of users for optimal, B&B
ε-to-optimal, and ε-to-optimal cost gain distance.

The performance of the heuristic algorithms are firstly
compared to the ε-to-optimal results obtained by the B&B

method. Due to the computational complexity of the B&B
method, we restrain the simulations to a small number of users
in this comparison. Fig. 4 shows the power cost gain as a
function of the number of users for B&B method, best user
selection algorithm and random user selection algorithm with
optimized bandwidth. Through this analysis, we show that
the best user selection algorithm combined with an optimized
bandwidth allows to obtain less than 0.8% to optimality while
the random user selection algorithm is slightly farther than this
bound.
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Fig. 4. Power cost gain as a function of the number of users

Since one of the advantages of the heuristic algorithms
is its ability to solve the problem with more degrees of
freedom, we study in the next simulations the performance
of the proposed algorithms when considering a larger number
of users (100 to 200 users). Fig. 5 illustrates the normalized
power cost gain as a function of the number of users in the
network with different heuristic algorithms. First, we note the
net cost gain achieved by incorporating additional features
in the optimization algorithm. In particular, the best user
selection method for the users-to-BSs assignment outperforms
the random selection. In addition, optimizing the allocated
bandwidth for each user allows further cost savings. Second,
as the number of users requesting to be served increases, the
cost gain decreases due to the increase of the consumed power
which, at a certain step, harvests all the available renewable
power. In this case, the problem reduces to a total power
minimization problem and our approach becomes limited in
performance compared to the optimal approach.

One important factor that impacts the obtained performance
is the available non renewable power in the micro-grids. For
that, we denote the non renewable to renewable consumed
power ratio by ρ and represent it in Fig. 6 as a function of
the number of users. As expected, the bandwidth optimized
algorithms allows to reach lesser ratios than algorithms with
uniform bandwidth which means lesser consumption of non-
renewable energy and higher utilization of the renewable
sources. The users’ selection algorithm also helps in enhancing
the usage of the renewable resources as the best selection
method reaches lesser ratio than the random user selection.

In order to show the optimality of the proposed algorithms
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TABLE I
ALGORITHMS COMPLEXITY

Algorithm best case worst case average
Random user selection with Uniform bandwidth L×K L×K L×K
Best user selection with Uniform bandwidth L×K2 L×K2 L×K2

Random user selection with Optimized bandwidth (2K2 + L×K)Niter (2N ×K2 + L×K)Niter -
Best user selection with Optimized bandwidth (2K2 + L×K2)Niter (2N ×K2 + L×K2)Niter -
B&B method Cr 2L∗×K ∗ Cr L×K × Cr
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Fig. 5. Relative power cost gain as a function of the number of served users
with constant renewable power for all micro-grids.
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Fig. 6. Non renewable to renewable consumed power ratio in the network as
a function of the number of users.

for such a practical scenario (large number of users), we
consider the case where the renewable power is not available
at all (i.e., P renewm = 0, ∀m). In this case, the problem reduces
to exactly the same as the total power minimization which we
took as a reference for computing the cost gains. We present
the results in Fig. 7 which shows that without bandwidth
optimization the best user selection algorithm incurs a loss of
around 10% while adding the bandwidth optimization allows
a gain between 30 to 45% which represents the net gain of
the dynamic allocation of the bandwidth.

In the previous figures, we studied configurations where the
same renewable power amount is available in each micro-grid.
In the following, we propose to study a more practical scenario
where the available renewable power is variable across the
different micro-grids. We present in Fig. 8 the cost gain with
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Fig. 7. Algorithms optimality: relative power cost gain when renewable power
is not available.

increasing variability of the renewable power level across
the micro-grids. We note that with the best user assignment
algorithm, the cost gain increases when the variance increases.
This is explained by the fact that the order of assignment of
users-to-BSs becomes more important in this case than in the
equal renewable case for which, due to the random distribution
of users, optimal assignment will be most likely based on
channel gains rather than renewable power availability.
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deviation for K = 150 users.
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In Fig. 9, we vary the number of micro-grids while keeping
the same number of base stations and the same total renewable
power over all micro-grids to observe the effect of collabo-
ration between the base stations. As the number of micro-
grids increases, the cost gain is expected to decrease as in the
random users assignment due to non-possibility of exchanging
energy between BSs. But, with the best user assignment, the
gain remains approximately constant. The algorithm succeeds
to compensate the loss incurred by the absence of collaboration
between BSs by classifying the users before assigning them.
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Fig. 9. Cost gain percentage for different number of micro-grids for K =
200 users.

The possibility of switching base stations to the sleep mode
when not serving any users could help in saving the power. We
consider a new model for the BS power where the component
independent from the load in the BS power consumption
model given by Eq. (2) is divided now into two terms; one
term that is consumed only if the BS is serving users called
(P onl ) and one for the power consumed even in sleep mode
(P idlel ). The new model is given by

Pl = ξl

K∑
k=1

a
(k)
l P

(k)
l + P onl

( K∑
k=1

a
(k)
l > 0

)
+ P idlel , (18)

The effect of the sleep mode is studied in Fig. 10. We
vary the percentage of power that could be saved through this
sleep mode and represent the power cost savings that could be
achieved. The normalized power cost gain slightly increases
with the increase of the power needed to turn the BSs on as
further savings could be achieved when this amount increases.
Hardware limitations due to components needed always ON
and system instability for long-term due to recurrent switch of
BSs limit the gains of this capability in practice.

In order to further enhance the performances of the pro-
posed algorithms, we propose to use a new objective func-
tion when evaluating the power cost during the users-to-BSs
assignment task. This new objective includes the consumed
renewable energy at each micro-grid weighted with the degree
of consumption of the renewable energy in each micro-grid.

0 1 2 3 4 5 6 7 8
−40

−20

0

20

40

60

80

P
l
on/Prenew (%)

P
ow

er
 c

os
t g

ai
n 

(%
)

 

 

Best user − optimized bandwidth
Random user − optimized bandwidth
Best user − uniform bandwidth
Random user − uniform bandwidth

Fig. 10. Effect of sleeping mode: power cost gain as a function of the power
needed to turn the BS ON for K = 20 users.

Mathematically, this objective is written as follows

O =

M∑
m=1

αm

[ L∑
l=1

bm,lPl − P renewm

]+
+

M∑
m=1

ωmmin

{ L∑
l=1

bm,lPl;P
renew
m

}
,

(19)

where ωm is the weight affected to the micro-grid and com-
puted as follows

ωm =

P renewm −min

{∑L
l=1 bm,lPl;P

renew
m

}
∑M
m′=1 P

renew
m′ −min

{∑L
l=1 bm′,lPl;P

renew
m′

}
(20)

Consider the configuration where a different renewable
power amounts are available in each micro-grid, Fig. 11 shows
the power cost gain function of the number of users for two
objective functions. The first is the one given by Eq. (3)
(FOF), while the second is given by Eq. (19) (SOF). The final
power cost gain is always evaluated using Eq. (3) which is
our effective cost measure. The figure shows an improvement
on the power cost gain up to 3% depending on the number of
users when using the new objective function.

VII. CONCLUSION

We have introduced in this paper a new model for power-
ing base stations using hybrid renewable and non-renewable
power sources. While base-stations are clustered in groups of
micro-grids, we proposed to minimize the global power cost
while satisfying the users’ requirements through cooperation
between BSs in the same micro-grids and between the different
micro-grids. Two approaches are presented. The first aiming an
ε-to-optimal solution based on the branch and bound method,
then a suboptimal two-step algorithm using efficient heuristics
for the users-to-BSs assignment and bandwidth allocation
tasks. Important power cost gains are achieved through the
proposed approaches due to the better usage of the renewable
powers across the micro-grids to serve the users.
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Fig. 11. Effect of the objective function: relative power cost gain as a function
of the number of users when considering the new objective function.

RELAXED PROBLEM CONVEXITY PROOF

In the relaxed problem (13) the objective function is convex
since it is the maximum of two convex functions and all
constraints, except constraint (13d), are linear, that is why
it will be sufficient to prove the convexity of the minimum
rate constraint (13d) to prove the convexity of the whole
optimization problem. This is equivalent to proving that the

function r
({

P
(k)
l , x

(k)
l

}
l=1..L

)
defined as,

r

({
P

(k)
l , x

(k)
l

}
l=1..L

)
=

L∑
l=1

x
(k)
l log2

(
1 +

P
(k)
l g

(k)
l

N0x
(k)
l

)
,

(21)
is concave for all k = 1..K.

The Hessian of this function is written as follows

H =



H1,1 0 · · · · · · · · · 0 0

0
. . . . . .

...

0
. . . . . . 0

...
...

. . . Hm,n
. . . 0

... 0
. . . . . .

...

0
. . . . . . 0

0 0 · · · 0 · · · 0 HM,N


, (22)

where the block matrices Hm,n are defined as

Hm,n =

 ∂2r

∂x
(k)
l

2
∂2r

∂x
(k)
l ∂P

(k)
l

∂2r

∂x
(k)
l ∂P

(k)
l

∂2r

∂P
(k)
l

2

 (23)

Since H is a block diagonal matrix thus it is sufficient to
prove that all the Hm,n are definite negatives to conclude that
H is a definite negative since the eigenvalues of H are the
concatenation of all the eigenvalues of the matrices Hm,n.
Thus, let us compute the eigenvalues of Hm,n.

For that, we start by computing the partial derivatives in (23)

to get

∂2r(
∂x

(k)
l

)2 = −

(
P

(k)
l θ

(k)
l

)2

log(2)x
(k)
l

(
x
(k)
l + P

(k)
l θ

(k)
l

)2 (24a)

∂2r

∂x
(k)
l ∂P

(k)
l

=
P

(k)
l θ

(k)
l

2

log(2)

(
x
(k)
l + P

(k)
l θ

(k)
l

)2 (24b)

∂2r(
∂P

(k)
l

)2 = −
x
(k)
l θ

(k)
l

2

log(2)

(
x
(k)
l + P

(k)
l θ

(k)
l

)2 (24c)

where θ(k)l =
g
(k)
l

N0
.

Then the Hm,n matrices are given by:

Hm,n =
θ
(k)
l

2

log(2)

(
x
(k)
l + P

(k)
l θ

(k)
l

)2

−P (k)
l

2

x
(k)
l

P
(k)
l

P
(k)
l −x(k)l


(25)

The sum of the eigenvalues of the Hm,n matrix is given by
its trace as follow:

trace

[
Hm,n

]
= −

θ
(k)
l

2(
x
(k)
l + P

(k)
l θ

(k)
l

)2

(
P

(k)
l

x
(k)
l

+ x
(k)
l

)
,

(26)
and the product of the eigenvalues is given by its determinant

det

[
Hm,n

]
= 0. (27)

Since the determinant of the Hessian matrices are null and
the traces are negative, then the Hessian matrices Hm,n are
semi-definite negative and thus matrix H is also semi-definite
negative. Thus, we conclude that the rate function is concave
and the rate constraint is convex.
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